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Updating Conventional Soil Maps 
through Digital Soil Mapping

Pedology

Information on the spatial distribution of soils is increasingly required for water-
shed management and ecological modeling applications (Zhu et al., 2001; Brus 

et al., 2008; Miao et a., 2010). At present, conventional soil maps produced in the 
past decades are the major data sources for these applications. In the United States, 
the State Soil Geographic database (STATSGO) and Soil Survey Geographic data-
base (SSURGO) created by the NRCS are the most commonly used conventional 
soil databases. Th e SSURGO maps, compiled at scales between 1:12,000 and 
1:63,360, are the most detailed products of conventional soil mapping. Similarly 
in Canada, soil surveys at scales from 1:10,000 to 1:250,000 have been published 
for most of the agricultural areas and many surrounding areas. Th ese represent the 
most detailed soil inventory information in the National Soil Database in Canada. 
Such conventional soil maps are widely available and used extensively for many ap-
plications. Due to the limitations of conventional mapping techniques and the car-
tographic model used, however, these conventional soil maps are limited in terms 
of both the level of spatial detail and the accuracy of the soil attributes (Zhu, 1997; 
Zhu et al., 2001). Th ere is a need, therefore, to update conventional soil maps to 
provide detailed and accurate soil information (Brus et al., 1992; Rossiter, 2008).

Th e traditional way to update a soil map is to obtain new fi eld samples from 
new soil surveys. Th is can be very costly, however, considering the extensive 
fi eldwork needed to obtain the number of fi eld soil samples required. Recently 
emerged digital soil mapping technology, which uses advanced geographic infor-

Lin Yang
State Key Lab. of Resources and 
Environment Information System
Institute of Geographical Sciences and 
Resources Research
Chinese Academy of Sciences
Beijing 100101, China

You Jiao
Agrifoods Development Branch
Dep. of Natural Resources
Corner Brook, NF A2H6J8, Canada
and
Potato Research Centre
Agriculture and Agri-Food Canada
Fredericton, NB E3B4Z7, Canada

Sherif Fahmy
Potato Research Centre
Agriculture and Agri-Food Canada
Fredericton, NB E3B4Z7, Canada

A-Xing Zhu*
State Key Lab. of Resources and 
Environment Information System
Institute of Geographical Sciences and 
Resources Research
Chinese Academy of Sciences
Beijing 100101, China
and 
Dep. of Geography
Univ. of Wisconsin
550 N. Park St.
Madison, WI 53706
and
State Key Lab. of Remote Sensing Science
Institute of Remote Sensing Applications
Chinese Academy of Sciences
Beijing 100101, China

Sheldon Hann
Potato Research Centre
Agriculture and Agri-Food Canada
Fredericton, NB E3B4Z7, Canada

James E. Burt
Dep. of Geography
Univ. of Wisconsin
550 N. Park St.
Madison, WI 53706

Feng Qi
Dep. of Geology and Meteorology
Kean Univ.
1000 Morris Ave.
Union, NJ 07083

Conventional soil maps, as the major data source for information on the spatial variation of soil, are limited in terms 
of both the level of spatial detail and the accuracy of soil attributes. Th ese soil maps, however, contain valuable 
knowledge on soil–environment relationships. Such knowledge can be extracted for updating conventional soil 
maps through the use of available high-quality data on environmental variables and data analysis techniques. We 
developed a method to update conventional soil maps using digital soil mapping techniques without additional fi eld 
work, which can be used in situations where the study area contains no or few soil profi le descriptions at points. 
Th e basis of the method is that soil polygons on a conventional soil map correspond to landscape units, which can 
be considered as combinations of environmental factors. Such environmental combinations were approximated 
through fuzzy clustering on the environmental factors. We extracted the knowledge on soil–environment relation-
ships by relating the environmental combinations to the mapped soil types. Th e extracted knowledge was then used 
for soil mapping using the Soil Land Inference Model (SoLIM) framework. Th is method was demonstrated through 
a case study for updating a conventional 1:20,000 soil map of Wakefi eld, NB, Canada. Th e case study showed that 
the updated digital soil map contained much greater spatial detail than the conventional soil map. Field validation 
indicated that the accuracy of the updated soil map was much higher than the conventional soil map at the level of 
soil associations with drainage classes, indicating that the proposed method is an eff ective approach to updating 
conventional soil maps.

Abbreviations: DEM, digital elevation model; FCM, fuzzy c-means; TWI, topographic wetness index.
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mation acquisition and processing techniques (Zhu et al., 2001; 
McBratney et al., 2003), can play an important role in updating 
conventional soil maps (Rossiter, 2008). By using more detailed 
ancillary data and advanced data analysis techniques, it is pos-
sible to improve the spatial detail and accuracy of conventional 
soil maps without much additional fi eld sampling.

