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Fuzzy c-means clustering (FCM) has been used frequently in digital soil mapping. One of the key issues in
applying FCM is the determination of the appropriate classification parameters of the fuzzy exponent (m) and
the number of clusters (c). To determine the optimal selection of appropriatem and c values, in this study, we
first used two simulated datasets to demonstrate the sensitivity of three commonly used validity functions to
m and c. These two simulated datasets contained overlapping clusters and hierarchical clusters, respectively.
The three studied validity functions were fuzzy performance index (FPI), compactness and separation (S) and
a derivative of the objective function with respect to the fuzzy exponent (− [(δJE/δm)c0.5]). Then, a case study
mapping soil organic matter (SOM) based on memberships from FCM clustering terrain attributes was
conducted to investigate the sensitivity of soil maps to m and c. The results of the study on the simulated
datasets showed that the three validity functions were sensitive in differing degrees to the structures of the
clustered datasets under a wide range ofm, but the sensitivities and the range ofmwere different for different
validity functions and depended on the clustered datasets. The results from the case study of the soil mapping
showed that soil maps based on FCM clustering were sensitive to m and c, but only the spatial variations of
SOM presented on the maps were significantly sensitive to c. Furthermore, mapping accuracy was slightly
sensitive to m and c. It is concluded that there was a range of optimal m over which digital soil maps did not
change very much, but this was not certain for c, given that the spatial variation presented on the maps
changed significantly with c.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy c-means (FCM) clustering is frequently used to classify soil
observations or environmental attributes for digital soil mapping
(Lark, 1999; McBratney and Odeh, 1997; Odeh et al., 1992; Zhu et al.,
2010). The advantage of using FCM in soil mapping is that FCM can
capture the fuzzy nature of the soil and the landscape (Lark, 1999).

FCM is a type of unsupervised continuous classification that is very
easy to implement. Generally speaking, a user must only set several
parameters to run an FCM. Two key parameters are the fuzzy exponent
(m) and the number of clusters (c) (Odeh et al., 1992). The fuzzy
exponent is set to define fuzziness between clustered clusters, and the
number of clusters, as the name suggests, is set to control how many

clusters will be used. An appropriate fuzzy exponent and number of
clusters are very important for FCM clustering because the two
parameters determine the final clustering outputs, i.e., the centers of
clusters and the memberships of every object belonging to the clusters
(Lagacherie et al., 1997; Pal and Bezdek, 1995). Therefore, almost every
research using FCM must focus on the optimal selection of these two
parameters. At present, a number of validity functions have been
proposed for optimally selecting these parameters. For example, in soil
mapping, commonly used validation functions are partition coefficient,
partition entropy, fuzzy performance index (FPI), modified partition
entropy (MPE) and thederivativeof objective functionwith respect to the
fuzziness exponent (i.e.,−[(δJE/δm)c0.5]) (Amini et al., 2005; Lagacherie
et al., 1997; Lark, 1999;Odehet al., 1992; Tanet al., 2006; Zhuet al., 2010).

However, different validity functions often suggest different optimal
combinations of these two parameters (Fecher and Schmidt, 2003; Pal
and Bezdek, 1995; Srinivas et al., 2008; Xie and Beni, 1991). Sometimes,
there are no clear answers for their optimal combination (Fecher and
Schmidt, 2003; Lagacherie et al., 1997; Triantafilis et al., 2009).
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Interestingly, de Bruin and Stein (1998) suggested that external criteria
should be used instead of internal validity functions to select the two
parameters. However, the optimal selection of the values of these two
parameters remainsdifficult. In fact,more studies on this issuehavebeen
called for by Fecher and Schmidt (2003), McBratney and de Gruijter
(1992), Pal and Bezdek (1995) andXie andBeni (1991). In addition, FCM
is beingwidely used in digital soil mapping. The sensitivity of digital soil
maps based on FCM to these two parameters must be addressed.

In this research, we are specifically interested in knowing whether
there is a range ofm and c values over which the produced digital soil
maps do not vary greatly. First, this study demonstrated the
sensitivity of three commonly used validity functions, i.e., FPI,
compactness and separation (S) and the function − [(δJE/δm)c0.5], to
the parameters using two simulated datasets. Then, the sensitivity of
the digital soil maps based on FCM to the two parameters were
investigated using a case study of soil mapping.

2. Materials and methods

2.1. Simulated datasets

Many dataset configurations have been presented in FCM re-
searches, for example, the four notional configurations of soil

individual datasets in McBratney and de Gruijter (1992) and the
Normal-4 and Iris datasets in Pal and Bezdek (1995). In these dataset
configurations, a dataset can have overlapping clusters, hierarchical
clusters, or equally distributed data. However, an equally distributed
dataset can be treated as a special case of the overlapping dataset
(McBratney and de Gruijter, 1992). Thus, this study simulated two
datasets of overlapping clusters and hierarchical clusters, respectively.

