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Fuzzy classification typically assigns a location or an area to a category with some estimated degree of uncertainty. There are
strong incentives for depicting uncertainty along with category, and numerous authors have recommended that this be done
using progressive desaturation of the entity’s color with increasing uncertainty. This article shows that such recommendations
cannot be naively applied using color models widely used in computer graphics because colors equally ‘saturated’ do not
appear equally certain. We demonstrate that models based on color perception are preferred, particularly if one wishes to
compare uncertainties across classes. We discuss geometrical complications arising with perceptual models that are not
present with models closely tied to hardware. An algorithm for selecting colors is presented and illustrated using the model.
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1. Introduction

1.1 Background

Fuzzy classification is becoming routine in geographic
analysis (such as remote sensing classification and digi-
tal soil mapping (DSM)) (Burrough et al. 1992, Zhu et al.
2001, Zhu 2006). Unlike traditional classification, which
implicitly assumes entities are members of a single class,
fuzzy classifiers admit membership in multiple classes.
Membership values in different classes are often repre-
sented in a membership vector, M ij of n-elements, with
each element mij

k representing the belonging (or the sim-
ilarity) of location (i,j) to class k (such as in the SOLIM
method) (Zhu et al. 2001). Uncertainty is introduced when
the location is assigned to a single class, namely to the class
in which the location (pixel) has the highest membership,
referred as hardening, and this uncertainty can be measured
by analyzing the membership vector which was hardened
(Zhu 1997).

Typically, along with the category value, an uncer-
tainty value is attached to each entity. As discussed in
Zhu (1997), the uncertainty value might be a measure of
the distance between the classified entity and a prototype
defined for the most similar category (exaggeration uncer-
tainty), or it might index the degree to which the entity
has membership in multiple categories (ignorance uncer-
tainty). Consider, for example, a vector (0.25, 0.35, 0.25,
0.15) indicating a pixel’s similarity (M) to four classes. The
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hardening process, as shown in Figure 1, assigns the pixel
to class 2, but obviously it exaggerates the membership in
that class while deflating membership in the other three
classes.

Exaggeration uncertainty indexes this using the depar-
ture from full membership in class 2:

E = 1 − max(mi) = 1 − 0.35 = 0.65 (1)

That is, in claiming sole membership in class 2, we
exaggerate by 65%. Alternatively, the ignorance uncer-
tainty is

I = − 1

log(n)

n∑

i=1

mi ∗ log(mi) = 0.97 (2)

indicating that this pixel has relatively uniform member-
ship in multiple categories. That is, I informs a user
that the pixel might reasonably be assigned to other
classes.

Regardless of how uncertainty is measured, methods
are needed for mapping categories along with the asso-
ciated uncertainties. This article considers methods for
accomplishing that in ways that are optimal from a per-
ceptual standpoint. We should emphasize that although the
discussion is motivated by fuzzy classification, the follow-
ing applies to chloropleth mapping in general, whenever a
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148 J.E. Burt et al.

Figure 1. Hardening of a membership vector into a single class.

normalized uncertainty value can be assigned to attribute
data. That is, the only requirement is that uncertainty be
expressed on the same finite scale for all classes.

1.2 The issue

Our goal is effective presentation and visualization of
category and uncertainty on the same map. This is
hardly a new problem, and various authors have sug-
gested that decreasing color saturation can be used to
indicate progressively larger amounts of uncertainty (see
McEachren, 1992, Goodchild et al. 1994, Leitner and
Buttenfield 2001). That is, an entity having no uncer-
tainty appears as a fully saturated color, whereas total
uncertainty is rendered in a monochrome color. This can
be readily accomplished using tools available in com-
mon mapping, Geographical Information System (GIS),
and illustration software, almost all of which provide the
ability to define color in Hue-Saturation-Value (HSV),
Hue-Lightness-Saturation (HLS), or a similar system that
explicitly contains ‘saturation’ as a variable (Foley et al.
1996). However, such color systems have been developed
for ease of use, and are not tied to any absolute standard of
color or psychophysical response. For example, fully sat-
urated red is mapped to whatever the most ‘pure’ red the
current display device can produce, without reference to
any color standard nor is there any consideration of how
that color will be perceived. Thus, there is no guarantee
that a 50% saturated red will appear equally uncertain as a
50% saturated yellow. In fact, because the HSV and HLS
systems conflate luminance (lightness) and saturation, we
can be sure that they will not. This is seen in Figure 2,
which shows the top of the HSV cone. If the models were
perceptually accurate, luminance would decrease outward
in concentric rings. The appearance of brighter and darker
‘rays’ of luminance in some directions indicates that this
model fails on perceptual grounds.