A few studies have investigated methods to update conven-
tional soil maps through digital soil mapping. Brus et al. (2008) 
used Bayesian Maximum Entropy to estimate the probabilities of 
the occurrences of soil categories and predicted soil spatial varia-
tion using existing fi eld observation data in the soil information 
system (legacy data) as hard information and the conventional 
soil map as soft  information. Many samples are needed, however, 
for calibration of the probability model. Vitharana et al. (2008) 
evaluated the potential of detailed observations (electrical con-
ductivity) from a proximal soil sensor to upgrade the 1:20,000 
soil map of Belgium. Th e relationship between electrical conduc-
tivity with depth of the Tertiary clay substratum was modeled us-
ing 60 calibration points and the detailed map of the depth of the 
Tertiary clay substratum generated with regression kriging was 
then used to upgrade the 1:20,000 soil map. Th is study demon-
strated the potential of combining existing soil maps with proxi-
mal soil sensing technology, but it also needed abundant fi eld 
samples to establish the relationships between electrical conduc-
tivity with depth of the Tertiary clay substratum. In a more recent 
application, Kempen et al. (2009) used a multinomial logistic re-
gression approach to update the 1:50,000 Dutch soil map using 
legacy soil sample data and ancillary environmental data. Th e ac-
curacy of the updated map, as assessed by the validation samples, 
was 58%, which was 6% higher than that of the conventional soil 
map. Because the methods investigated in most previous studies 
on updating conventional soil maps have relied on a large amount 
of fi eld sample data, these approaches may have limited uses for 
areas where soil samples are absent or sparse. Th e objective of this 
study was to develop a method to update conventional soil maps 
without the requirement of fi eld samples, which is appropriate in 
situations where the soil database (soil information system) does 
not contain point observations but only conventional soil maps.

MATERIALS AND METHODS
In conventional soil mapping, soil experts fi rst construct a soil–

landscape model across the area through intensive fi eld work. Th e soil–
landscape model describes the relationships between the local soils and 
unique landscape units that can be defi ned by specifi c environmental 
conditions. Soil scientists draw soil polygons based on the perceived 
distribution of landscape units through aerial photo interpretation. 
Th e resulting soil polygons for a soil type thus correspond to the spatial 
distributions of the landscape units (Hudson, 1992; Moran and Bui, 
2002; Qi and Zhu, 2003; Qi et al., 2008). Similar to the manual process 
of identifying landscape units based on the combinations of environ-
mental conditions through photo interpretation, fuzzy clustering of the 
environmental variables could generate environmental combinations 
that could be used to approximate the landscape units identifi ed by soil 
experts (Yang et al., 2007). We thus assumed that there is a correspond-

ing relationship between the clustered environmental combinations and 
the mapped soil polygons. Th erefore, the basic idea of this study was 
to associate the soil types on a conventional soil map with the environ-
mental combinations generated using fuzzy clustering, then extract and 
quantify the knowledge of soil–environment relationships based on the 
assumption that soils that occur at locations with a high fuzzy member-
ship of the environmental clusters represent the typical soil type asso-
ciated with the environmental clusters. Th is knowledge could then be 
used to produce updated soil maps of the area in conjunction with de-
tailed and accurate environmental data, which is increasingly available. 
We expected that the updated soil map would have not only a greater 
spatial detail but also a higher accuracy than the conventional soil map.

Th e method consists of fi ve major steps: (i) development of an en-
vironmental database; (ii) generation of environmental combinations 
(clusters); (iii) association of environmental clusters with soil types; (iv) 
extraction and quantifi cation of knowledge on soil–environment rela-
tionships; and (v) soil inference.

Development of Environmental Database
Th e fi rst step is to choose environmental covariates that are rel-

evant to the local soils and construct a geographic information system 
database of these variables. Most commonly used environmental covari-
ates include parent material, vegetation, and topographic variables such 
as elevation, slope gradient, slope aspect, planform curvature, profi le 
curvature, and wetness index (McSweeney et al., 1994; Zhu et al., 1997). 
Th e environmental database may vary from area to area because of the 
diff erence in pedogenesis across diff erent areas.

Generation of Environmental Combinations 
(Clusters)

We used a fuzzy c-means (FCM) clustering approach to generate 
environmental combinations in this step. Fuzzy c-means clustering is an 
unsupervised classifi er that has been extensively used in soil science and 
terrain analysis (de Bruin and Stein, 1998; Lark, 1999; Burrough et al., 
2000; English, 2001; Hanesch et al., 2001; Yang et al., 2007). It optimally 
partitions a data set (such as the developed environmental database) into 
a set of classes and computes the membership of each data element in each 
of the classes (Bezdek et al., 1984). Th e centroids of the classes are identi-
fi ed by minimizing the fuzzy partition error (Bezdek et al., 1984):
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where Y is the data set, n is the number of objects in Set Y, c is the num-
ber of clusters, m is a weighting exponent, U is a c × n matrix, U = (uik) 
where uik is the membership of the kth object belonging to the ith clus-
ter, v is a vector of cluster centers, dik is the weighted distance between yk 
and vi, and A is a weighting matrix for performing distance calculation, 
such as Euclidean, diagonal, and Mahalanobis distances. Th e fuzzy par-
tition error, Jm, can be described as a weighted measure of the squared 
distance between pixels and class centroids and so is a measure of the to-
tal squared errors as minimized with respect to each cluster (Ahn et al., 



1046 SSSAJ: Volume 75: Number 3  •  May–June 2011

1999); Jm decreases as the clustering improves, which means that pixels 
tend to be overall closer to their representative centroids.

