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Detailed information on the spatial variation of soils is desirable for many agricultural and environmental
applications. This research explores three approaches that use soil fuzzy membership values to predict
detailed spatial variation of soil properties. The first two are weighted average models with which the soil
property value at a location is the average of the typical soil property values of the soil types weighted by
fuzzy membership values. We compared two options to determine the typical property values: one that uses
the representative values from existing soil survey and the other that uses the property value of a field
observation typical of a soil type. The third approach is a multiple linear regression in which the soil property
value at a location is predicted using a regression between the soil property and fuzzy membership values.
We compared this to multiple linear regression with environmental variables. In a case study in the Driftless
Area of Wisconsin, the models were also compared with a predictive model based on existing soil survey. The
results showed that regression with environmental variables works well for areas where the soil–terrain
relationship is relatively simple but regression with fuzzy membership values is an improvement for areas
where soil–terrain relationships are more complicated. From the perspectives of data requirement and
model simplicity as well as accuracy of prediction the weighted average with maximum fuzzy membership
option has obvious advantages.
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1. Introduction

Spatial distribution of soil properties provides essential informa-
tion for agricultural and environmental management applications.
The physical and chemical properties of soils are commonly
documented in soil surveys at the soil component level and can be
mapped to display spatial distributions of such properties. Soil
property maps generated from conventional soil survey maps,
however, are no longer sufficient in many cases because they often
do not represent the spatial variability of soil properties at the level of
detail required by many environmental applications (Band and
Moore, 1995) and may result in a “mismatch of aggregation level
(s)” between the soils and other environmental data layers (De
Gruijter et al., 1997; Zhu, 2008; Zhu et al., 2008a).

Statistical methods have been used to predict detailed spatial
variations of soil properties (Moore et al., 1993; Gessler et al., 1995;
McKenzie and Ryan, 1999; Gessler et al., 2000; Park and Burt, 2002).
Quantitative relationships between certain soil properties and
environmental variables are usually developed for a local area
through multiple linear regressions. These techniques often rely
heavily on the assumption of linearity and do not consider spatial
correlation of soil observations. However, the relationships between
soil property variation and the underlying environmental variables
can be very complex (Lark, 1999) and the assumption of linearity is
often difficult to meet. Geostatistical methods have also been
investigated to take into account the spatial autocorrelation of
observed values in field samples (McBratney and Webster, 1986;
Odeh et al., 1992, 1994; Odeh and Chittleborough, 1992; McBratney
et al., 2000; Heuvelink and Webster, 2001; Hengl et al., 2004). These
methods were found to outperform multiple regressions, especially
when auxiliary information is available and is incorporated through
regression-kriging or kriging with external drift (Odeh et al., 1994;
McBratney et al., 2000; Bishop and McBratney, 2001). Geostatistical
methods, however, are limited in that they often require large amount
of field observations to account for complex landscape types or
require the assumption of stationarity and thus are best suited for
modeling soil spatial variation over small areas which have extensive
field observations. This presents significant challenges to their
application over large and diverse landscapes.

This research explores the possibilities of using soil fuzzy
membership values (Zhu, 1997; Zhu et al., 2001) to predict soil
property values in areas where the relationship between soil property
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Fig. 1. Location of the study area in Dane County, Wisconsin (the area to the west of the
dashed line is the Driftless Area).
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values and environmental attributes is perceived to be complex and
non-linear. For example, a certain soil property might increase from a
summit to backslope position and then decrease from backslope to
foot slope or depression positions. Soil properties tend to change
gradually within well-defined landscape units but change more
quickly in transition zones between landscape positions. The fuzzy
membership values to a set of soil types for a local soil (such as the soil
similarity vector in the Soil Land Inference Model (SoLIM) approach
(Zhu, 1997)) can be viewed as a non-linear transformation of
environmental variables based on expert knowledge of soil–land-
scape relationships. The premise of this research is that the inherent
non-linearity as captured by a set of soil fuzzy membership values can
be used to describe and model non-linear variation in soil property
values. In this study, we use the SoLIM approach to derive the set of
membership values for mapped locations.