The dataset of overlapping clusters contains four clusters, i.e.,
Clusters 1, 2, 3 and 4 in Fig. 1. Each cluster consisted of 1000 objects
that were characterized by three attributes, x, y and z. Attribute values
of the objects in each cluster were randomly generated using normal
distributions defined by the parameters of mean (μ) and variance
(σ2), which are listed in Table 1. These parameters were chosen to
shape the clusters into a sphere and position them as overlapping
one-by-one (Fig. 1(a)).

The dataset of hierarchical clusters contains eight clusters,
including the above four overlapping clusters, i.e., Clusters 1–4. The
objects of the other four clusters, i.e., Clusters 5–8 in Fig. 1(b), were
also characterized by x, y and z. The values of these attributes were
also randomly generated using normal distributions with mean and
variance parameters that are defined in Table 1. Similarly, these
parameters were chosen to shape the clusters and position them in a
hierarchical structure. Therefore, Clusters 5, 6 and 7 were ellipsoidal
and Cluster 8 was spherical (Fig. 1(b)). Clusters 5, 6 and 7 contained
1500 objects each, and Cluster 8 contained 2000 objects. Different
numbers of objects and different shapes of these clusters were
arbitrarily selected because clusters in a hierarchical dataset can vary
greatly in the number of objects and shapes; an example of this is the
notional hierarchical distributed clusters inMcBratney and de Gruijter
(1992). After the creation of the clusters, Clusters 5 and 6 were
revolved 60° counterclockwise and clockwise, respectively, around
their designated centers to make Clusters 5, 6 and 7 systematic
and to form an isolated combined cluster relative to the other clusters
(Fig. 1(b)). Likewise, Clusters 1–4 were separated from the others and
formed another combined cluster. Cluster 8 was isolated from the
others. Therefore, we can argue that both c=8 and c=3 are favored for
this hierarchical dataset.

2.2. Soil mapping case study

The Heshan area has been described in Zhu et al. (2010). It is
located close to themiddle-west boundary of Heilongjiang Province in
Northeast China (Fig. 2). The climate is cool temperate and monsoon.
The landforms are colluvial plateaus, alluvial plains and lacustrine
plains. The elevation is between 100 and 366 m, with an average slope
of 1.9° (Fig. 2). The parent material for soil formation is mainly silt
loam loess except for the fluvial deposits in valley bottoms. The land
cover of this area was originally composed of sparsely forested
meadows, shrub meadow grasslands and forb meadows. In the last
half century, the area has been intensively farmed, and soybean and
wheat are the main agricultural products. The soils are black soil and
meadow soil, which are referred to as Mollisols and Inceptisols,
respectively, in U.S. Soil Taxonomy.

The soil sampling included regular sampling, purposive sampling,
subjective sampling and transect sampling (Zhu et al., 2010). Forty-
four samples were collected by regular sampling at an interval of

Fig. 1. Simulated datasets.

Table 1
Parameters for simulating the clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

μ σ2 μ σ2 μ σ2 μ σ2 μ σ2 μ σ2 μ σ2 μ σ2

x 5 1 7.5 1 5 1 2.5 1 12.5 1.5 17.5 1.5 15 1 10 1
y 7.5 1 5 1 2.5 1 5 1 2.5 1 2.5 1 6.8 1.5 10 1
z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

μ: mean. σ2: variance.
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1100 m in the north and 740 m in the east (Fig. 2). Thirty-five samples
were collected from typical landforms that were identified using FCM
clustering terrain attributes, i.e., purposive sampling. Five samples
were collected subjectively by soil surveyors to cover unique
landforms that were not included in previous samplings (Fig. 2).
Transect sampling was used in two transects, with one comprising of
16 sampling sites along a distance of 1200 m across a valley and the
other comprising five sampling sites along a distance of 500 m along a
slope (Fig. 2). The soil organic matter (SOM) content of Soil Layer A in
all of these sampling sites was measured using the potassium
dichromate colorimetric method. Considering that the 84 samples
collected using regular sampling, purposive sampling and subjective
sampling systematically covered the soil formation environment, they
were used for mapping. The 21 samples collected using transect
sampling were used to validate the mapping.

In addition to the four terrain attributes used in Zhu et al. (2010),
i.e., slope gradient, contour curvature, profile curvature and topo-
graphic wetness index, slope position was also used in this study
because Qin et al. (2009) suggested that the inclusion of this attribute
is beneficial to digital soil mapping. All the terrain attributes were
derived from the local 10 m digital elevation model (DEM) which was
constructed based on the 1:10,000 topography map. Details about
calculating these terrain attributes can be found in Zhu et al. (2010)
for the first four and in Qin et al. (2009) for slope position.