Optimal fuzzy clusterings of Y are defi ned as pairs of ( ˆ ˆ,U v ) that 
locally minimize Jm (Bezdek et al., 1984). Th e equations for îku  and 
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It is possible to fi nd Jm by iterating between these two equations until 
changes between successive iterations are below a prescribed tolerance 
(Bezdek et al., 1984).

It is oft en diffi  cult to know the number of classes that best describe 
the structure in the data set when using FCM clustering. To determine the 
optimum number of clusters, two cluster validity measures, the partition 
coeffi  cient (F) and the normalized entropy (H) (Bezdek et al., 1984), were 
utilized in our study to judge the eff ectiveness of the clustering results:
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Th e partition coeffi  cient F will take the values of 1/c to 1, while entropy 
H ranges from zero to loga(c) (Ahn et al., 1999). While F measures the 
amount of overlap between clusters and is inversely proportional to the 
overall average overlap between pairs of fuzzy sets (Ahn et al., 1999), H 
is a scalar measure of the amount of fuzziness in a given fuzzy partition 
U (Bezdek et al., 1984). Normally, H increases and F decreases as the 
number of clusters increases. We can examine the improvement in F or 
H across adjacent clustering to determine the optimal number of clusters, 
c (English, 2001; Yang et al., 2007). When the increment of H (Hc1

 − 
Hc1−1) with cluster number changing from (c1 − 1) to c1 is smaller than 
the increment with cluster number changing from (c1 − 2) to (c1 − 1) 
and that from c1 to (c1 + 1), the current clustering can be considered as a 
satisfying partition of the data set and c1 is a possible optimal cluster num-
ber. Several possible optimal cluster numbers could be obtained this way. 
Th e optimal cluster number should be determined based on information 
about environmental niches and the soil variation of the study area.

When running FCM on an environmental database, if categori-
cal variables (such as parent material) are included in the environmental 
database, these variables will be used to stratify the whole study area into 
uniform strata. Th e FCM classifi cation will then be applied to each stra-
tum. Th e results of FCM clustering include a cluster centroids fi le and 
fuzzy membership maps of the environmental combinations (clusters). 
Th e cluster centroids fi le lists the environmental factor values of the 
cluster centroids. Th e fuzzy membership map for a given environmental 
cluster contains the membership in that environmental cluster for each 
pixel across the area.

Association of Environmental Clusters with Soil Types
Th e conventional soil map is used to relate the generated envi-

ronmental clusters with mapped soil types. First, each fuzzy member-
ship map of an environmental cluster is converted into a binary map 
to obtain areas representative of each environmental cluster. For each 
environmental cluster, pixels with fuzzy membership values >0.5 are 
assigned to 1 and considered to be the representative area of the envi-
ronmental cluster, while others are assigned to 0. Second, the derived 
representative areas of environmental clusters are overlaid with the con-
ventional soil map. Each environmental cluster is related to the soil type 
that has the greatest area of intersection with the representative area of 
the environmental cluster. It is very possible that one soil type can be 
related to multiple environmental clusters. In that case, each of the en-
vironmental clusters is perceived to be an instance of the soil type (Zhu, 
1999). In the rare case, there are two soil types with similar sizes of in-
tersection area for one environmental cluster. To determine whether the 
environmental cluster is related to a transitional type between the two 
soil types or one of the two soil types, its cluster centroid is compared 
with those of environmental clusters related to the two soil types. If the 
environmental cluster centroid is numerically in the middle of the other 
two cluster centroids, this environmental cluster is considered to be a 
transitional type. Otherwise, if its cluster centroid is numerically closer 
to one of the two environmental clusters, this environmental cluster is 
related to the soil type of that environmental cluster.