2. Methods and materials

2.1. Soil similarity vector and SoLIM

SoLIM is a predictive approach to soil mapping (Zhu, 1997; Zhu et
al., 2001). It is based on the concept that the autocorrelation of soil
formative factors results in the development of natural entities of soil
on soil–landscape units (Hudson, 1992). Soils are thus predictable
from environmental conditions that define the soil–landscape units.
The core of SoLIM is a similarity model (Zhu, 1997) for representing
soil spatial variation under fuzzy logic. With the similarity model, soil
at location (i,j) is represented by an n-element similarity vector
(referred to as soil similarity vector), Sij=(Sij1, Sij2, ... Sijk...Sijn), where n is
the number of prescribed soil classes (such as taxonomic units) over
the area and Sij

k is an index that measures the similarity between the
local soil at i,j to a typical soil class k. Such measure is predicted based
on the similarity between the environmental conditions of a typical
soil class k and that at the local site From a fuzzy logic perspective, this
similarity value is the same as the fuzzy membership of the local soil
to the soil class.

2.2. Methods

We examined three fuzzy membership-based approaches to the
prediction and mapping of soil property values using the similarity
vectors produced with SoLIM. The first two approaches use a fuzzy
membership-weighted average model in which the soil property
value at a location is the weighted average of the typical soil property
values of the prescribed soil types with the weights being the fuzzy
membership values (similarity values) (Eq. (1)) (Zhu et al., 1997).

Vij =
∑
n

k=1
skijv

k

∑
n

k=1
skij

ð1Þ

where Vij is the predicted soil property value at location i,j, Si,jk is the
fuzzymembership value in soil type k for the soil at the given location,
and vk is the typical soil property value for soil type k. This model is
based on the assumption that the higher the membership of a local
soil in a given soil series the closer the property values at that location
will be to the typical property values of the series. We tested two
options with this model: one uses representative values (RVs) from
existing soil survey as the typical soil property values (vk) of the
prescribed soil types (referred to as the weighted average-RV model)
and the other uses the property values observed at a field location
where the fuzzy membership of the local soil to the given soil type, as
determined by SoLIM, is the highest among all field observations
(weighted average-maximum membership or weighted average-MM
model). The third approach we propose in this study uses the
similarity values in a statistical model. The incorporation of similarity
measures in terms of fuzzy membership or taxonomic distance has
been reported previously (Odeh and Chittleborough, 1992; Carre and
Gigard, 2002). We tested a simple regression model in which the soil
property value at a location is predicted using a multiple linear
regression between observed soil properties at sampling locations
and the fuzzy membership values of these soils to all prescribed soil
types as determined by SoLIM (regression-fuzzy membership model).

In order to explore the hypothesis that models involving soil
similarity vectors will better predict soil property variation than
models using only environmental data for landscapes where non-
linearity is high, the proposed models were compared with a
predictive model based on multiple linear regression with environ-
mental variables (regression-environmental variable model). We used
only a multiple linear regression model here instead of other
statistical methods (GLS regression, regression-kriging, etc.) to be
consistent with and thus comparable to our regression-fuzzy
membership model, which employs only a multiple linear regression.
The explanatory variables we used include environmental variables
that are commonly used in soil property predictions (Moore et al.,
1993; Gessler et al., 1995) and field observations of soil property
values. In our case study, the environmental variables used are
topographic variables including elevation, slope, aspect, planform
curvature, and profile curvature. While other variables likely have
some influence on soil formation in the study area (for example,
measures of slope positions, wetness indices, etc.), only these five
were used in the inference of soil similarity vectors with SoLIM in a
previous study (Smith et al., 2006). Therefore, for a fair comparison,
our regression model was also developed using only these explana-
tory variables.

For the sake of comparison, we also compared our model
prediction results to soil properties mapped on a conventional soil
map (referred to as the soil map model). The soil map model uses the
documented typical soil property values from an existing soil survey
to approximate the soil properties at specific locations. If a location is
enclosed within a soil polygon based on the existing soil survey, the
local soil is considered to exhibit the same property values as the map
unit corresponding to that polygon. The typical values of the soil
properties for these map units were determined based on the US Map
Unit Interpretation Record (MUIR) database (Soil Survey Staff, 1997).

