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In low relief areas such as plains, easily obtained soil forming factors generally do not co-vary with soil conditions
over space to the level that they can be used effectively in digital soil mapping. Mapping variation of soil properties
over such areas remains a challenge. This paper presents an approach tomapping soil texture using environmental
covariates derived from temporal responses of the land surface to a rainfall event (dynamic feedbacks) collected
through remote sensing techniques. The approach consists of four steps: (1) construction of a set of environmental
covariates from dynamic feedbacks of the land surface, captured daily fromMODIS (Moderate Resolution Imaging
Spectroradiometer) images over a short period (6–7 days) after amajor rain event; (2) derivationof environmental
classes based on the set of environmental covariates using a fuzzy c-means clustering; (3) Identification of typical
soil texture value for each of the environmental classes from a dataset of field soil samples; (4) mapping of spatial
variation of soil texture through a linearly weighted averaging function. The approach was applied to produce soil
texturemaps in a low relief area situated in south-centralManitoba, Canada. Its performancewas assessed through
comparison with soil texture maps generated from 1:20,000 traditional soil survey. The assessment was based on
34 field sample sites, independent of the samples used for prediction. The error values (9.42 for MAE and 12.56 for
RMSE) of A-horizon percentage of sand from the proposed approach are less than these from the detailed soil
survey (10.59 for MAE and 15.12 for RMSE). Similar results were obtained for A-horizon percentage of clay. In
addition, the difference between the results of multiple linear regression analysis without and with the MODIS
derived variables further demonstrated the effectiveness of the variables at differentiating patterns of soil texture.
These indicated that the proposed approach is effective formapping the variation of soil texture over the low relief
area and it could be used to map other soil property variation over similar areas.
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1. Introduction

Based on the soil-landscapemodel concept (Jenny, 1941), difficult to
measure soil types and soil properties can be associated with some
easily obtained soil forming factors. This makes it possible to use
the spatial variations of the easily obtained environmental factors to
predict soil spatial variation. Obviously, the prediction requires that the
easily obtained environmental factors are good indicators of spatial
variation of soils. However, over low relief areas, such as plains and
gently undulating terrains, relatively easily obtained environmental
factors such as landform and vegetation generally cannot effectively
indicate soil spatial variation (Ding et al., 1989; McKenzie and Ryan,
1999; Zhu et al., 2010a).

To overcome the difficulty of mapping soil texture in areas of low
relief, some attempts have been made to predict the variation of soil
texture using multispectral remote sensing (Coleman et al., 1993;
Sullivan et al., 2005). The multispectral techniques are generally
characterized by wide bandwidths and a limited number of spectral
bands. Odeh and McBratney (2000) used AVHRR (Advanced Very High
Resolution Radiometer) images acquired in the absence of vegetation to
develop multiple linear regression models for predicting topsoil clay
content in the lower Namoi Valley of New South Wales in Australia.
Similarly, Demattê et al. (2009) applied multiple spectral bands (TM2,
TM5, and TM7) of Landsat Thematic Mapper imagery to estimate the
variation of surface clay content in a bare soil area located in the region
of Barra Bonita, Brazil.
land surface feedback dynamic patterns extracted
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In contrast to the above, major efforts have also been made to
map soil texture using hyperspectral remote sensing (Clark and
Swayze, 1996; Selige et al., 2006). With narrow bandwidths (less than
20 nm) and many (tens or hundreds) spectral bands, the hyperspectral
techniques possess high spectral resolution for delineating material
characteristics. Lagacherie et al. (2008) used the data from laboratory,
field andairbornehyperspectralmeasurements onbare soils to estimate
topsoil clay. Significant relationships were observed between clay and
reflectance values. They found that the performance of clay estimation
decreased from the laboratory to airborne scales. Based on the same
data,Gomez et al. (2008) argued that thepartial least squares regression
method was appropriate for accurate topsoil clay mapping with
airborne hyperspectral data.

The multi/hyperspectral remote sensing methods only detect the
top few millimeters of the soil surface. Furthermore, due to the
difficulty of excluding the confounding influence of vegetation, their
applications are usually limited to areas with exposed soil surfaces.
How to retrieve soil texture information from deeper soil thicknesses
and extend the application from bare soils to partially vegetated areas
remains to be a challenge.