Extraction and Quantifi cation of Knowledge 
on Soil–Environment Relationships

Knowledge of the relationships between the soil and the environ-
mental conditions is embedded in associations between environmental 
clusters and mapped soil types. Th is knowledge can be extracted and 
quantifi ed in order to be useful in digital soil mapping (Zhu et al., 2001; 
Qi and Zhu, 2003). Th is is achieved through the construction of fuzzy 
membership functions. Th ese fuzzy membership functions describe 
how similarity between a local soil and the typical case of a given soil 
type will change as environmental conditions change (Zhu, 1999). For 
a given soil type, each environmental variable has a corresponding fuzzy 
membership function. Th e reason that we constructed functions of en-
vironmental variables and did not use functions of fuzzy memberships 
generated using FCM to determine soil–environment relationships is 
that the functions of environmental variables do not rely on the fuzzy 
membership of environmental clusters and can be used for digital soil 
mapping and updates in the future or in an area with similar environ-
mental conditions. In addition, there might be more than one fuzzy 
cluster corresponding to one soil type. Using the membership function 
from fuzzy classifi cation would present problems for this situation.

Th e construction of fuzzy membership functions follows the meth-
ods described in Zhu et al. (2010). Detailed discussion of the method can 
be found there, but the general process is described below. Membership 
functions are approximated using Gaussian curves. Two pieces of informa-
tion are needed to defi ne a Gaussian curve: the environmental conditions 
(typical values) at which the membership in the given soil type is 1.0 and 
the environmental conditions (crossover) at which the membership value 
in the given soil type is 0.5 (Zhu, 1999; Zhu et al., 2010).
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Th e fi rst can be approximated with the environmental conditions 
at locations where the local soils are typical or representative of a soil 
type (Zhu et al., 2010). Based on the assumption that the higher the 
fuzzy membership value of an environmental cluster at a pixel, the more 
typical is the local soil at that pixel to the associated soil type, the pixels 
with high membership values in the environmental cluster are consid-
ered to be the locations of typical instances of the associated soil type. 
Operationally, we can use memberships >0.9 as a cut-off  value for locat-
ing areas that are representative of the corresponding soil type.

Th e second piece of information is determined by ordering the envi-
ronmental clusters along each environmental variable, and the midpoint be-
tween typical values of two adjacent environmental clusters along this envi-
ronmental variable is considered to be the crossover point of the membership 
functions for both environmental clusters (Zhu et al., 2010). As illustrated in 
Fig. 1, the crossover point in the overlap region of the membership functions 
for Soil Types A and B along the slope gradient variable is 1/2(a + b1). With 
this process, the fuzzy membership function with respect to an environmen-
tal variable for a soil type can be established (Zhu et al., 2010).

Soil Inference
Th e last step is to create an updated digital soil map using the ex-

tracted relationships (in the form of fuzzy membership functions) and en-
vironmental data layers. Our study adopted the soil land inference model 
(SoLIM) approach (Zhu et al., 2001) for soil inference. Th e SoLIM 
approach is a knowledge-based approach for soil mapping. It combines 
knowledge of the relationships between the soil and the environment 
with the environmental conditions to infer the spatial distribution of soils 
(Zhu et al., 1996; Zhu, 1997, 1999; Zhu et al., 2001). With SoLIM, the 
inference engine scans across all the pixels in the area to compute their 
similarities to each soil type. For a given pixel, the inference engine looks 
up its values for the environmental factors and then matches them with 
the fuzzy membership functions to compute the corresponding similarity 
values (Zhu and Band, 1994). Once the similarity values for all pixels are 
computed, a set of fuzzy membership maps in all soil types is generated, 
and each of them shows the spatial variation of membership in a certain 
soil type across the landscape. A raster map of soil types could also be cre-
ated by hardening the fuzzy membership maps. Hardening is achieved by 
assigning each location the label of the soil map unit bearing the highest 
membership value at that point (Zhu, 1997). For convenience, we refer 
to the new soil map updating approach as the FCM–SoLIM approach.

CASE STUDY
The Study Area

Th e study area is located in Wakefi eld, NB, Canada (Fig. 2), with 
a total area of 39 km2. Th e elevation ranges from about 40 to about 180 
m above mean sea level. Annual precipitation averages 925 mm. Annual 
average growing degree days calculated on a 5°C base is 1649. Parent ma-
terials of the area are mainly morainal deposits (Fahmy and Rees, 1996). 
Landforms of this area consist mainly of hummocks and gentle areas be-
tween hummocks due to glacial eff ects. Th e topography is predominately 
rolling terrain. Slopes vary from level to 18.1°. Cultivated land accounts 
for approximately 55% of the total area and the remaining area is covered 
with forests. Most of the cultivated lands are in potato (Solanum tuberos-
um L.), grain, hay fi elds, or pasture land. Forest types mainly include cedar, 
spruce, fi r, larch, maple, birch, and beech species (Fahmy and Rees, 1996).

The Conventional Soil Map
Th e conventional soil map at a scale of 1:20,000 for the study area 

was produced by the Land Resource Division Centre for Land and 
Biological Resources Research (Fahmy and Rees, 1996). During the soil 
survey and mapping process, preliminary soil boundaries were drawn on 
color aerial photographs at a scale of 1:12,500 by soil experts and then 
verifi ed by fi eld checking.