Themapping techniques used in this study were similar to those in
Lark (1999). First, the clustered memberships were transformed by a
symmetric log-ratio, considering that the membership values were
compositional (Lark, 1999). Then, empirical best linear unbiased
predictor with residual maximum likelihood (REML-EBLUP) (Lark
et al., 2006) was used instead of a regression model by maximum
likelihood (Lark, 1999) to construct soil maps based on transformed
memberships. Considering that not all of the terrain attributes
influence the spatial distribution of SOM (Chai et al., 2008; Sun
et al., 2011), REML-EBLUP was applied based on those memberships
that were statistically significantly correlated with SOM. An analysis
of REML-EBLUP was performed using geoR (Ribeiro and Diggle, 2001)
in R (R Development Core Team, 2006).

2.3. Implementation of FCM clustering

The FCM clustering algorithm of Bezdek et al. (1984) is the most
commonlyused fuzzy classificationprocedure. Theprocedure involves an
iterative process of partitioning a dataset into a given number of clusters,
calculating the membership of each object in the dataset belonging to
each cluster and calculating the center of each cluster. The process stops
when the objective function in Eq. (1) converges to a minimum:
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Fig. 2. Heshan study area and sampling sites based on the local DEM. Squares are regular sampling sites, triangles are purposive sampling sites, circles are subjective sampling sites
and pluses are transect sampling sites.
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where J denotes the objective function, M denotes the classification
result, c is the number of clusters, n is the number of objects in the
dataset, uij is the membership value of object xi belonging to cluster Cj,
m is the fuzzy exponent, dij is the distance between object xi and
cluster Cj, xiv is the value of the attribute v of object xi, Cjv is the value of
the attribute v of cluster Cj, A is the distancemetric, which could be the
Euclidean norm AE, diagonal norm AD or Mahalonobis' norm AM, σv is
the standard deviation of attribute v, and σkv

2 is the covariance
between attribute k and attribute v.

In theory, the value of m can be chosen to be between 1 and
infinity, but in practice, it was frequently selected to be approximately
2.0 and usually equal to 2.0 (Lark, 1999; Odeh et al., 1992; Pal and
Bezdek, 1995). c ranges from 2 to n, but it was usually less than 15 in
practice. The Euclidean norm weights equally the variables to be
analyzed and is most suitable for the general shape of a sphere. The
diagonal norm can compensate for distortions in the assumed
spherical shape caused by disparities in variances among attributes.
Mahalonobis' norm can not only compensate for the distortions like
the diagonal norm but can also account for the statistical correlations
between attributes (Odeh et al., 1992).

In this study, FCM clustering was performed using the FuzMe
program (Minasny and McBratney, 2002). m was set at [1.1, 3.5] for
simulated data and at [1.1, 2.5] for data in the case study of soil
mapping, both with an increment of 0.1. cwas set at [2, 15] for all data
with an increment of 1. The Euclidean normwas used in the simulated
datasets because it is the best method for classifying them.
Mahalonobis' norm was used for the case study of soil mapping
considering that there could be correlations between terrain
attributes, e.g., slope position and slope gradient.

2.4. Validity functions

FPI andMPE are the most frequently used validity functions in FCM
clustering, and have been used in studies by Fecher and Schmidt
(2003), Tan et al. (2006), Srinivas et al. (2008) and Triantafilis et al.
(2009). These functions actually performed very similarly in many
studies, including Amini et al. (2005), Odeh et al. (1992) and Tan et al.
(2006). Therefore, only FPIwas used in this study. FPI is computed as:

FPI = 1− cF−1
c−1

; F =
1
n
∑
n

i=1
∑
c

j=1
uij

� �2 ð4Þ

where F denotes the partition coefficient and measures the degree of
overlapping between clusters. Considering that F has a monotonically
decreasing tendency with c, it was normalized as shown in Eq. (4) and
replaced by FPI to validate the FCM clustering results. FPI has a value
between zero and one. A value of zero indicates that there is no
overlapping between clusters, i.e., no shared objects by clusters,
whereas a value of one indicates complete and even overlapping of all
clusters, namely, that all objects are evenly shared by all clusters. In
general, local minimized FPI along a series of c for a given m indicates
the optimal clustering for this given m (Odeh et al., 1992).