In an attempt to address this challenge, Zhu et al. (2010a) examined
the idea that change patterns of the land surface in areas of low relief
withpartial vegetation cover, captureddaily by theMODIS sensor over a
short period after amajor rain event, are related to soil spatial variation.
MODIS was chosen because it has high temporal resolution when
compared with other hyperspectral sensors such as EO-1 Hyperion.
They used rainfall as the input to land surface. It was assumed that the
occurrence of the input across a certain spatial extentwasuniform.After
the rain, the land surface begins a drying process fromwet to dry, and it
is this process that was considered as the feedback of the land surface in
response to the rainfall. The characteristics of the drying process at a
given location during the few days immediately after a rain event are
referred to as the land surface dynamic feedback pattern for that location.
Locations with different soil conditions should exhibit different
feedback to the input if other surface conditions are the same. They
found that areas with different soil types exhibited significantly
different dynamic feedback patterns and areas with the same soil type
had similar dynamic feedback patterns. Also, the more similar the soil
types themore similar their feedback patterns. These findings provide a
foundation for the development and application of new environmental
covariates for digital soil mapping. The objective of this paper was to
examine the utility of so derived environmental covariates for mapping
spatial variation of soil texture over areas with low relief.

2. Materials and methods

2.1. Study area and data sets

The study area is situated in south-centralManitoba, Canada (Fig. 1).
It occurs within theManitoba Plain, and covers approximately 430 km2

(49.45°N–49.61°N and 97.80° W–98.15°W). According to climate data
from Graysville station (Environment Canada, 1993), mean annual
temperature is 2.7 °C, and mean annual precipitation is 538.7 mm. The
physiography is a direct result of advancing continental ice sheets
during the last stages of the Pleistocene Period. The entire area was
covered by several major advances of ice before the ice retreated to the
north and glacial lakeswere formed (Michalyna et al., 1988). The area is
characterized by level to gentle undulating lacustrine sediments
overlying glacial deposits. Thus, soil parent materials are glaciolacus-
trine in origin derived from sandstone, shale and limestone sedimentary
bedrocks. Slope gradient mainly ranges from 0 to 1.5% with a mean of
0.6%. The gentle terrain makes it practically impossible to distinguish
different slope locations (upper, middle and lower) on the digital
elevationmodel (DEM) or in the field. According to the Soil Landscapes
of Canada (SLC) maps, major soil subgroups are those of the Black
Chernozem, Regosol, Humic Vertisol andHumic Gleysol Great Groups of
Please cite this article as: Liu, F., et al., Soil texture mapping over low r
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the Canadian System of Soil Classification (Soil Classification Working
Group, 1998). Soil texture exhibits great spatial variation and varies
from sands to clays. Over 90% of the land is devoted to agricultural
production and the major crops are wheat, barley and canola (Land
Resource Unit, 1999). This area was chosen mainly because, in large
portions of the area, landform and vegetation conditions are quite
uniform but soil texture shows a high degree of spatial variability.

Two main data sets were used. One set was time series MODIS
imagery. The other was field soil sample data. The MODIS sensor on
board the polar orbiting satellite “Terra” was used to capture land
surface feedbacks. Seven observationwindowsmainly designed for land
surface observation were selected: blue (459–479 nm), green (545–
565 nm), red (620–670 nm), near infrared (NIR1: 841–876 nm, NIR2:
1230–1250 nm), and shortwave infrared (SWIR1: 1628–1652 nm;
SWIR2: 2105–2155 nm). MODIS daily surface reflectance data
(MOD09GA and MOD09GQ, v005) were used in this research. The
data were obtained though the NASA (National Aeronautics and Space
Administration) Warehouse Inventory Search Tool (WIST, http://wist.
echo.nasa.gov/api/). Among the bands, red andNIR1 bands are at 250 m
spatial resolution, and the other five bands are with spatial resolution
of 500 m. In order to utilize the spatially detailed spectral data from
the red and NIR1 bands, data from the other bands were resampled
from 500 m by 500 m to 250 m by 250 m pixel size. In addition,
quantitative soil texture data from laboratory analysis at 51 field sites
were used. Each site (pit) is about 1.5 m long, 1 mwide and 1.5 m deep.
They were labeled using the identification number (ID) from 1
to 51 (Fig. 1). The accuracy of their spatial locations is about
+/−10 m. A-horizon percentage of sand (2–0.05 mm size fraction,
% by weight) and percentage of clay (b0.002 mm size fraction, % by
weight) were determined in the laboratory using the conventional
sieve-pipette method (Gee and Bauder, 1986; Sheldrick and Wang,
1993). The data were provided by the Manitoba Land Resource Unit,
Agriculture and Agri-Food Canada.