In this study, the drainage class with soil association was the target 
soil unit to update. Th e soil association is the equivalent of a soil catena 
that consists of soils developed on the same parent material but diff erent 
topographic positions and therefore possess diff erent drainage characteris-
tics (Fahmy and Rees, 1996). Soil associations modifi ed by drainage classes 
identify diff erent soil series (Fahmy et al., 1986). Th ere were nine soil asso-
ciations in the study area: Caribou (Ca), Carleton (Cr), Fen (Fe), Interval 
(In), Riverbank (Ri), Grand Falls (Gf ), Th ibault (Th ), Wakefi eld (Wk), 
and Green Road (Gr). Th ree drainage classes were included: well drained 

Fig. 2. Location and digital elevation model of the study area.

Fig. 1. An illustration of generating knowledge.
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(W), imperfectly drained (I), and poorly drained (P). Some soil associa-
tions have all three of the drainage classes and some do not. Th ere are 15 
soil units (soil association with drainage class) in total in the study area.

A 30- by 30-m-resolution raster soil map (Fig. 3) with the 15 soil 
units was created from the original 1:20,000 soil map for comparison 
with the updated digital soil map. Th e fi rst two letters in a soil unit name 
(Fig. 3) are the abbreviation of the soil association and the last letter rep-
resents the soil drainage condition. For example, CaI represents an im-
perfectly drained Caribou soil. One soil association, Fe, is not modifi ed 
by drainage class because it is an organic soil and always occurs under 
very poor drainage conditions.

Environmental Data
Soils in this area were infl uenced deeply by glaciation. Parent ma-

terial and terrain characteristics that show obvious glacial impacts were 
chosen to characterize the environmental conditions in this study area. 
No detailed parent material map is available for the study area. We cre-
ated an alternative parent material layer from the 1:20,000 soil map (Fig. 
3) using information on the surfi cial deposit modes and the local lithol-
ogy of soil polygons. Surfi cial deposits are the result of past and pres-
ent weathering within a geologic environment (Rampton et al., 1984), 
and the modes of deposition refer to these surfi cial materials or regolith. 

Th ere were a total of fi ve deposit modes in the study area, including 
compact till, noncompact till, glaciofl uvial deposits, organic deposits, 
and alluvial deposits. Each deposit mode could be divided into homoge-
neous units, which were called parent material units (each was assigned 
to a unique identifi cation number), based on the lithology types in it. 
An initial parent material map was then created by aggregating soil poly-
gons with the same deposit mode and lithology type. We verifi ed and 
further refi ned the initial parent material map using fi eld observations 
of parent material information provided by a geologist from the New 
Brunswick Department of Natural Resources (Seaman, 2000). Th e fi nal 
eight parent material units are listed in Table 1 and the map is shown in 
Fig. 4. Th e soil units and their percentage of the total area in each parent 
material unit are also included in Table 1.

Four topographic variables (slope gradient, planform curvature, pro-
fi le curvature, and topographic wetness index) were used in this study to 
characterize the terrain. Information on these topographic variables was de-
rived from a 30- by 30-m-resolution digital elevation model (DEM), which 
was created from elevation points published by Service New Brunswick 
(www.snb.ca/gdam-igec/e/2900e_1c.asp; verifi ed 18 Jan. 2011) using the 
TINLATTICE tool in ArcInfo (Esri, Redlands, CA) (Fig. 2). Layers of 
slope, planform curvature, and profi le curvature were then derived from the 
DEM with the 3DMapper soft ware (Burt and Zhu, 2004) (Fig. 5).

Fig. 3. The 30- by 30-m raster soil map with soil association and 
drainage class as the soil unit created from the 1:20,000 soil map.

Table 1. The surfi cial deposits with lithology information for the Wakefi eld site.

Surfi cial 
deposit mode Lithology

Parent 
material unit

Soil 
map unit

Coverage of 
total area

%

Compact tills calcareous siltstones, calcareous sandstones, and calcareous slates 202 CrI 21

CrP 7.3

CrW 15.1

GrW 1.1

acidic, dark reddish brown material, conglomerate, and sandstone 203 WkW 1.4

Noncompact tills argillaceous limestones (minor limestones) 301 CaI 8.5

CaP 3.5

CaW 27.7

calcareous siltstones, calcareous sandstones, and calcareous slates 302 ThW 0.5

Glaciofl uvial deposit grey lithic-feldspathic sandstones (minor quartzose sandstones, 
polymictic conglomerates, quartz pebble conglomerates, and red mudstones)

406 RiI 0.4

RiW 7.6

metaquartzites, slates, metasiltstones, 
metasandstones, metaconglomerates, and metawackes