The basic difficulty is that in some directions (i.e.,
for some hues) a unit change in saturation gives a larger
change in luminance than others. The result is that appar-
ent certainty – or equivalently, the perceptual distance from
white – varies non-uniformly with hue.

2 Methodology

Fortunately, a number of perception-based color models
exist, including Munsell, the Commission Internationale de
l’Eclairage (CIE) systems L∗a∗b∗ and L∗u∗v∗, and Ljg sys-
tem of the Optical Society of America (Nickerson 1981,
Hunt 1995). These systems are similar in that they are tied
to a prescribed color standard, and thus the colors asso-
ciated with a particular point in the color model are not
dependent on the properties of the display device. These

Figure 2. Full-value colors of the HSV model. (Color version
available online.)

are also similar in that all are three-dimensional models in
which a unit change in any direction is supposed to give
a uniform perceptual change. Finally, all contain a lumi-
nance axis perpendicular to two other orthogonal axes that
in combination yield the hue of a color.

The perception-based models differ in several impor-
tant ways. First, their coordinate axes are not identical in
terms of numerical value. For example, the luminance axis
of the Munsell system ranges from 0 (black) to 10 (white),
whereas the corresponding L∗ axes of the two CIE sys-
tems range from 0 to 100, and L of the Ljg system admits
negative as well as positive values. The axes controlling
the chromacity (or color hue) are different in all systems.
Although conversion between systems is possible, such
transformations are nonlinear and do not involve simple
scaling of corresponding axes. (The exception is L∗, which
is the same in both L∗a∗b∗ and L∗u∗v∗.) A more important
difference is that the systems rest on different experiments
involving color perception of test subjects. It would there-
fore be difficult to claim one system as clearly superior
to the others, and this article considers all the perceptual
systems as potentially useful in rendering uncertainty.

We can exploit the fact that in all models monochrome
colors are found along the luminance axis, and increas-
ing saturation is found along radial lines in any plane
of constant luminance. Thus, two points equidistant from
the luminance axis will in principle have equal perceived
uncertainty. In the method proposed here, colors assigned
to each soil category will be located on a ray originating
at the luminance axis. Total uncertainty will be indicated
by points at the origin, with colors for progressively more
certain pixels chosen progressively farther along the ray.
We propose that this approach provides a better basis for
rendering uncertainty than methods based on hardware-
related models such as HSV or HLS.
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Annals of GIS 149

Figure 3. Cross sections of the L∗a∗b∗ space for various luminance values. Dots in each cross section are placed at the origin a∗ = b∗ = 0,
corresponding to total uncertainty. (Color version available online.)

Application of this approach is complicated by the fact
that the universe of possible colors in these models is
bounded by an irregular three-dimensional solid. For exam-
ple, Figure 3 shows slices of the L∗a∗b∗ system for a few
values of L∗.

The cross sections are centered with respect to one
another, meaning that the gray points (a∗ = b∗ = 0) are in
the center of each square. Figure 4 shows similar cross sec-
tions for the Munsell system. Note that in both of these
systems, one can move radially from the origin with little
or no apparent change in luminance. Thus, in contrast to
what is seen in Figure 2, these systems are much closer
to offering saturation values proportional to perceived
uncertainty.

Note that in Figures 3 and 4, the maximum distance
possible, that is, the maximum saturation possible, depends
heavily on luminance and hue. Similar conclusions hold
for the L∗u∗v∗ and Ljg systems (not shown). We propose
that for any luminance value, pixels with complete cer-
tainty (unity) should be located as far as possible from
the monochrome point. This will obviously maximize the

range in perceived uncertainty, and thereby maximize the
visual resolution in uncertainty. Another requirement is
that any two pixels having the same uncertainty should
be as far as possible from each other in the color space.
Taken together, these requirements mean that fully satu-
rated colors will be equally spaced along a circle centered
on the origin. Reflecting this, our basic algorithm is as
follows:

Given the number of classes n (n > 1):

(1) Define the angle between hues β = 360◦/n
(2) Select a luminance value L∗ or L.
(3) Search for optimum equally spaced directions α1,

α2, . . ., αn where αi = αi–1 + β:
(a) Initialize Smax = 0
(b) For μ = 1◦, 2◦, . . . β try α1= μ, α2 = μ + β,

. . .
(c) Find Smin, the minimum saturation possible for

α1, α2, . . ., αn. If Smin > Smax, save μ as μopt

and assign Smin = Smax.
(d) Let αi = i (μopt), i = 1, 2, . . . n
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150 J.E. Burt et al.

Figure 4. Cross sections for the Munsell system. (Color version available online.)

This process gives n colors on the circumference of a cir-
cle whose radius is just small enough to ensure that all n
colors are realizable. As an example, consider Figure 5,
which shows the colors that result for a map with n = 3
(three classes).

The dots indicate colors that would be used for pix-
els with no uncertainty. All are equidistant from gray, and
thus have equal saturation. However, only one of them –
the upper, left point – has the maximum saturation possible
for its hue. The other two points are somewhat undersatu-
rated relative to what is possible. For example, the dot in
the reddish-pink area is considerably inside the color slice.
A ray connecting the origin and that dot intersects many
colors outside the circle. Those colors are all more satu-
rated than any point on the circle. Using those colors would
give a mistaken impression of greater certainty, and thus
they should be avoided. The fact that the circle of total cer-
tainty crosses outside the envelope of possible colors is of
no consequence. A map would contain only colors along
rays from the dots to the origin.

3 Implementation and results

3.1 Basic method

The algorithm has been implemented as a C++
program for MS Windows and is available from
http:\\solim.geography.wisc.edu\software\ The program
computes colors for a variable number of classes in the
L∗u∗v∗, L∗a∗b∗, and Ljg models, as well as for HSV.

The search algorithm was implemented as indicated,
with no attempt at optimization. Therefore the slow search
method, along with the complexities of converting from
perceptual coordinates to RGB, means the approach cannot
be used as coded in real-time applications. In particular, on
a personal computer the program requires 2–3 seconds to
identify and display a full suite of colors for all four mod-
els. However, in most instances the classification process
generating the map data will be very slow by comparison,
thus efficiency in choosing colors is not a factor.

Figure 6 is an example of the output showing just the
panels for the Ljg and HSV models. Moving horizontally
across the color bars at constant saturation, there would
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Figure 5. Cross section of Ljg for L = 50 showing optimum color choices for three classes. Pixels for a class would be chosen from
colors along rays connecting a point and the origin (center dot). (Color version available online.)

Figure 6. Color gamuts from the Ljg (left) and HSV (right) models for a four-category map. (Color version available online.)
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ideally be no change in perceived uncertainty. For exam-
ple, moving across the top of the HSV bars, the green bar
appears less certain than either the red bar or the purple
bar. In addition, moving downward, the red bar desaturates
rapidly at the top and more slowly with depth. Ideally, there
would be a linear perceptual change with increasing dis-
tance from the top. At least for the authors, the Ljg bars
come significantly closer to that ideal than the HSV bars
shown in Figure 6.

We have done no formal testing, but our examination of
results for n = 2, 3, . . ., 12 confirms that three perceptual
models always out-perform HSV in this regard.

Our primary result, therefore, is to provide evidence
that the theoretical advantages of perception-based models
very likely translate into actual advantages. We recog-
nize that the question will only be answered definitively
by a carefully controlled study using human subjects. We
believe that our results provide support for such future stud-
ies. In addition, our subjective analysis suggests that Ljg
model is preferred, but we are not prepared to claim its
superiority over the two CIE models. Again, that needs to
be answered by more study. In addition, such studies need
to investigate whether continuous variation in saturation is
best. It might be that only a few saturation classes would be
preferable.