2.2. Method overview

Fig. 2 illustrates the concept underlying use of environmental
covariates derived from land surface dynamic feedbacks to map soil
texture. There are four main steps. First, dynamic feedbacks of the land
surface captured daily by MODIS imagery over a short period after a
major rain event were collected to construct environmental covariates.
Second, the covariateswere used to generate environmental classes and
their fuzzy membership distributions using a fuzzy clustering method.
Third, typical soil texture values of the generated environmental classes
were obtained through a spatial overlay between the membership
distributions and the field soil sample sites. Finally, soil texture was
predicted based on the membership distributions and typical soil
texture values of the environmental classes.

2.3. Construction of environmental covariates from land surface dynamic
feedbacks

2.3.1. Obtaining land surface dynamic feedbacks
Three requirements areneeded toeffectively extract feedbacks. First,

there needs tobe longperiod (over 1 month) of little or no rain prior to a
rainfall event over the study area so that the land surface is dry. Second,
the magnitude of rainfall should be large enough to force the land
surface to produce a clear response. Third, no significant rainfall should
occur in the area over the seven days or so following the rainfall event
(referred to as the observation period). According to daily meteorolog-
ical observations of the area, therewas amajor rainfall event (25.2 mm)
betweenMay8 and 11, 2002. Before that the area had experienced a dry
period (over 30 days) with little precipitation. Furthermore, the period
which preceded the rainfall event was characterized by dramatically
increasing air temperature. As a result, the land surfacewas in a dry state
before the rainfall event. In addition, soils over much of the area were
elief areas using land surface feedback dynamic patterns extracted
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Fig. 1. Location of the study area and field soil sample sites with a DEM (digital elevation model) background.
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exposed as cropshadnot yet emerged. Therewas only sparse vegetation
that occurred in the northwestern portion of the area. The days from
May 12–21 (Days 132–141 of the year (DOY)) were chosen as the
observation period (Fig. 3). The MODIS sensor was used to capture land
surface dynamic feedbacks over this period. The feedback signatures
were represented as surface reflectancedatawhich formed a time series
of MODIS images 133, 134, 138, 139, 140 and 141.

2.3.2. Organization and representation of land surface dynamic
feedbacks

For each pixel in the study area, the captured feedbacks contain
responses from seven spectral bands over six dates. They were organized
in a “day-band-spectral response” format and expressed as a surface,
referred to as the “spectral–temporal response surface” (Fig. 4). The two
Please cite this article as: Liu, F., et al., Soil texture mapping over low r
from MODIS, Geoderma (2011), doi:10.1016/j.geoderma.2011.05.007
horizontal axes represent wavelength and time respectively, and the
vertical axis represents the spectral response. The spectral response canbe
the digital number (DN), surface reflectance, or surface radiance. Surface
reflectance was used in this study. The time corresponds to a series of
dates over the observation period and the wavelength corresponds to a
series of bands. In this way, a spectral–temporal response surface was
generated for every pixel in the study area.

2.3.3. Construction of environmental covariates
We adopted 2-D discrete wavelet analysis to create a set of

environmental covariates from spectral–temporal response surfaces
(Fig. 5). Daubechies's wavelet with two vanishing moments (Nason,
2008) was used in the analysis. Due to the limited number of pixels on
every spectral–temporal response surface, even the edges of the
elief areas using land surface feedback dynamic patterns extracted
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Fig. 2. Basic idea for using environmental covariates derived from land surface dynamic
feedbacks to map soil texture over low relief areas.

Fig. 4. Spectral–temporal response surface of a pixel in the study area.
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response surface contain important response information. However,
near the edges of spectral–temporal response surface, it is difficult to
calculate wavelet transformation coefficients because wavelet filters
usually overlap near the edges. This is the edge effect in 2-D wavelet
analysis. To deal with this problem and preserve local spatial structure
of response surface at the same time, every response surface was
symmetrically mirrored to create a larger surface (Lark and Webster,
2004). Then, single-level discrete 2-D wavelet decomposition on
every extended response surface was performed to obtain approxi-
mation coefficients matrix “cA”, horizontal details coefficients matrix
“cH”, vertical details coefficients matrix “cV”, and diagonal details
coefficients matrix “cD” (Misiti et al., 2009). The values of mean and
standard deviation of the coefficients matrices were used to represent
the structure features of a response surface (Lee and Lou, 2003;
Montoya Zegarra et al., 2008; Wu et al., 2000). As a result, for every
pixel in the study area, we extracted a feature vector {cAmean, cAstd,
cHmean, cHstd, cVmean, cVstd, cDmean, cDstd} from its spectral–
temporal response surface. For the whole of the study area, the
elements of feature vectors of all pixels formed a set of environmental
covariates characterizing spatial variation of the land surface dynamic
feedbacks.
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2.4. Derivation of environmental classes using fuzzy c-means clustering