410 GfI 0.1

GfW 0.1

Organic deposit undifferentiated 514 Fe 0.3

Alluvial deposit undifferentiated 614 InI 0.7

Fig. 4. Parent material map of the study area; the numbers in the 
legend are the parent material units.
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Th e topographic wetness index (TWI), which combines the local 
upslope contributing area with slope characteristics, is commonly used 
to quantify topographic control on hydrologic processes (Sørensen et 
al., 2006). It helps to indicate the spatial distribution of soil moisture 
and surface saturation (Rodhe and Seibert, 1999; Schmidt and Persson, 
2003; Zinko et al., 2005). It is therefore correlated with soil drainage 
conditions, which are essential in separating the soil units in our study. 
We calculated TWI using (Beven and Kirkby, 1979)

β
TWI ln  

tan
aæ ö= ç ÷

è ø
  [7]

where a is the cumulative upslope area draining through a point (per 
unit contour length) and β is the slope gradient at that point. Because 
of the gentle terrain in the study area, a multiple-fl ow-direction strategy 
MFD-md (Qin et al., 2007) was used to calculate the upslope drainage 
area. Th e MFD-md method performed better than the single-fl ow-di-
rection strategy (D8) or the multiple-fl ow-direction strategy construct-
ed by Quinn et al. (1991) in modeling the eff ect of local terrain on fl ow 
partitioning (Qin et al., 2006, 2007). Th e TWI map is shown in Fig. 6.

RESULTS AND EVALUATION
Results

Th e study area was fi rst stratifi ed using the parent material 
layer (Fig. 4). Th e FCM clustering of the four topographic vari-
ables was performed in each of these stratifi ed areas. Th e FCM 
clustering was not conducted for parent material units with only 
one soil type mapped (Units 203, 302, 514, and 614 in our case 
study). We used Parent Material Unit 202 as an example to illus-
trate the process of obtaining environmental clusters and extract 
knowledge about soil–environment relationships.

By examining the performance of the normalized entropy 
and partition coeffi  cient across adjacent clustering as described 
above, we determined three possible optimal numbers of clusters 
in this unit: four, six, or eight. Four was eventually selected as 
the optimal number of clusters because four soil types occur in 
this unit on the conventional soil map. Th e centroids for four 
environmental clusters are listed in Table 2.

Fuzzy membership maps of the environmental clusters were 
produced next. Figure 7 illustrates one such fuzzy membership map. 
It shows the spatial variation of membership for Environmental 

Fig. 5. The three terrain parameters of the Wakefi eld site: (a) slope; (b) 
planform curvature; and (c) profi le curvature.

Fig. 6. Topographic wetness index of the Wakefi eld site. Fig. 7. Fuzzy membership of Cluster 3 in Parent Material Unit 202.

Table 2. Cluster centroids of four environmental classes in 
Parent Material Unit 202.

Class Slope
Planfom 

curvature
Profi le 

curvature
Topographic 

wetness index

1 1.94 −0.00591 −0.00007 8.91
2 11.74 −0.00244 −0.00044 7.28

3 1.60 0.01298 0.00007 10.88
4 5.27 −0.00171 −0.00020 8.34



1050 SSSAJ: Volume 75: Number 3  •  May–June 2011

Cluster 3 in Parent Material Unit 202. Th e whiter the color in this 
fi gure, the higher the membership in this environmental cluster.

Associations between the environmental clusters and soil 
types were next established by measuring the overlapping areas 
of both units. Clusters 1, 2, and 3 were uniquely associated with 
imperfectly drained Carleton, well-drained Carleton, and poorly 
drained Carleton soils, respectively, on the conventional soil map. 
Cluster 4, however, was found to be associated with two closely re-
lated soils: the well-drained Carleton and the imperfectly drained 
Carleton. To determine to which soil type Environmental Cluster 
4 should be related, the TWI was considered as the decisive vari-
able in this study because it could be used to distinguish diff er-
ent soil drainage conditions, which was essential in determining 
the soil mapping units in this area. We compared the TWI value 
(Table 2) of its centroid with two other clusters that were identi-
fi ed as well-drained Carleton and imperfectly drained Carleton 
to determine the soil type for Cluster 4 or to decide whether it is 
just a transition type. Th e TWI value for the centroid of Cluster 
1 (associated with imperfectly drained Carleton) was 8.91. Th e 
TWI for the centroid of Cluster 2 (associated with well-drained 
Carleton) was 7.28. Th e TWI value for the centroid of Cluster 4 
was 8.34, which is in between those of Clusters 2 (well-drained 
Carleton) and 1 (imperfectly drained Carleton). We thus consid-
ered Cluster 4 as a transition between the imperfectly drained and 
well-drained Carleton soils. Th e transitional classes would not be 
used in the knowledge extraction stage.

Figure 8 shows the area of the typical Cluster 3 (pixels with 
membership values >0.99) in red. Th e typical environmental con-
ditions of the representative pixels of Cluster 3 were extracted to 
construct the fuzzy membership functions. For each soil type, four 
fuzzy membership curves were developed, each corresponding to 
one of the four environmental factors. Figure 9 shows the fuzzy 
membership function of soil CrP for TWI as an example. Because 
we used the representative pixels of the environmental clusters to 
generate the typical environmental conditions for the soil types, 
the environmental values when similarities are equal to 1.0 are not 
identical to the centroids of the corresponding clusters.