2.3. Study area and data

The study site is Thompson farm, WI. It is a watershed in the
‘Driftless Area’ of southwestern Wisconsin (Fig. 1). The Driftless Area
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is the name applied to that portion of Wisconsin, Minnesota, Iowa,
and Illinois not glaciated during the recent Wisconsin glaciation
(12,000–90,000 years before present). Rather than being shaped by
glacial processes, the primary mechanisms for recent landscape
evolution in the Driftless Area have been fluvial, resulting in a well-
drained, deeply dissected terrain (Dott and Attig, 2004). The
watershed in our study consists of two distinct but related sections:
the Galena uplands and the St. Peter backslopes (Fig. 2). The Galena
uplands have gently rolling terrain consisting of a thin layer of loess
over clayey residuum underlain by fractured dolomite. The soil classes
in this section differ primarily in terms of depths to the bedrock layer.
The St. Peter backslopes, on the other hand, are marked by steeper
terrain, more variable soil types, and occur in places where stream
channels have cut through the dolomite to expose the sandstone
below.

Two representative transects were established over these two
sections in the watershed: one on the gently rolling summit (the
“Galena transect”), and one on the steep backslope (the “St. Peter
transect”) for our study (Fig. 2). Based on preliminary field
investigations and an earlier soil mapping application, these transects
were designed to capture the maximum amount of soil variation
possible in the study area. The Galena transect starts from a convex
position on the summit and extends across the summit, down the
shoulder and into a concave drainage way. The St. Peter transect starts
on a shoulder, extends down the steep south-facing backslope to a
concave footslope and into the drainage way. It resumes at the base of
the north-facing slope and extends through the footslope, up the
backslope, and terminates 10 meters past the transition from back-
slope to shoulder.

Soil profile descriptions were made and soil samples were taken at
five meter intervals along each transect to ensure a sufficient number
of samples and to conform to the resolution of the GIS data layers for
the study site, 32 sites for the Galena transect and 43 for the St. Peter
transect were included. The location of each sample point was
recorded with a GPS receiver. Soil pits were excavated to a depth of
50–90 cm and augured to 150 cm or bedrock, whichever was
shallower. The soil at each location was described according to
procedures developed by the USDA-Natural Resources Conservation
Service (NRCS) (Schoeneberger et al., 1998). Horizon designation,
horizon thickness, Munsell color, soil texture, soil structure, percent
coarse fragments, depth to bedrock or weathered bedrock, and clay
films were observed and recorded. Other soil features of interest that
could aid in the classification of the soil profiles were also recorded.
After the soil profile descriptions were completed, samples were
Fig. 2. Topography of the study area and the location of field transects.
taken from the A and Bt1 horizons. Soil profiles were classified to the
series level by NRCS soil scientist Chanc Vogel (Richland Center,
Wisconsin USDA Service Center). Particle size distribution in A-
horizon and Bt1 horizon samples was subsequently determined using
a laboratory procedure combining hydrometer analysis and sonic
sifting analysis (Knox, 1994). The following soil properties were
determined for use in each of themodels: A-horizon soil texture (sand
and silt content), Bt1-horizon soil texture (sand and silt content),
depth to Bt1-horizon, loess thickness, and depth to weathered
bedrock.

Fuzzy membership maps of soil series for the area created with
SoLIM in a previous study (Smith et al., 2006) were used to derive the
soil similarity vectors for locations along the two transects. Soil
inference in that previous study used only terrain variables based on
the local soil–landscape model developed by soil experts. The terrain
variables used to capture the landscape units were elevation, slope
gradient, planform curvature, and profile curvature. Prototype-based
inference (Qi et al., 2006) was utilized to generate fuzzy membership
maps of all prescribed soil types determined by local soil experts. For
each sample point along the two transects, the fuzzy membership
values to all soil types are combined to form the similarity vector
which was then used in the fuzzy membership-based approaches to
predict soil properties.