In addition to the control of soil conditions, land surface dynamic
feedbacks are influenced by landform and vegetation. To reveal soil
variation through the analysis of spatial differences in the dynamic
feedbacks amonggeographic locations, it is necessary to control all other
major influencing factors other than soil conditions. Thus, in this
research, the entire study area was stratified into four landform-
vegetationunits basedonelevationandNDVI (Fig. 6). The elevationdata
were from a SRTM (Shuttle Radar Topography Mission) DEM at 90 m
resolution. NDVI datawere calculated from surface reflectance values of
the red and NIR1 bands of the MODIS data acquired on May 12, 2002.
Areas with NDVI less than 0.3 were considered bare land or contained
very sparse vegetation coverage. Among the units, unit 1 represented
the areas with elevation less than 260 m and NDVI less than 0.3; unit 2
corresponded to areas with elevation greater than 260 m and NDVI less
than 0.3; unit 3 was the areas with elevation less than 260 m and NDVI
greater than 0.3; unit 4was the areaswith elevation greater than 260 m
and NDVI greater than 0.3. The stratification resulted in relatively
Horizontal details coefficients matrix cH 

Vertical details coefficients matrix cV 

Diagonal details coefficients matrix cD 

Summary statistics 

Environmental covariates (Feature variables): 

cAmean, cAstd, cHmean, cHstd, cVmean, cVstd, 

cDmean, cDstd 

Fig. 5. Derivation of a set of environmental covariates using wavelet analysis.

elief areas using land surface feedback dynamic patterns extracted
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Fig. 6. Stratifying the study area into different landform-vegetation units.
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homogeneous landform-vegetation units. Within any given unit, the
differences in dynamic feedbacks among locations can be primarily
attributed to differences in soil conditions.

For each unit, a fuzzy c-means clustering (FCM) was performed on
theenvironmental covariates to identifydifferent environmental classes
(Zhu et al., 2008). FCM is an unsupervised classification method which
optimally partitions a dataset into a given set of classes and then
computes the fuzzy membership of each data element in each class
(Bezdek et al., 1984). The resulting environmental classes represented
different environmental combinations based on the constructed
environmental covariates. Before the FCM operations were performed,
data standardization was performed for each unit to stretch every
variable to a range between 0 and 100. The cluster number and fuzzy
weighting exponentwere two key user assigned parameters in the FCM
algorithm. Two cluster validity measurements including partition
coefficient and normalized entropy were employed to determine the
optimal values for these parameters (Bezdek et al., 1984; English, 2001).
In this study, the optimal value of the fuzzy weighting exponent was
considered to be 1.5. The optimal cluster numbers were determined to
be 6, 4, 1 and 3 for unit 1, 2, 3 and 4, respectively. Based on these
parameter values, the fuzzymembership distributionsof environmental
classes within each landform-vegetation unit were derived.
Table 1
Typical soil sample sites and their A-horizon soil texture (percentage of sand and percenta

Landform-vegetation
unit

The derived
environmental Class

Typical soil
ID (member

1 1 33 (0.85), 34
2 30 (0.82)
3 38 (0.87)
4 47 (0.79)
5 22 (0.86)
6 31 (0.84)

2 1 5 (0.82), 24
2 2 (0.80)
3 13 (0.81)
4 3 (0.85)

3 1 26 (0.77), 44
4 1 1 (0.83)

2 11 (0.85)
3 46 (0.82)

Please cite this article as: Liu, F., et al., Soil texture mapping over low r
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2.5. Identification of typical soil texture values of environmental classes

An effective way of obtaining representative soil texture values for
every derived environmental class is to carry out field sampling at
locations that represent the environmental class well. The optimal or
best typical locations can be identified using the fuzzy membership
distribution of the environmental class (Zhu et al., 2008, 2010b). In
general, pixels with a high fuzzy membership value are regarded as
good examples of typical locations. However, in this study area, field
soil sample data already existed for both typical and less-typical sites.
The expense of new field sampling could be avoided if we could make
good use of the existing samples to obtain typical soil texture values
for the derived environmental classes. Based on this idea, we used the
fuzzy membership distributions of the derived environmental classes
to identify the most typical sites from the available sample set.

For a given environmental class, its fuzzy membership distribution
was spatially overlain with the soil sample sites. Sites with high
membership values were considered most likely to be typical. In this
research, sites with a membership value greater than 0.8 were
regarded as typical. For those situations where the membership
values of all the pixels of the environmental class were less than 0.8,
the sites with membership values greater than 0.7 were chosen. In
total, 17 typical sites were recognized. Table 1 lists these typical sites
and their membership values to the associated environmental classes.