A fourth soil type, well-drained Greenroad, occurs in this 
parent material unit on the original map. It covers, however, 
only 1.1% of the total study area. Because of its limited coverage, 
FCM could not generate an environmental cluster for it. In our 
study, we combined this soil type with the well-drained Carleton, 

considering their similar pedological properties. Environmental 
clusters generated using FCM and fuzzy membership functions 
describing the relationship between the soil and the environmen-
tal variables for soil types in other parent material units were ob-
tained in the same way as illustrated above.

Using the FCM–SoLIM approach, the above fuzzy member-
ship functions were combined with the data on the four environ-
mental variables to derive the fuzzy membership maps of the CrI, 
CrP, CrW, CaI, CaP, CaW, RiI, RiW, GfI, and Gf W soils. Th ese 
fuzzy membership maps of soil types were used to produce a map 
showing the spatial distribution of soil types through hardening 
(Zhu, 1997). For parent material units that only contained one 
soil type, the polygons of soil types in those units on the conven-
tional soil map were considered as the spatial extent of these soil 
types. Th erefore, soil polygon layers for WkW, Th W, Fe, and InI 
were obtained directly from the conventional soil map. Th e fi nal 
updated digital soil map for the study area is shown in Fig. 10.

Evaluation of the Soil Maps
Th e updated map (Fig. 10) shows much more spatial detail 

than the original soil map (Fig. 3). Field validation points were col-
lected to evaluate the accuracy of the updated map and the conven-
tional soil map. Th e validation points were collected using a strati-
fi ed sampling strategy and were intended to cover all the soil types 
in the area. Because information on detailed soil distributions is 
not available otherwise, the updated soil map from the FCM–

Fig. 8. Typical area (red) of Cluster 3 in Parent Material Unit 202.
Fig. 9. The fuzzy membership curve of the CrP soil map unit for 
topographic wetness index (TWI).

Fig. 10. The updated digital soil map using the fuzzy c-means–Soil 
Land Inference Model (FCM–SoLIM) approach.
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SoLIM approach was used to stratify the study area. To guarantee 
that all strata (soil types) on the updated map were covered and 
to ensure that the number of validation points was proportional 
to the extent of each soil type, we used the following sampling de-
sign strategy: at least one point was located in each stratum and 
the number of samples per stratum was proportional to the area 
covered of the stratum. In other words, soil types with large areas 
received more points than soil types with small areas. Th e loca-
tions of samples were initially determined randomly in each stra-
tum. Due to the limitation of accessibility and resources available 
for this project, points that were located in inaccessible areas were 
replaced by points that were accessible based on the judgment of 
local soil experts. Th is means that the validation sample cannot be 
analyzed as a probability sample, i.e., design-based estimation of 
the overall accuracy is impossible (Brus and de Gruijter, 1997). We 
estimated the overall accuracy by model-based inference, assuming 
that the classifi cation errors were independent, so that the average 
of the classifi cation-error indicator was an unbiased estimate of the 
overall accuracy. A total of 37 points were selected for the purpose 
of evaluation (Fig. 11). Soil association and soil drainage condi-
tions were identifi ed by local soil experts through the examination 
of the soil profi le at each site in the fi eld. Th irteen soil types were 
identifi ed at these points; 11 of them were shown on the conven-
tional soil map and the other two were not.

Th e fi eld-observed soil types were compared with the soil types 
obtained from both the conventional soil map (Fig. 3) and the up-
dated soil map (Fig. 10).Th e accuracy of the conventional soil map 
was 45.9%, while the accuracy of the updated soil map was 64.9%. 
Th e 19% diff erence in absolute accuracy represents a relative im-
provement of about 45%. Th is is obviously based on a relatively small 
sample (37 fi eld observations), and it is important to know if the dif-
ference could have occurred by chance. We conducted a hypothesis 
test to assess the statistical signifi cance of the 19% improvement.

Under the assumption of independent classifi cation errors, 
the number of correctly classifi ed soil points satisfi es a binomial 
distribution. We then tested the hypothesis that the overall ac-
curacy of the updated map is not larger than that of the conven-
tional soil map. Under this hypothesis, the number of correctly 
classifi ed soil points, X, is binomially distributed with parame-
ters n = 37 (the number of validation points) and p = 17/37 (the 
proportion of successes for the conventional map), which can be 

expressed as X ~ B(37, 0.459). Th e probability, p, with k correctly 
classifi ed soil points is calculated using the following formula:

( ) ( ) ( ); , 1 n kkn
p X k B k n p p p

k
-æ ö

= = = -ç ÷
è ø

 [8]

Th e probability of having 24 or more correctly classifi ed soil points 
was calculated as p (X ≥24) = B(24; 37, 0.459) + B(25; 37, 0.459) 
+ B(26; 37, 0.459) + … + B(37; 37, 0.459) = 0.01595, which is 
<0.05. Th us, the hypothesis can be rejected, which indicates that 
the updated map is more accurate than the conventional soil map 
at the signifi cant level of 0.05. Th erefore, we can conclude that the 
accuracy of the conventional soil map was improved through the 
updating process from the results of the above statistical method.