2.4. Model development

In order to compare the performances of soil property prediction
models on different types of landscapes, models were developed
independently for each of the two transects because they occur in
areas with different topographic conditions and have different sets of
soil series developed. For the weighted average-RV model, typical
values of the soil properties for the soil series mapped in the study
watershed (vk) were determined based on the MUIR database and the
representative profile descriptions recorded in the existing soil survey
(Glocker and Patzer, 1978). Specific soil texture information (percent
sand and silt) was calculated from sieve-size data from the MUIR.
Depth to Bt1-horizon was determined by examining the representa-
tive profile descriptions reported in the existing soil survey and
recording the depth to the upper boundary of the argillic horizon.
Depth to weathered bedrock was determined by examining the
representative profile descriptions reported in the existing soil survey
which record either the depth to weathered bedrock or 152 cm,
whichever was greater. Loess thickness was determined by examining
the representative profile descriptions and noting the depth at which
a change in parent material occurred. Once the typical soil property
values (vk) were obtained for each soil type, fuzzy membership values
of the sample site (Si,jk ) were retrieved from the fuzzy membership
maps based on the recorded GPS location. Predicted soil property
values were then calculated for all sites on each transect using Eq. (1).

For the weighted average-MM model, the weights (Si,jk ) remain the
same as those used in the weighted average-RV model but typical soil
property values (vk) were obtained from the field samples with
highest fuzzy membership values in their respective soil types. This is
done in the following way: first field observation locations were
intersected with fuzzy membership maps for each soil series and
fuzzy membership values at each location were recorded. Then, the
field observation with the highest fuzzy membership value for each
soil type was considered to be “typical” and the measured soil
properties associated with this location were assumed to be
representative of the soil type. Predicted soil property values of all
locations were then calculated using Eq. (1).

In the case of the regression-fuzzy membership model, explanatory
variables in the regression models are fuzzy membership values of all
soil series in the study area whose fuzzymembership value for at least
one transect point is greater than zero. Correlation matrices were
generated for each transect using the statistical software package R.

image of Fig.�2
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Linear regression models were developed for all possible combina-
tions of the explanatory variables: 31 separate regression models
were developed for the Galena transect and 256 separate regression
models were developed for the St. Peter transect. In order to find the
“best” model for each soil property and each transect, the adjusted R2

statistic was used to reduce overfitting and the significance of each
explanatory variable was also considered. The model with the highest
adjusted R2 value and only explanatory variables with significant
(α=0.05) regression coefficients was selected.

The implementation of the regression-environmental variable
model is largely similar to the regression-fuzzy membership model
except that the explanatory variables now are the four environmental
variables chosen for this study site: elevation, slope, aspect, planform
curvature, and profile curvature. Data layers of these variables were
calculated using a 10-foot resolution DEM and a 120-foot neighbor-
hood size (Smith et al., 2006). Transect points were overlaid onto the
various topographic layers and the values of each layer were recorded
for each transect point. Correlation matrices and regression models
were developed using the same approach as with the regression-fuzzy
membership model.

Finally, the soil map model simply uses the typical soil property
values based on the existing Soil Survey of Dane County, WI to
approximate the soil property values at sites visited along the
transects. First sample locations were intersected with the existing
polygon map to determine the soil map unit each observation is
associated with (Fig. 3). Then typical values of the soil properties for
the soil series in each of these map units were determined based on
MUIR database and the representative profile descriptions recorded in
the existing survey as what we did for theweighted average-RV model.

2.5. Assessment measures

Once the soil property values predicted by each model were
calculated, they were compared to the observed soil property values
Fig. 3. Transect locations with respect t
in order to assess model performances. Several measures were used
for quantitative assessment of the models, including mean absolute
error (MAE), R2, and agreement coefficient (AC). MAE measures
model precision. It was calculated based on Eq. ((2):

MAE =
∑
n

i=1
j vi−v′i
� �j
n

ð2Þ

where vi is the observed soil property value, vi′ is the predicted soil
property value, and n is the number of observations. R2 describes the
amount of variability in the predicted value Y explained by the
explanatory variables X1, X2,…, Xn. As R2 approaches 1, the amount of
variation in Y explained by the model increases. The AC index is
defined by Willmott (1984) as:

AC = 1−n⋅RMSE2

PE
ð3Þ

where n is the number of observations and PE the potential error
variance defined as:

PE = ∑
n

j=1
jPi−

P
O j + jOi−

P
O j� �2 ð4Þ

given that O ̅ is the observed mean, and Pi and Oi are the estimated and
observed value, respectively. AC values vary between 0 and 1, where 1
indicates perfect agreement and 0 means complete disagreement
between the estimated and observed values (Willmott, 1984).