In cases where only one site was identified as typical for a
particular environmental class, the soil texture values (A-horizon
percentage of sand and percentage of clay) at that site were taken as
the typical values of the environmental class. In those cases where
more than one typical site were identified, either the average of soil
texture at all sites identified as typical or the soil texture values at the
single site with the highest membership were considered as the
typical values of the environmental class. The former option was
adopted if several sites identified as typical had similar membership
values. The latter option was used if one site had much higher
membership than the others. In this way, we identified typical soil
sites for all the environmental classes and then obtained typical soil
texture values of the classes in the study area (Table 1).

2.6. Mapping spatial variation of soil texture through a linearly weighted
averaging function

Environmental conditions are characterized by the derived covari-
ates. It was assumed that the more the local environmental conditions
resemble the typical condition of an environmental class, the more the
local soil conditions were similar to the typical soil conditions of the
environmental class. Based on this assumption, for each landform-
vegetation unit, we used a linearly weighted averaging function (Zhu
ge of clay) for each environmental class within landform-vegetation units.

sites:
ship value)

Percentage of sand
(% by weight)

percentage of clay
(% by weight)

(0.87) 8 56
69 19
7 38

13 51
85 14
52 24

(0.81) 85 9
72 18
81 12
91 6

(0.75) 52 25
94 4
84 9
70 19

elief areas using land surface feedback dynamic patterns extracted
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et al., 1997) to map spatial variation of A-horizon soil texture
(percentage of sand and percentage of clay). The texture value at each
pixel within any given unit was computed as the weighted average of
typical texture values of the environmental classes belonging to this unit
and fuzzy membership values of the pixel to these environmental
classes. The function can be described as follows:

Vij =
∑
n

K=1
SKij ⋅VK

� �

∑
n

K=1
SKij

ð1Þ

Where Vij is the predicted value of A-horizon soil texture
(percentage of sand or percentage of clay) at pixel (i, j) within any
given landform-vegetation unit; Vk is typical value of A-horizon soil
texture (percentage of sand or percentage of clay) of environmental
class k; Sijk is fuzzy membership value of environmental class k at pixel
(i, j); n is the number of environmental classes within the unit.

2.7. Assessment of prediction results

The prediction results of A-horizon soil texture were assessed
through comparison with A-horizon soil texture maps derived from a
1:20,000 traditional soil survey. The assessment was based on 34 field
sample sites, independent of the samples used for prediction. Two
assessment measures were used. One was the mean absolute error
(MAE) between the observed and the predicted values, and the other
was the rootmean square error (RMSE). BothMAE and RMSEmeasure
the average magnitude of the errors between the observed and the
predicted values. But MAE is less sensitive to large errors than RMSE.
MAE was estimated by:

MAE = ∑
n

k=1

jPi−Oij
n

ð2Þ

where Pi is the predicted value of A-horizon percentage of sand
(percentage of clay) at validation site i, Oi is the observed value of A-
horizon percentage of sand (percentage of clay) at validation site i, n is
the number of the validation sites. The RMSE was estimated by:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

k=1
Pi−Oið Þ2

n

vuuut
ð3Þ

The value of MAE (or RMSE) ranges from 0 to ∞. The lower the
values of MAE and RMSE the better the performance of the prediction.

2.8. Assessment of MODIS derived variables

To further examine the effectiveness of the MODIS derived
environmental variables for mapping soil texture, we conducted the
following comparative analyses. First, for each landform-vegetation
unit, we used the data in Table 1 to calculate an average of the typical
soil texture over the environmental classes within the unit. The
Table 2
The averages of typical A-horizon soil texture (percentage of sand and percentage of
clay) over the environmental classes within each landform-vegetation unit.

Landform-vegetation
unit

Average of typical soil texture over the classes

Percentage of sand
(% by weight)

Percentage of clay
(% by weight)

1 39 34
2 82 11
3 52 25
4 83 11

Please cite this article as: Liu, F., et al., Soil texture mapping over low r
from MODIS, Geoderma (2011), doi:10.1016/j.geoderma.2011.05.007
average was considered as a ‘typical’ composition for the unit. With
the same approach proposed in this paper, the ‘typical’ compositions
shown in Table 2 were used to predict soil texture variation for the
units. Based on the same 34 field sample sites, we compared the errors
of this prediction with those of the prediction using fourteen separate
environmental classes listed in Table 1.