Although FPI and MPE have been widely used, they have been
criticized for ignoring the actual geometric properties of clustering
results (Fecher and Schmidt, 2003; Xie and Beni, 1991). To cope with
this defect of FPI and MPE, Xie and Beni (1991) devised another
validity function called the compactness and separation index:
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In Eq. (5), the numeratormeasures the compactness of a clustering
result, and the denominator measures the separation of a clustering
result. Smaller compactness and larger separation give a smaller S,

which indicates a better clustering result. Therefore, a clustering that
has the smallest S against a series of c for a givenmwill be identified as
the best clustering result for the givenm. However, S has one defect; it
will decrease monotonically with c when c is large (Xie and Beni,
1991). Fortunately, the monotonic decrease of S only occurs when c is
very large, and, in practice, the largest c set for running FCM is usually
small.

McBratney and Moore (1985) devised another validity function
based on the assumption that the most valid c is associated with an
extremum of the objective function's derivative. This validity function
is a derivative of the objective function with respect to m, i.e., the
function − [(δJE/δm)c0.5]:
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Plotting this function for different c against a series of m was used to
identify the best combination of m and c, i.e., the one that has the
lowest maximal value for this function.

2.5. Sensitivities of validity functions and soil maps to m and c

Validity functions from FCM clustering the simulated datasets
were plotted against m and c to show their relationship tom and to c.
Then, the sensitivity of the validity functions tom and cwere assessed
based on their plotted behaviors. Meanwhile, the squared Euclidean
distance between a clustered center of a clustering result with c equal
to the known c of a simulated dataset and its corresponding designed
center was computed to examine the performances of these validity
functions for finding the best m.

Sensitivities of soil mapping accuracy to m and c were also
investigated by plotting the behaviors of mapping accuracy indexes
against the two parameters. The maps produced in this study were
validated according to Brus et al. (2011). Considering the small
number of validation samples in this study (n=21), cross-validation
on the samples for mapping was also conducted to obtain mapping
errors, in addition to mapping errors from the validation samples. All
of the mapping errors and all of the absolute mapping errors were
then used to compute global mean error and global mean absolute
error, respectively, through block kriging. This process took into
account the spatial correlations of the mapping errors and the
absolute mapping errors (Brus et al., 2011).

3. Results

3.1. Sensitivities of validity functions to m and c

3.1.1. Simulated overlapping dataset
Fig. 3 shows the behavior of the validity functions from FCM

clustering the simulated overlapping dataset tom and to c. In Fig. 3(a),
FPI increased monotonically with m for any given c. The gradient
increased first as m increased from 1.1 to 1.3–1.6 (depending on c),
and then decreased asm continued to increase. This suggests that the
sensitivity of FPI tomwas the highest with anm of approximately 1.4
(1.4 was the mode of m at which the increasing gradient of FPI for a
given c was largest) and decreased as m decreased or increased from
approximately 1.4. The sensitivity of FPI to m was closely related to c,
as shown in Fig. 3(a), such that the curves of FPI were in a regular
sequence of c. Among these c, the sensitivity of FPI to m was always
the weakest for c=4, i.e., the designated number of clusters for this
dataset (Fig. 3(a)). In Fig. 3(b), for each m, FPI was smallest at c=4,
indicating the high sensitivity of FPI to the structure of the clustered
dataset. The curves of FPI over the series of c varied gradually among
m. The range of FPI over the series of c for a givenm increased first asm
increased from 1.1 to 1.7, and then decreased as m continued
increasing until it reachedm=3.5. Therefore, the sensitivity of FPI to c
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was strongest for m=1.7, and decreased gradually as m increased or
decreased from m=1.7.

Similarly, the sensitivities of S to m and to c were inferred from
Fig. 3(c) and (d). As shown in Fig. 3(c), the sensitivity of S to m for a
given c was the lowest when m was approximately 1.7 (1.7 was the
mode of m at which S was lowest for a given c) and increased as m
decreased or increased from approximately 1.7. The sensitivity of S to
m was slightly more complexly related to c when compared with the
sensitivity of FPI to m because the curves of S in Fig. 3(c) were in a
more complex sequence of c. It was also the weakest for c=4, i.e., the
designated number of clusters in this dataset. Fig. 3(d) shows that S
was prominentlyminimized at c=4 for any givenm, suggesting that S
was highly sensitive to the structure of the clustered dataset.
According to the range of S over the series of c for a given m, the
sensitivity of S to cwasweakest form=1.5 and increased gradually as
m increased or decreased from m=1.5.