3. Results and discussion

The above assessment measures were used to evaluate two types
of model performances in our current study. First, prediction
accuracies were compared among the two weighted average models
o existing soil survey delineations.

image of Fig.�3


Table 1
MAE for all selected models — Galena transect.

Property Soil map model Weighted average-RV Weighted average-MM Regression-environmental variable Regression-fuzzy membership

A-horizon sand 5.53 5.56 6.68 0.74 0.73
A-horizon silt 6.72 6.51 2.18 1.44 2.02
Bt1-horizon sand 6.12 2.62 1.15 1.02 1.14
Bt1-horizon silt 9 6.14 4.71 3.67 5.56
Depth to Bt1 10.16 9.37 8.68 7.67 8.02
Loess thickness 30.32 24.35 14.81 9.46 14.29
Depth to Cr 29.37 24.26 16.23 11.56 15.36

203A.-X. Zhu et al. / Geoderma 158 (2010) 199–206
and the soil mapmodel. Both the weighted average-RVmodel and soil
map model did not use any field observation in model development.
The weighted average-fuzzy membership model used one observa-
tion per soil class in model development and the used field sites were
excluded from the sample set when used for testing the model's
prediction accuracies. Second, the two regression models (environ-
mental variable-based andmembership-based) were compared using
the accuracy measures computed based on the field observations.
Since the two models used all field points in model development, the
performance measures were considered those of model development
due to lack of an independent validation set. Tables 1–6 below, list the
computed MAE, R2, and AC values from all models across the 7 soil
properties used along the two transects together for simplicity.

The results show that on both landscape types, the weighted
average-MM models perform better than simple weighted average-RV
models. R2 values are mostly higher and MAE values are generally
lower for the MMmodels. The differences are more obvious for the St.
Peter transect and the type of landscape represented by this transect.
This indicates that the soil property values associated with the
transect observation with the highest fuzzy membership value for
each series may be a better representation of local soil property values
than the typical values presented in the soil survey. The tables show
that, especially along the St. Peter transect, the models that used
information from the existing soil map (the soil map model and
weighted average-RV model) both have significantly higher MAEs and
lower R2 values than the weighted average-MM model. Looking at the
scatter plots for A-horizon sand values (Figs. 4 and 5), we see the
Table 2
R2 for all selected models — Galena transect.

Property Soil map model Weighted average-RV Weighted averag

A-horizon sand 0.1727⁎⁎ −0.0094⁎ 0.0241⁎

A-horizon silt 0.5331⁎⁎⁎⁎ 0.4426⁎⁎⁎⁎ 0.5054⁎⁎⁎⁎

Bt1-horizon sand 0.0035⁎ 0.0441⁎⁎ 0.0900⁎

Bt1-horizon silt 0.0918⁎ 0.1304⁎⁎ 0.1384⁎⁎

Depth to Bt1 −0.02⁎ 0.1587⁎⁎ −0.0056⁎

Loess thickness 0.4484⁎⁎⁎⁎ 0.4457⁎⁎⁎⁎ 0.4451⁎⁎⁎⁎

Depth to Cr 0.4303⁎⁎⁎⁎ 0.2812⁎⁎⁎ 0.2401⁎⁎⁎

⁎ Not significant at the 0.05 level.
⁎⁎ Significant at the 0.05 level.

⁎⁎⁎ Significant at the 0.01 level.
⁎⁎⁎⁎ Significant at the 0.001 level.

Table 3
AC for all selected models — Galena transect.