It should also be noted that there are three validation points 
for which the inferred soil types are Fe, Th W, and WkW, respec-
tively. Th e spatial distributions of the three soil types in the up-
dated soil maps were directly obtained from the conventional 
soil maps. When these points are excluded from the validation 
data set, the accuracy of the updated soil map using the FCM–
SoLIM-based approach is 67.6%.

DISCUSSIONS
Th e proposed method in this study used only the convention-

al soil map as a source of knowledge of soil–environment relation-
ships but generated a more detailed and accurate updated soil map 
(Fig. 10 vs. Fig. 3). Th ere are at least three reasons for this. First, we 
used more accurate and detailed environmental data, including a 
refi ned parent material map and terrain data layers derived from 
a 30-m-resolution DEM. Th e TWI variable played an important 
role in the inference. Spatial variation of the TWI indicated soil 
drainage conditions based on landform positions and thus im-
proved accuracy of the soil mapping units involving drainage class-
es. Second, we used a FCM clustering method to generate envi-
ronmental clusters, which were related to soil types. Th is process is 
fundamentally similar to the process of how local soil experts iden-
tify soil–landscape units through photo interpretations but more 
consistent throughout the area and thus less error prone. Th ird, we 
used the SoLIM framework to construct quantifi ed knowledge of 
relationships between a soil and its environmental conditions and 
infer soil distributions automatically using that knowledge. It has 
been shown that the SoLIM framework can help obtain consistent 
knowledge of soil–landscape models and produce more accurate 
soil maps than the conventional soil survey and manual mapping 
process by soil experts (Zhu et al., 2001).

In this study, the way we used the conventional soil map was 
to interpret environmental clusters generated by fuzzy clustering 
on environmental factors. Th e specifi c method was to overlay the 
conventional soil map and the spatial distribution maps of environ-
mental clusters and compare the intersection areas to determine to 
which soil types the environmental clusters are related. Aft er the 
associations between soil types and environmental clusters are de-
termined, the process of knowledge extraction is independent of 
the conventional soil map. It is true that there are errors (inclusion 
and misplacement of boundaries) in the conventional soil map. 

Fig. 11. Validation points at the Wakefi eld site.
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With the assumption that errors in the conventional soil map are 
not so large as to overwhelm implicit relationships between soil 
types and environmental clusters, however, the errors will have 
little infl uence on the updated soil maps. Th e 19% increase of map-
ping accuracy is considered a good improvement.

In our case study, the soil type (well-drained Greenroad) in 
Parent Material Unit 202 was combined with other soil types ow-
ing to its limited coverage. Th is was the only soil from the original 
map that didn’t occur in the resultant soil map. If the update is re-
quired to have the complete set of soil types, an alternative solution 
is to use its soil polygon in the conventional soil map as its spatial 
distribution in the updated soil map. Th is amounts to assuming 
that the conventional map perfectly represents that soil type.

Th e proposed method is appropriate in situations where the 
study area contains no or few point observations. When soil profi le 
descriptions at georeferenced points are available in soil informa-
tion systems for some areas, these point data could also be useful for 
updating conventional soil maps. Th rough overlaying soil profi le 
points with fuzzy membership maps of the generated environmen-
tal clusters, environmental clusters could be related to the soil types 
of points falling into a high-fuzzy-membership area. Th ese points 
could be considered as the typical instances of the associated soil 
types and used to extract knowledge of the soil–environment rela-
tionships. For environmental clusters for which no points fall into a 
high-fuzzy-membership area, conventional soil maps can serve as a 
source to establish their relationship with soil types.

CONCLUSIONS
Th e study proposed a method to update conventional soil 

maps using digital soil mapping techniques. Environmental 
clusters generated by fuzzy clustering were associated with soil 
types on conventional soil maps. Th e associations contained 
knowledge about the relationships between soils and their envi-
ronmental conditions, which were used to infer soil spatial dis-
tributions under the SoLIM framework. Th e result in our case 
study in Wakefi eld, Canada, showed that the updated soil map 
was more detailed and accurate than the 1:20,000 conventional 
soil map. Th e spatial detail seen in the distribution of the pre-
dicted soil types in the updated soil maps is commensurate with 
the resolution of the environmental data layers that are available. 
Th is is important for modern environmental modeling and site-
specifi c management activities. Th erefore, we conclude that this 
method can serve as an eff ective model to update soil maps in 
areas where legacy soil maps are available.
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