Fig. 3(e) shows that, for all c, the sensitivity of the function− [(δJE/
δm)c0.5] tomwas the lowest at anm of approximately 1.7 (1.7 was the
mode of m at which the function was highest for a given c) and the
sensitivity increased asm increased or decreased from approximately
1.7. The function also correctly identified c=4 as the most valid c to
cluster the overlapping dataset. Fig. 3(e) shows that the lowest
maximization of this function occurred at c=4 and m=1.8.
Therefore, the function was also highly sensitive to the structure of
the clustered dataset. The sensitivity of the function to m was related
not only to c but also tom. For anm smaller than 2.0, the sensitivity of
this function to m was the weakest at c=4, whereas for an m greater
than 2.2, its sensitivity at c=4 was the strongest. Fig. 3(f) shows that
there was a large difference between the curves of the function for a
small m and for a large m; however, the curves for different m values
varied gradually amongst m. For m values between 1.1 and 2.3, the
function was minimized at c=4. For other m values, the function

Fig. 3. Plots of validity functions from clustering the overlapping dataset against m and c (S larger than 1 were not displayed in (c) and (d)).
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decreased as c increased. According to the range of this function over
the series of c for a givenm, the sensitivity of the function to c became
stronger as m increased from 1.1 to 1.5, then weaker as m increased
from 1.5 to 2.0, again stronger as m increased from 2.0 to 2.8, and it
finally became weaker as m continued increasing.

3.1.2. Simulated hierarchical dataset
Behavior of the three validity functions to m and to c from

clustering the simulated hierarchical dataset (Fig. 4) were mostly
similar to those from clustering the simulated overlapping dataset
(Fig. 3) with the exception of two major distinctions. The results for
this case are summarized in this section.

The first distinction is that the validity functions sometimes
behaved discontinuously as shown in Fig. 4. For example, Fig. 4(a)
shows that c=5 when m=1.1, 1.2 or 1.3, and Fig. 4(c) shows that
c=8 when m=1.9, 2.1, 2.2 and other values. The three validity
functions behaved discontinuously at the same time, but the

discontinuities could be avoided by repeating the FCM clustering a
number of times. Therefore, the discontinuity could be attributed to
the complex structure of this dataset and the initial memberships for
FCM clustering. Because repeating FCM clustering to avoid the
discontinuities is very time-consuming, this was not done in the
study.

The second but more important distinction is that the validity
functions behaved more complexly with c (Fig. 4(b), (d) and (f)).
Undoubtedly, this is due to the complex structure of this dataset. The
sensitivity of the validity functions to c in Fig. 4 was much smaller
than that in Fig. 3, suggesting that sensitivity of these validity
functions to the structure of the dataset was much lower in this case.
Fig. 4(b) shows that FPI identified several c values as the most valid c
for clustering this dataset, including not only the two arguable
designed c for this dataset (i.e., 3 and 8) but also 5 and 9. In Fig. 4(d), S
indicated that 3 was the best c value for most m values, and 8 was
the best for several for other m values. Fig. 4(e) shows that the

Fig. 4. Plots of validity functions from clustering the hierarchical dataset (S larger than 1 were not displayed in (c) and (d)).
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function − [(δJE/δm)c0.5] indicated that c=9, rather than c=3 or
c=8, atm=1.9was thebest parameter to cluster thedataset according
to the general rule guiding the use of this function to find the best
parameters. However, if Fig. 4(f) was the basis for selecting the most
valid valueof c, then c=3, c=8andother c valueswould be chosen.Our
results show that performance of these validity functions for identifying
the optimal clustering result was seriously degraded in this case.

The sensitivity of these validity functions to m was also lower in
this case. Fig. 4(a) generally shows that the sensitivity of FPI tom for a
given cwas generally highest at anm value of approximately 1.6 (1.6
was themode ofm atwhich the increasing gradient of FPI for a given c
was largest), and that the value (1.4) shown in Fig. 3(a). In addition,
the increasing gradients of FPI were relatively smaller in Fig. 4(a)
when compared with Fig. 3(a). Fig. 4(b) shows that the range of m
for FPI to indicate the most valid c for optimally clustering the
dataset, i.e., roughly from 1.3 to 2.2, was much shorter than the
range shown in Fig. 3(b), i.e., the entire range of m, which was 1.1

to 3.5. Similar phenomena are also shown in Fig. 4(c)–(f) for S and
the function − [(δJE/δm)c0.5].

3.2. Sensitivity of digital soil maps to m and c

Fig. 5 shows the three fuzzy validity functions from clustering the
dataset of terrain attributes of the Heshan study area. Fig. 5(b) shows
that FPI indicated several combinations of m and c for clustering the
dataset, e.g., c=3 and m=1.2–1.8. Fig. 5(d) shows that S indicated
that m=1.6 and c=12 were the best parameters for clustering the
dataset. Fig. 5(e) shows that the function − [(δJE/δm)c0.5] indicated
that c=2 and m=1.5 were the best parameters. It appears that the
three validity functions gave completely different solutions for how to
cluster the dataset.