Property Soil map model Weighted average-RV Weighted averag

A-horizon sand 0.21 0.40 0.045
A-horizon silt 0.54 0.66 0.777
Bt1-horizon sand 0.33 0.41 0.522
Bt1-horizon silt 0.56 0.70 0.194
Depth to Bt1 0.42 0.58 0.350
Loess thickness 0.69 0.81 0.569
Depth to Cr 0.72 0.79 0.472
tendency for predicted soil property values to be stratified by soil type
with the soil map model and weighted average-RV model, which
contrasts the linear trend seen in the plots with the two regression
models (Figs. 6 and 7). This stratification can be explained as an
artifact of the polygon data model used for existing soil maps, which
only represents the typical property within an entire map unit instead
of more detailed local variability. Because of the areal coverage of a
soil map unit is often large, the impact of a misclassification can be
profound in detailed soil property prediction. It is noted, however,
that on the Galena landscape, R2 values are sometimes the highest
with the soil map model (A-horizon Silt, for example). With the
polygon-based soil mapmodel, soil property value within a polygon is
often an average of the local variations. In cases when local variation is
great and an attempt to predict the variation within the unit might
result in poorer agreement between the predicted and observed (as
indicated by the R2), the best estimate of a property value for a spatial
unit could well be the mean value for the unit, which might explain
the case with A-horizon silt in this study.

With regard to the two regression models, results from the Galena
transect (Tables 1–3) shows that the regression-environmental
variable model generally outperforms (evidenced by lower MAE,
higher R2 and AC values formost of the soil properties) the regression-
fuzzymembership variable model. This, however, is not echoed by the
results from the St. Peter transect (which has a stronger relief and
more complexity). Tables 4–6 show apparent lower MAE and higher
AC values with the regression-fuzzy membership model than the
regression-environmental variables model for most soil properties.
e-MM Regression-environmental variable Regression-fuzzy membership

0.0785⁎ 0.0620⁎

0.6791⁎⁎⁎⁎ 0.4593⁎⁎⁎⁎

0.1525⁎ 0.1735⁎⁎

0.3991⁎⁎⁎ 0.1221⁎⁎

0.3509⁎⁎⁎ 0.3178⁎⁎⁎

0.6750⁎⁎⁎⁎ 0.3645⁎⁎⁎⁎

0.5316⁎⁎⁎⁎ 0.3005⁎⁎⁎

e-MM Regression-environmental variable Regression-fuzzy membership

0.47 0.44
0.91 0.81
0.64 0.60
0.80 0.49
0.76 0.72
0.91 0.73
0.85 0.71



Table 4
MAE for all selected models — St. Peter transect.

Property Soil map model Weighted average-RV Weighted average-MM Regression-environmental variable Regression-fuzzy membership

A-horizon sand 18.35 15.38 7.62 6.72 4.81
A-horizon silt 17.97 15.10 6.2 4.61 3.65
Bt1-horizon sand 15.89 16.21 10.98 10.97 4.3
Bt1-horizon silt 14.68 16.94 9.33 8.01 3.59
Depth to Bt1 13.35 12.24 10.86 9.11 9.28
Loess thickness 56.29 59.78 5.98 4.88 3.45
Depth to Cr 17.72 20.22 17.94 15.48 9.37

Table 5
R2 for all selected models — St. Peter transect.

Property Soil map model Weighted average-RV Weighted average-MM Regression-environmental variable Regression-fuzzy membership