Second, linear regression analyses of A-horizon soil texture on the
units and the MODIS derived variables were performed based on all 51
field samples. It was assumed that the response of soil texture to the
units and the derived variables was linear and static over space. Before
the regression analyses, special treatments were conducted on the data
of the soil texture and the units. The percentages of sand, clay and silt in
A-horizon soil are compositional data with a constant sum constraint
(100%). Due to the compositional constraints (Aitchison, 1986; Odeh
et al., 2003), the additive log-ratio (alr) transformation described by
Lark and Bishop (2007) was used to transform the compositional data
before analysis.We computed the alr transformation of the percentages
of sand and clay, with the percentage of silt as the denominator of the
ratio. In addition, the attribute of the units is discrete and qualitative. To
facilitate mathematical considerations, it was represented by dummy
variables which take the value of either 0 or 1 (Greene, 2003). Three
dummy variables (D1, D2 and D3) were constructed for the four units.
Specifically, D1 represented the unit 1, which was equal to 1 if a field
sample was collected from this unit or 0 if it was from other units. With
the same method, D2 and D3 were also obtained for the units 2 and 3
respectively. If D1, D2 and D3 were all equal to 0, the field sample was
collected from the unit 4; otherwise, it was from other units. In the
following regression analysis, the three dummy variables and other
eightMODIS derivedvariables (cAmean, cAstd, cHmean, cHstd, cVstd, and
cDstd)were considered as explanatory variables for the alr-transformed
sand and clay variables (alr(Sand) and alr(Clay)) respectively. It should
be noted that the alr-transformed values can be back-transformed and
then re-expressed as percentages based on the techniques provided by
Lark and Bishop (2007).

The regression analyses include three steps. To clearly describe the
procedure, we took the alr-transformed sand for example. In the first
step, a multiple linear regression (Model 1) was used to model the
relationships between the alr-transformed sand and the three dummy
variables. It can be formulated as follows:

alr Sandð Þ = a0 + a1D1 + a2D2 + a3D3 + ε1 ð4Þ

where alr(Sand) is the alr-transformed variable for the percentage of
sand, a0 is a constant term, a1, a2 anda3 arepartial regression coefficients,
ε1 is a random error term. In the second step, the eight MODIS variables
were added to the list of explanatory variables.Multiple linear regression
analysis (Model 2) was used again to model the relationships between
the alr-transformed sand and the dummy variables and the MODIS
variables. It can be described as follows:

alr Sandð Þ = b0 + b1D1 + b2D2 + b3D3 + b4cAmean + b5cAstd

+ b6cHmean + b7cHstd + b8cVmean + b9cVstd

+ b10cDmean + b11cDstd + ε2

ð5Þ

where b0 is a constant term, b1, b2, b3, …, b11 are partial regression
coefficients, ε2 is a random error term. Finally, we computed the
difference in the residual sumof squares for the twomodels, and obtain a
mean square through dividing this difference by the associated degree of
freedom. This degree of freedom is equal to the difference in the residual
degrees of freedom for the twomodels. Then, F-statisticwas constructed
through dividing this mean square by the residual mean square for the
Model 2. The F-test was used to further show the effectiveness of the
MODIS derived variables at differentiating patterns of soil texture.
elief areas using land surface feedback dynamic patterns extracted
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Fig. 7. (left) Predicted map of A-horizon percentage of sand; (right) map of percentage of sand derived from 1:20,000 traditional soil survey.

Fig. 8. (left) Predicted map of A-horizon percentage of clay; (right) map of percentage of clay derived from 1:20,000 traditional soil survey.

Table 3
Accuracy assessments of A-horizon soil texture maps from the proposed approach and
from 1:20,000 traditional soil survey, respectively.

Quantitative
measures

The proposed approach Detailed traditional soil survey

Percentage
of sand

Percentage
of clay

Percentage
of sand

Percentage
of clay

MAE 9.42 7.33 10.59 7.5
RMSE 12.56 9.08 15.12 12.08

RMSE: root mean square error; MAE: mean absolute error.
Number of validation sites: 34.
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3. Results and discussion

Figs. 7 (left) and 8 (left) are the maps of the predicted A-horizon
soil texture. It can be seen that there are obvious differences in A-
horizon soil texture between the western and the eastern parts of the
study area. The western part has higher percentage of sand and lower
percentage of clay while the eastern part shows the opposite pattern.
Specifically, in the northwestern portion, sandy soils are predominant
with percentage of sand greater than 80 and percentage of clay less
than 15. In the northeastern and southeastern portions, clay soils are
prevalent with percentage of clay greater than 50. In other portions,
mixed distributions of the soils with different percentage of sand and
percentage of clay occur.