The correlations between cluster memberships and SOM were
analyzed based on the sampling dataset that was used for mapping.
We found that no memberships of clustering results with a value ofm

Fig. 5. Variations of the three validity functions from clustering the dataset of the terrain attributes of the Heshan study area.
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greater than 2.0 were statistically significantly correlated with SOM.
This can be explained by Fig. 5(b), which shows that FPI for values ofm
larger than 2.0 were all close to 1, indicating that the clustering results
from values ofm greater than 2.0 were completely fuzzy, and all of the
cluster memberships were equal. Therefore, only clustering results
that were generated using a value of m less than or equal to 2.0 were
applied for soil mapping.

Mapping accuracy indexes, i.e., mean error, mean absolute error,
global mean error and global mean absolute error, are summarized in
Table 2 and plotted against m and c in Fig. 6 to show their variations
with m and c. Thirteen maps are presented in Fig. 7, and their means
and standard deviations are shown in Table 3. Although the variations
of mean error and global mean error with m and c (Fig. 6(a) and (c))
were noticeable, they were actually small when compared with
the mean predicted values in Table 3. For example, the mean and the
standard deviation of the global mean error in Table 2, −0.01 g kg−1

and 0.03 g kg−1, accounted for very small proportions of the average
of the means in Table 3, 4.64 g kg−1. More evidently, Table 2 and
Fig. 7(b) show that the variations of mean absolute error and global
mean absolute error with m and c were very small. Therefore, the
sensitivity of the mapping accuracy to m and to c was very low.

The thirteenmaps shown in Fig. 7 were based on fivem values, i.e.,
1.2, 1.4, 1.6, 1.8 and 2.0, and three c values, i.e. 3, 5, 7, 9, 11 and 13. The
five maps at c=3 changed gradually along with m. At other c values,
the gradual trend with m was not good, and generally only occurred

for the first two values, i.e., atm=1.2 and 1.4. Themaps atm=1.6, 1.8
and 2.0 and at c=7, 9 11 and 13 were not similar to each other. The
means in Table 3 also show a similar trend. However, an analysis of
variance on the predicted means and standard deviations in Table 3
showed that neither the differences in the predicted means nor the
differences in the standard deviations were statistically significant
among the m values (p=0.76 and p=0.06, respectively). Although
the maps were sensitive to m, especially when c was large, the
sensitivity was not significant. Similarly, the maps changed gradually
with c at small values of m, i.e., m=1.2 and 1.4, whereas the maps at
other large m values changed abruptly with c. An analysis of variance
of the predicted means and standard deviations in Table 3 showed
that only the differences in the standard deviations of the maps were
statistically significant among c values (pb0.01). These results suggest
that the soil maps were more sensitive to c than tom, but overall, only
the spatial variations of the SOM presented on the maps were
sensitive to c.

4. Discussion

4.1. Sensitivity of validity functions to m and to c

The sensitivity of the validity function to m and to c was generally
the only criterion for selecting m and c values for FCM clustering.
The results of this study first show that the validity functions, FPI, S
and the function − [(δJE/δm)c0.5], were sensitive in differing degrees
to the structure of the dataset that was being clustered, and the
sensitivity was determined by the structure of the dataset. For a
dataset of overlapping clusters, the validity functions all correctly
identified the optimal clustering result. At m=1.7, FPI was most
sensitive to the optimal clustering result, whereas at m=1.5, S and the
function −[(δJE/δm)c0.5] were the most sensitive. For the dataset
containing hierarchical clusters, the sensitivities of these validity
functions to the optimal clustering result were substantially lower,

Fig. 6. Bubble plots of mapping accuracy indexes. The sizes of the bubbles represent the values of the accuracy index, which are summarized in Table 2. A gray color represents a
negative value, whereas a black color represents a positive value.

Table 2
Summaries of mapping accuracies.

Mean Min Max Standard deviation

Mean error (g kg−1) −0.01 −0.06 0.04 0.03
Mean absolute error (g kg−1) 0.78 0.80 0.89 0.04
Global mean error (g kg−1) −0.01 −0.05 0.08 0.02
Global mean absolute error (g kg−1) 0.81 0.74 0.93 0.04
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Fig. 7. Predicted SOM maps based on different FCM clustering results.
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unfortunately giving a consequence that the non-optimal clustering
results were also indicated as optimal.