A-horizon sand 0.19⁎⁎⁎ 0.1671⁎⁎⁎ 0.5271⁎⁎⁎⁎ 0.6039⁎⁎⁎⁎ 0.8015⁎⁎⁎⁎

A-horizon silt 0.2468⁎⁎⁎⁎ 0.3031⁎⁎⁎⁎ 0.5634⁎⁎⁎⁎ 0.7459⁎⁎⁎⁎ 0.8369⁎⁎⁎⁎

Bt1-horizon sand 0.1033⁎⁎ 0.1003⁎⁎ 0.3612⁎⁎⁎⁎ 0.4627⁎⁎⁎⁎ 0.8938⁎⁎⁎⁎

Bt1-horizon silt 0.1466⁎⁎⁎ 0.0659⁎ 0.2766⁎⁎⁎⁎ 0.4408⁎⁎⁎⁎ 0.8592⁎⁎⁎⁎

Depth to Bt1 0.2287⁎⁎⁎⁎ 0.3255⁎⁎⁎⁎ 0.2308⁎⁎⁎⁎ 0.3880⁎⁎⁎⁎ 0.2970⁎⁎⁎⁎

Loess thickness 0.113⁎⁎ 0.2921⁎⁎⁎⁎ 0.7801⁎⁎⁎⁎ 0.8202⁎⁎⁎⁎ 0.8956⁎⁎⁎⁎

Depth to Cr 0.664⁎⁎⁎⁎ 0.7970⁎⁎⁎⁎ 0.8965⁎⁎⁎⁎ 0.8309⁎⁎⁎⁎ 0.9173⁎⁎⁎⁎

⁎ Not significant at the 0.05 level.
⁎⁎ Significant at the 0.05 level.
⁎⁎⁎ Significant at the 0.01 level.
⁎⁎⁎⁎ Significant at the 0.001 level.
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With the exception of the R2 value for the depth to Bt1-horizon, R2

values for all other regression-fuzzy membership models are not only
very high but are much larger than those for the regression-
environmental variable models. This difference shows that the
explanatory variables in regression models based on fuzzy member-
ship values explain more of the variation in soil properties than
regression models based only on the environmental variables
involved. Implicit in this outcome is the idea that the transformation
of simple environmental characteristics to more complicated fuzzy
membership values via SoLIM's fuzzy inference engine increases the
predictive power of those variables. Comparing the results on the two
transects we can observe that, in predicting soil property values,
linear regression models based on the terrain attributes may be
limited to areas with gentle landscapes. For the St. Peter landscapes in
this area, the relationships between soil property and terrain
attributes can be highly non-linear and non-linear transformation of
the terrain variables would benefit the soil property prediction (SoLIM
inference is an example of such non-linear transformations).

As aforementioned, the two regression models both used the field
samples for model development and thus the performance measures
cannot be directly used to compare with the other three models. One
would expect that the performance measures of the regression
models (based on the dataset for model development) should be
generally, if not always, better than those based on an independent
validation dataset. Even so, we note that the weighted average-MM
model produced comparable and only slightly lower accuracy values
than the two regression models. Considering the fact that this model
Table 6
AC for all selected models — St. Peter transect.

Property Soil map model Weighted average-RV Weighted avera

A-horizon sand 0.62 0.56 0.76
A-horizon silt 0.58 0.53 0.78
Bt1-horizon sand 0.61 0.56 0.68
Bt1-horizon silt 0.58 0.50 0.60
Depth to Bt1 0.64 0.73 0.56
Loess thickness 0.09 0.09 0.93
Depth to Cr 0.90 0.91 0.93
was tested against independent samples while the regression models
were tested against samples that were used for model development,
we believe that the performance of theweighted average-MMmodel is
at least comparable to, if not higher than, those of the two regression-
based models. In addition, from the field data requirement perspec-
tive, the weighted average-MM model has clear advantages over the
statistical models in that it requires only one field sample per soil
series or soil category. Furthermore, in actual applications of the
weighted average-MM model for soil property prediction, the search
for highest fuzzymembership to themapped soil series do not have to
be limited to the sample points on the transect as used in this study
(designed and collected mostly for the development of the regression
models). Purposive sampling could be conducted as in Zhu et al.
(2008b). The most typical site of a soil series (the site that has the
highest membership) could be identified from the entire area and
targeted samples could be collected to obtain the most typical
properties for use in the weighted average computation.

One other observation wemade from the testing results is that the
R2 values for all the models tested, are relatively low for the Galena
transect. The landscape in question is gently rolling, with maximum
calculated slopes (at a 120-foot neighborhood size) of 10.9% and a
difference in elevation from transect top to bottom of only
15.3 meters. The soil series mapped on this upland (Brownbeth,
Dodgeville, Dubuque, Edmund, and Frankville) all have silty surfaces
and clayey subsurfaces, varying only in thickness of the surface soil
and depth to bedrock. Brownbeth, Dubuque, and Edmund all occur on
shoulder positions and are separated only by small differences in
ge-MM Regression-environmental variable Regression-fuzzy membership

0.88 0.95
0.93 0.96
0.81 0.97
0.79 0.97
0.74 0.22
0.95 0.93
0.95 0.95



Fig. 4. A-horizon sand values predicted with the soil map model vs. observed A-horizon
sand values — St. Peter transect.