For comparison with the prediction results, maps of A-horizon soil
texture derived from 1:20,000 traditional soil survey are also shown
in Figs. 7 (right) and 8 (right). Based on the 34 field sample sites, the
Please cite this article as: Liu, F., et al., Soil texture mapping over low r
from MODIS, Geoderma (2011), doi:10.1016/j.geoderma.2011.05.007
MAE and RMSE were calculated for both maps. Table 3 lists the MAE
and RMSE values.

For the A-horizon percentage of sand, the error values (9.42 for
MAE and 12.56 for RMSE) of the results from the dynamic feedback
elief areas using land surface feedback dynamic patterns extracted
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Table 5
Regression coefficient estimates for the two regression models (Model 1 and Model 2).

Regression
models

Variables Coefficients Standard
errors

t-
values

p-
values

Model 1 (constant) 1.700 0.387 4.398 0.000
D1 −1.567 0.502 −3.123 0.003
D2 0.874 0.520 1.680 0.100
D3 −0.191 0.893 −0.214 0.832

Model 2 (constant) −8.179 1.636 −5.001 0.000
D1 0.172 0.465 0.369 0.714
D2 0.335 0.413 0.812 0.421
D3 0.235 0.571 0.412 0.683
cAmean 0.001 0.001 1.937 0.059
cAstd 0.002 0.001 2.528 0.016
cHmean −0.034 0.015 −2.234 0.031
cHstd 0.013 0.005 2.648 0.012
cVmean −0.052 0.421 −0.124 0.902
cVstd 0.000 0.002 −0.351 0.728
cDmean −0.054 0.023 −2.284 0.028
cDstd −0.016 0.012 −1.336 0.189

Dependent variable of both Model 1 and 2: alr(Sand).
Explanatory variables D1, D2 and D3 are dummy variables, which represent the
landform-vegetation strata.
Explanatory variables cAmean, cAstd, cHmean, cHstd, cVstd, and cDstdwere derived from
time series MODIS data.
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approach are less than those (10.59 forMAE and 15.12 for RMSE) from
the detailed traditional soil survey. Similarly, for the A-horizon
percentage of clay, the error values (7.33 for MAE and 9.08 for
RMSE) of the results from the proposed approach are less than those
(7.5 for MAE and 12.08 for RMSE) from the detailed traditional soil
survey. This indicates that the prediction results are at least as good as,
if not more accurate than, the soil texture maps derived from the
detailed traditional soil survey.

It is observed that the major patterns displayed by the prediction
results are similar to the soil texture maps derived from the detailed
traditional soil survey. The obvious difference is that spatial variation
of soil texture from the former is more continuous than the latter. This
is due to limitations of traditional soil survey map formats based on
discrete polygons, which have been widely discussed by the digital
soil mapping community (McBratney et al., 1992; Zhu et al., 1997).

On the other hand, our comparative analyses for further assessment
of the MODIS derived variables show that the error values of the
prediction using the ‘typical’ compositions shown in Table 2 are 13.38
(MAE) and 17.64 (RMSE) for percentage of sand, and 8.09 (MAE) and
11.83 (RMSE) for percentage of clay. These values are remarkably
greater than those (9.42 (MAE) and 12.56 (RMSE) for percentage of
sand, 7.33 (MAE) and 9.08 (RMSE) for percentage of clay) of the
prediction using the fourteen separate classes. The remarkable
difference is mainly because the fourteen classes derived from the
MODIS variables effectively captured the soil texture variation within
each unit. The comparative analyses also show that the adjusted R2

value of Model 1 is 0.33 while that of Model 2 is 0.747. Compared to
Model 1, Model 2 can account for much more variation of the sand
contents at the 51 sites. This means that the MODIS variables notably
increase the proportion (from 33% to 74.7%) which can be explained by
regression modeling. Besides, Table 4 lists the results of the analysis of
variance for the two regressionmodels. The values of the residual sumof
squares and the associated degree of freedom for Model 1 are 91.302
and 47, respectively, while for Model 2 they are 28.663 and 39
respectively. The residual mean square for Model 2 is 0.735. Based on
these values, a mean square ((91.302−28.663)/(47−39)=7.83) and
thus the constructed F-statistic (7.83/0.735=10.653) were obtained
using the method described in the 2.8 section. According to tables of
critical values of F distribution (Bernstein and Bernstein, 1999), the
value of F distributionwith the first degree of freedom 8 and the second
degree of freedom 39 at the significance level of 0.005 is about 3.35.
Obviously, the F0.005(8, 39) is much less than our obtained F-value. This
indicates that there is a significant improvement fromModel 1 toModel
2. The improvement should be attributed to the addition of the MODIS
variables to the regression modeling. Furthermore, Table 5 lists the
estimates of the regression coefficients for the two models. In Model 1,
only the dummy variable D1 is significant at the level of about 0.005
(two-tailed). InModel 2, all thedummyvariables are not significant, and
all the MODIS derived variables except cVmean, cVstd and cDstd are
significant at the level of about 0.01 or 0.05 (two-tailed). Similar results
were obtained for the alr-transformed clay. Therefore, the MODIS
Table 4
Analysis of variance for the two regression models (Model 1 and Model 2).