Second, a wide range of m values existed for optimally clustering
a dataset, but the range was different for different validity func-
tions and also depended on the dataset that was being clustered. As
shown in Figs. 3 and 4, the validity functions gave the optimal
clustering results for a series of m values. Among the three validity
functions, the function− [(δJE/δm)c0.5] identified the smallest range of
m values followed by FPI and S. For example, in the study on the
dataset of overlapping clusters, the range that was given by the
function − [(δJE/δm)c0.5] was roughly 1.1 to 2.3 (Fig. 3(f)). It was
roughly 1.1 to 3.5 for FPI (Fig. 3(b)), and the range was greater than
1.1 to 3.5 for S (Fig. 3(d)). The sensitivities of the three validity
functions to m were lower in the case of the hierarchical dataset than
in the case of the overlapping dataset, suggesting that the range of m
for the validity functions to identify the optimal clustering result also
depended on the dataset being clustered.

4.2. Sensitivity of soil maps to m and c

In the case study of soil mapping, different combinations ofm and c
were identified by different validity functions as the best for
clustering the dataset of terrain attributes. This makes it very difficult
to use themwhen applying FCM in digital soil mapping. However, the
mapping accuracy based on all the clustering results was not very
different regardless of whether the clustering results were optimal in
terms of the validity functions. This means that the sensitivity of
mapping accuracy to m and c was very low. Therefore, concerning
mapping accuracy, there is a wide range of m and c values that can be
safely used in FCM for soil mapping.

Conversely, the soil maps that were based on different FCM
clustering results were more sensitive to m and c than mapping
accuracy. Sensitivitywasmuch higher ifm and cwere large. This could
be due to the higher sensitivity of FCM clustering tom and c at largem
values (less than 2.0). For example Fig. 5(a) shows that the variance of
FPI for c values were larger at large m values, and, generally, the
sensitivity of FPI tomwas larger at larger c values than at smaller ones
(except c=2, which was not used to produce maps). However, only
the sensitivity of the spatial variations to c that were presented on the
maps was statistically significant. Soil maps were more sensitive to c
than to m, especially at medium and large m values (1.6 to 2.0 in this
study). This is determined by the nature of the two parameters. In
FCM, m is responsible for distributing the membership of an object to
a cluster. A small change ofm induces small changes to memberships,
and small changes in memberships can only impose small changes on
the produced soil maps. In contrast, a small change of c caused
memberships to change more. For example, two memberships of 0.5
at c=2 become three memberships of 1/3 at c=3.

5. Conclusions

This study demonstrated that three commonly used validity
functions, i.e., FPI, S and the function − [(δJE/δm)c0.5], were sensitive
in differing degrees to the structures of the datasets under a wide
range of m values, but the sensitivities and the range of m were

different for different validity functions and dependent on the
clustered datasets. Soil maps based on FCM clustering were sensitive
to m and c, especially when m and c were not small, for example, a
value of 1.6 to 2.0 form and a value of 5 to 13 for c. However, only the
spatial variations of SOM presented on the maps were statistically
significantly sensitive to c. Moreover, mapping accuracy was slightly
sensitive to m and c. We concluded that there is a range of optimal m
values over which digital soil maps did not change verymuch, but this
was not certain for c because the spatial variation on the maps
changed significantly with c. In addition, the range of m values varies
in different situations for soil mapping. This research only presented
one case study due to a limited budget. Future studies should focus on
identifying the relationship between the range of m values and the
situation for soil mapping.

Acknowledgements

Financial support from the Basic Research Program of Jiangsu
province (Grant no. BK2008058), the Natural Science Foundation of
China (40625001 and 40971236), the National Key Technology R&D
Program of China (2007BAC15B01), the Vilas Associate Program and
the Hamel Faculty Fellow at the University of Wisconsin-Madison are
gratefully acknowledged. We are also grateful to Dr. Murray Lark
(Rothamsted Research), Dr. Scott M. Lesch (University of California,
Riverside) and Dr. Dick Brus (Wageningen University and Research
Centre) for providing the methods used in the present study.

References

Amini, M., Afyuni, M., Fathianpour, N., Khademi, H., Flhler, H., 2005. Continuous soil
pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124,
223–233.

Bezdek, J.C., Ehrlich, R., Full, W., 1984. FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences 10, 191–203.

Brus, D., Kempen, B., Heuvelink, G.B.M., 2011. Sampling for validation of digital soil
maps. European Journal of Soil Science 62, 394–407.

Chai, X., Shen, C., Yuan, X., Huang, Y., 2008. Spatial prediction of soil organic matter in
the presence of different external trends with RMEL-EBLUP. Geoderma 148,
159–166.

de Bruin, S., Stein, A., 1998. Soil-landscape modelling using FCM of attribute data
derived from a Digital Elevation Model (DEM). Geoderma 83, 17–33.

Fecher, M., Schmidt, J.M., 2003. Fuzzy clustering as a means of selecting representative
conformers and molecular alignments. Journal Chemistry Information Computer
Science 43, 810–818.