Fig. 6. A-horizon sand values predicted with the regression-environmental variable
model vs. observed A-horizon sand values — St. Peter transect.
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curvature (Edmund vs. Dubuque and Brownbeth) and slope gradient
(Brownbeth vs. Dubuque). Frankville is separated from the potentially
adjacent Brownbeth, Dubuque, and Edmund by curvature while
Dodgeville is separated from Edmund by ridge width and from
Brownbeth and Dubuque by slope gradient. In this landscape, however,
these differences in landscape position can be quite subtle and
difficult to determine which in turn increases the likelihood of
misclassifying the soil and results in low R2 values for all the models.
We realize that the inclusion of other environmental variables may
bring benefits to models that use environmental information in the
soil mapping or soil property inference process. For example, SoLIM
could include variables like measures of relative landform positions or
even the simple wetness index measure; the regression-environmen-
tal variable model could also add these additional measures to its
explanatory variable set. Since our SoLIMmap is from a previous study
which did not use these variables we did not exercise this option in
our study. To be compatible for comparison, we used the same set of
variables with the regression-environmental variable model as well.
Future studies should consider these additional explanatory options.
It is also worth noting that the limited performance of these models,
especially the models of subsurface soil properties, could also be
related to inconsistent identification and sampling of the Bt1-horizon,
mixing of the surface and subsurface soils from agricultural uses, and
differential erosion. Lower soil horizons in this area could reflect
development under conditions that differed quite markedly from
those implied by the current surface configuration. Therefore the
present surface might be a poor predictor of the subsurface attributes
(Pennock and de Jong, 1987).

Lastly, we would like to point out that the purpose for us to stratify
the study area to the two different landscapes (Galena and St. Peter)
was to compare the performances of soil property prediction models
on different types of landscapes. Models were developed indepen-
Fig. 5. A-horizon sand values predicted with the weighted average-RV vs. observed A-
horizon sand values — St. Peter transect.
dently for each of the two transects because different sets of soil series
developed on distinct landscape units. It should also be noted how
such stratification should be beneficial to soil mapping and soil
property predictions on potentially larger areas. Through the manual
stratification, we could effectively impose a partitioning similar to
what might be achieved using a regression tree data mining approach
in which separate regression equations are produced for different
strata, based on analysis of variancemeasures within strata defined by
various different covariates.

4. Conclusions

The intent of this study was to assess the ability of models that
incorporate soil fuzzy membership to predict soil properties. The
conclusion from the comparison of the predictive models is: (1) the
models based on regressionwith environmental variables (regression-
environmental variable model) would be appropriate for use on gently
rolling landscapes where soil-environment relationships are simple
and stable over space; (2) the models based on regression with fuzzy
membership values (regression-fuzzy membership model) work well
over areas where soil environmental relationships are more compli-
cated and the non-linear transformation of the environmental
variables (such as that by SoLIM as in our study) helps to improve
the performance of linear regression; and (3) the model based on the
weighted average of fuzzy membership values and fuzzy maximum
soil property values (weighted average-maximum membership model)
can serve as a viable option for soil property prediction over large
areas due to its good performance and limited amount of model
development points needed. The work reported in this paper also
confirms the findings of Zhu et al. (1997) with regard to predictive
models based on existing soil survey maps. Soil property values
predicted based on the existing soil survey tends to be stratified by the
Fig. 7. A-horizon sand values predicted with the regression-fuzzy membership model vs.
observed A-horizon sand values — St. Peter transect.
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typical property values associated with soil map units. The results
often do not reflect the detailed soil spatial variability locally. The soil
map, however, performs adequately when the information needed is
averaged properties over a region (which is how it was designed to be
used) and not local variability.
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