Regression models Sum of
squares

Degree of
freedom

Mean
square

F-values p-values

Model 1 Regression 53.73 3 17.91 9.22 0.000
Residual 91.302 47 1.943
Total 145.032 50

Model 2 Regression 116.369 11 10.579 14.394 0.000
Residual 28.663 39 0.735
Total 145.032 50

Dependent variable of both Model 1 and 2: alr(Sand).
Explanatory variables of Model 1: D1, D2 and D3, which represent the landform-
vegetation strata.
Explanatory variables of Model 2: D1, D2, D3, cAmean, cAstd, cHmean, cHstd, cVstd, and
cDstd; the new added variables were derived from time series MODIS data.

Please cite this article as: Liu, F., et al., Soil texture mapping over low r
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derived variables are capable of characterizing most of variation of soil
texture over the study area.

It should be acknowledged that stratifying the study area into
relatively homogeneous landform-vegetation units was important to
the success of the soil texture prediction over the study area using the
proposed approach. In addition to the control of soil conditions, land
surface dynamic feedbacks are influenced by landform and vegeta-
tion. However, within any given landform-vegetation strata, the
differences in dynamic feedbacks among locations can be primarily
attributed to the differences in soil conditions within that strata. This
stratification enables the FCM techniques to produce classes of
dynamic feedback patterns that are primarily controlled by soil
conditions. Further, this makes it possible to identify the most typical
soil sample sites based on the fuzzy membership distributions of the
produced feedback patterns. Stratification is not always obligatory, for
application of the dynamic feedback approach but it is likely to be
necessary for application to any areas that display significant
differences in landform and vegetation conditions. The difference
between the results of the linear regression analysis without and with
the MODIS derived variables provides another proof that the MODIS
variables and the described land surface feedback techniques are
effective at differentiating patterns of soil texture. Therefore, it can be
recognized that the variables, extracted from analysis of land surface
dynamic feedbacks, made major contributions to the success of the
soil texture prediction.

4. Conclusions

In low relief areas, easily obtained landform and vegetation envi-
ronmental covariates often do not co-vary with soil conditions over
space to the level that they can be effectively used in digital soil
mapping. This paper presents an approach to predict the variation of
soil texture over such areas using environmental covariates derived
from land surface dynamic feedbacks extracted from MODIS data. A
case study in a low relief area located in the south-central Manitoba
was carried out to demonstrate this approach. It can be concluded
from the study that the developed environmental covariates have the
ability to reveal soil texture variation. The proposed approach can
serve as an effective solution for mapping soil texture and possibly
other properties, over similar areas. It should be emphasized that the
250 m resolution of the MODIS data and the 90 m resolution of the
SRTM DEM data impose a lower limit on the size of areas for which
elief areas using land surface feedback dynamic patterns extracted
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differences in texture can be estimated. The same concept could be
applied using data sets of finer spatial resolution however these are
frequently not widely available. The widespread availability of MODIS
and SRTM data sets ensures that the technique described here is likely
to be applicable for large portions of the world.

Extensive portionsof Canadaandother countries consist of lowrelief
plains with topographically gentle undulation where the observable
associationbetween landform/vegetation conditions and soil conditions
is similar to our study area. The proposed approach has the potential to
play an important role in digital soil mapping over such areas.

In this study, the development of environmental covariates was
based on land surface dynamic feedbacks collected by remote sensing
techniques after amajor rainfall event. The selection of the rainfall event
and observation period is very important for the efficiency of the
feedbacks in indicating soil spatial variation. Also, the FCM method in
this study was effective for identifying environmental classes. But, it
should be realized that the selection of user assigned algorithm
parameters is crucial for obtaining optimal clustering results.

It should bepointed out that thiswork only examines oneway to use
the developed environmental covariates to map soil variation. In
actuality, like commonly used climate and terrain variables, the
developed covariates can be utilized by other digital soil mapping
techniques (for example, Soil Land Inference Model (SoLIM)) in similar
ways over low relief areas.
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