Lagacherie, P., Cazemier, D.R., van Gaans, P.F.M., Burrough, P.A., 1997. Fuzzy k-means
clustering of fields in an elementary catchment and extrapolation to a larger area.
Geoderma 77, 197–216.

Lark, R.M., 1999. Soil-landform relationships at within-field scales: an investigation
using continuous classification. Geoderma 92, 141–165.

Lark, R.M., Cullis, B.R., Welham, S.J., 2006. On spatial prediction of soil properties in the
presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP)
with REML. European Journal of Soil Science 57, 787–799.

McBratney, A.B., de Gruijter, J.J., 1992. A continuum approach to soil classification by
modified fuzzy-k-means with extragrades. Journal of Soil Science 43, 159–175.

McBratney, A.B., Moore, A.W., 1985. Application of fuzzy sets to climatic classification.
Agricultural and Forest Meteorology 35, 165–185.

McBratney, A.B., Odeh, I.O.A., 1997. Application of fuzzy sets in soil science: fuzzy logic,
fuzzy measurements and fuzzy decisions. Geoderma 77, 85–113.

Minasny, B., McBratney, A.B., 2002. FuzME version 3.0, Australian Centre for Precision
Agriculture, The University of Sydney, Australia. http://www.usyd.edu.au/su/agric/
acpa, 2002.

Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1992. Soil pattern recognition with
fuzzy-c-means: application to classification and soil-landform interrelationships.
Soil Science Society of American Journal 56, 505–516.

Pal, R.N., Bezdek, J.C., 1995. On cluster validity for the fuzzy c-means model. IEEE
Transactions on Fuzzy Systems 3, 370–379.

Qin, C.Z., Zhu, A.X., Shi, X., Li, B.L., Pei, T., Zhou, C.H., 2009. Quantification of spatial
gradation of slope positions. Geomorphology 110, 152–161.

R Development Core Team, 2006. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria3-900051-07-0.
URL http://www.R-project.org.

Ribeiro Jr., P.J., Diggle, P.J., 2001. GeoR: a package for geostatistical analysis. R-NEWS
(ISSN: 1609-3631) 1 (2), 15–18.

Srinivas, V.V., Tripathi, S., Ramachandra Rao, A., Govindaraju, R.S., 2008. Regional flood
frequency analysis by combining self-organizing feature map and fuzzy clustering.
Journal of Hydrology 348, 148–166.

Table 3
The mean and standard deviation (between brackets) of SOM (g kg−1) on produced
maps.

m=1.2 m=1.4 m=1.6 m=1.8 m=2.0

c=3 4.58 (0.67) 4.60 (0.74) 4.54 (0.56) 4.57 (0.52) 4.54 (0.55)
c=5 4.54 (0.77) 4.61 (0.79) 4.71 (0.73) 4.04 (0.68) 4.03 (0.67)
c=7 4.56 (0.78) 4.64 (0.77) 4.60 (0.52) 5.15 (0.60) 5.38 (0.65)
c=9 4.57 (0.78) 4.61 (0.78) 5.06 (0.64) 3.97 (0.73) 4.94 (0.69)
c=11 4.38 (0.93) 4.41 (0.87) 3.72 (0.75) 5.48 (0.68) 4.13 (0.73)
c=13 4.52 (0.82) 4.38 (0.94) 5.34 (0.92) 5.62 (0.78) 3.72 (0.85)

33X.-L. Sun et al. / Geoderma 171-172 (2012) 24–34



Author's personal copy

Sun, X.L., Zhao, Y.G, Zhang, G.L., Wu, S.C., Man, Y.B., Wong, M.H., 2011. Application of a
digital soil mapping method in predicting soil orders on mountain areas of Hong
Kong based on legacy soil data. Pedosphere 21, 339–350.

Tan, M.Z., Xu, F.M., Chen, J., Zhang, X.L., Chen, J.Z., 2006. Spatial prediction of heavy
metal pollution for soils in peri-urban Beijing, China based on fuzzy set theory.
Pedosphere 16, 545–554.

Triantafilis, J., Kerridge, B., Buchanan, S.M., 2009. Digital soil-classmapping from proximal
and remotely sensed data at the field level. Agronomy Journal 101, 841–853.

Xie, X.L., Beni, G., 1991. A validity measure for fuzzy clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence 13, 841–847.

Zhu, A.X., Yang, L., Li, B.L., Qin, C.Z., Pei, T., Liu, B., 2010. Construction of membership
functions for predictive soil mapping under fuzzy logic. Geoderma 155, 164–174.

34 X.-L. Sun et al. / Geoderma 171-172 (2012) 24–34