As another example, consider Figure 7, which results
from applying the method to a 10-class soils map displayed
using 3dMapper (Terrain Analytics 2001). Note that the
combination of class and uncertainty provides important
information that would be hard to obtain from either map
alone. For example, in many locations there is a gradual
transition through zones of uncertainty, indicating interme-
diate soils that do not fall neatly into any category. But in
other places there is a sharp break from relatively certain
to uncertain following abrupt changes in bedrock control.
Notice also that this map raises the question of whether

Figure 7. A combined category/uncertainty map. Different hues
represent different soil types and different levels of saturation rep-
resents different levels of certainty in the class. (Color version
available online.)

synthetic hill-shading is advantageous. It obviously pro-
vides important clues about landform, but shadows move
pixel colors down the luminance axis, which has the poten-
tial to be interpreted as increasing uncertainty. Our strong
inclination is therefore to provide shading only in interac-
tive environments, where the effective sun position can be
easily varied, and even in those instances we recommend
providing shading as an option that can easily be toggled
on and off, as with 3dMapper.

3.2 Enhancements

There are two obvious enhancements, both of which are
useful for increasing the dynamic range of colors avail-
able. As we have indicated, each class has a range of colors
lying along a line running from achromatic to the maxi-
mum possible saturation, which is the same for all classes.
To increase the range of colors, we need to lengthen that
line.

One obvious way to increase the range is to search for a
luminance value that gives as large a radius as possible. In
other words, for a given n, we need to find an L∗ or L that
maximizes the radius Smax. That is easily accomplished by
replacing Step 2 in the algorithm with a line search along
the luminance axis. For every trial point along the axis, we
examine the cross section to find the largest radius possi-
ble for that luminance. The maximum over all luminance
values reveals the optimum luminance.

Another way to increase the range is to use white as
the origin of every color bar. That is, instead of holding
luminance fixed along the color bar, we allow luminance
increase, with white rather than some gray level as the color
associated with maximum uncertainty. Geometrically, we

Figure 8. Color bars forced to terminate on white. (Color
version available online.)
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allow the bars to slant upward from the optimum lumi-
nance to white, which obviously lengthens each bar (see
Figure 8).

Note that because they cross luminance values, it is
possible for a bar to exit the volume of realizable colors.
Our code checks for that, and displays a warning message
when it occurs. As a practical matter, this might not be a
significant issue – at least we did not encounter the prob-
lem in any of our testing. This follows from the fact that
the intersections of the color volumes and a plane running
through the luminance axis are not too far from convex.
(Figure 3 gives some hint of that.) Note also that the color
bars could be extended by terminating them at a lower
luminance value, that is, at a darker gray or even black. Our
subjective evaluation is that this tends to overly obscure dif-
ferences in hue to the point that the base class becomes
difficult to ascertain.

4 Conclusions

We argue that perceptual color models such as L∗u∗v∗
and Ljg are better choices for displaying class uncertainty
than other more commonly used models such as HSV or
HLS. Although they are not suitable for real-time dis-
play, perceptual models have a strong advantage in maps
whose categories and uncertainties are fixed. That is, they
are indisputably superior on theoretical grounds because
they are designed to give the appropriate psychophysi-
cal response. The informal evaluations reported here are
entirely consistent with that advantage, but further work
using human subject testing is needed for confirmation.
Human testing is also needed to examine an assumption
that we have not discussed, namely whether saturation in a
perceptual model scales linearly to perceived uncertainty.
For example, we wonder if 40% saturation is perceived to
be twice as uncertain as 20% saturation. The models are
designed so that the perceived colors have the proper rela-
tionship, but we do not know how color is mapped to the
perception of uncertainty.

It is important to emphasize that our study is narrowly
focused on pixel-level display of uncertainty. Accordingly,
it considers only saturation as a visual variable to be manip-
ulated in conveying uncertainty. Other variables (e.g., tex-
ture, crispness, resolution) cited as useful for uncertainty
cannot be applied at the pixel level (see Slocum 1999,
pp. 242–249). We do not mean to imply that saturation is
the best variable for rendering uncertainty in other situa-
tions, such as when mapping point or boundary placement.
Rather, our goal has been to provide guidance regarding
how saturation can best be used for pixel uncertainty, given
that it appears to be the only logical candidate.

We close by noting that in addition to situations like
those described here, where uncertainty is generated as

part of some discrete classification process, our method
has utility when a continuous attribute value is imprecise.
For example, in Nemani et al. (2003) purity of color was
used to indicate the relative contribution of three variables
to net ecosystem productivity. We believe that a contin-
uum anchored in a perceptual model is appropriate for such
maps.
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