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Spatial transitions between slope positions (landform positions) are often gradual. Various methods
have been developed to quantify the transitions using fuzzy slope positions. However, few studies have
used the quantitative information on fuzzy slope positions in digital soil mapping or other terrain-
related geographic modeling. This paper examines the use of such information for mapping soil organic
matter content (SOM) within a purposive (or directed) sampling framework for predictive soil
mapping. First, a five slope position system (i.e., ridge, shoulder slope, back slope, foot slope, channel)
was adopted and the fuzzy slope positions were derived through an approach based on typical slope
position locations. The typical slope position locations were extracted using a set of rules based on
terrain attributes and domain knowledge. Secondly, the fuzzy slope positions were used to direct
purposive sampling, which determined the typical SOM value for each slope position type. Typical SOM
values were then combined with fuzzy slope position data to map the spatial variation of SOM using a
weighted-average model – the fuzzy slope position weighted (FSPW) model – to predict the spatial
distribution of SOM for two soil layers at depths of 10–15 cm and 35–40 cm in a low-relief watershed in
north-eastern China. The study area comprised two portions: an area of about 4 km2 used for model
development, and an area of about 60 km2 for model extrapolation and validation. Evaluation results
show that our FSPW model produces a better prediction of the SOM than that provided by a multiple
linear regression (MLR) model. Quantitative measures in the model-development area, including
correlation coefficient, mean absolute error, and root mean square of error, show that the performance
of the FSPW model with five modeling points from purposive sampling compares favorably with MLR
results for 48 modeling points. Evidence from the quantitative assessment based on a validation set of
102 sample points in the model-extrapolation area shows that the FSPW model performs better than
the MLR model, which suggests that information on fuzzy slope position was useful in aiding digital soil
mapping over the area.
+86 10 64889630.
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1. Introduction

Purposive sampling (or directed sampling) is a potentially
effective way of mapping soil spatial variation, particularly for areas
where existing soil data is limited (e.g., soil maps, field knowledge
and field samples) (Pocknee et al., 1996; Zhu et al., 2008, 2010a).
Purposive sampling assumes that the soil spatial variation of an area
can be captured by the property values at some typical (key) locations
(Zhu et al., 2010a). The soil property value at a location can be
predicted to be the average of the typical soil property values at these
typical locations weighted by the similarity of the location to
the typical locations (e.g., Zhu et al., 2010a). Under this purposive
sampling assumption relatively few field samples need to be collected
for model development, whereas many field samples are often
required for statistical approaches (e.g., Gessler et al., 1995; Moore
et al., 1993), or for geostatistical approaches (e.g., Lark, 2000; see
McBratney et al., 2000 for overview). Zhu et al. (2008) and (2010b)
showed that the purposive sampling approach to predicting detailed
spatial variation of soil properties has obvious advantages from the
perspectives of data requirement, model simplicity and accuracy of
prediction.

The design of purposive sampling is generally related to a
process of identifying environmental combinations (Zhu et al., 2008,
catchments using fuzzy slope position information,
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2010a). This is based on the classical concept of soil–environment
relationships (Hudson, 1992; Jenny, 1941). Unique soil properties
can be associated with unique combinations (or configurations) of
environmental factors such as terrain, climate or parent material.
It is also assumed that changes between environmental combina-
tions are gradual and co-vary with soil (Zhu et al., 2010a). Results
from this identification process provide not only the number of
environmental combinations (the number of field samples need-
ed) but also the spatial locations of these samples (Zhu et al.,
2010a).

Among the environmental factors, terrain is perhaps the one
most frequently used for identifying environmental combina-
tions. Originating from Jenny (1941)'s state-factor model of soil,
the SCORPAN model was developed to formulate the notion
that soil is a function of environmental factors (McBratney et al.,
2003):

S = f s; c; o; r; p; a;nð Þ ð1Þ

where S is soil class or property at a point; s is some other, or
previously measured, soil information at a point; c is climate factor; o
is organism factor (vegetation, fauna or human activities); r is terrain
factor; p is parent material factor; a is time factor; and n relates to
spatial position.

Almost all previous studies on digital soil mapping have used
terrain factor as an important, or even the sole predictive factor (see
McBratney et al., 2003 for overview). Quantification of the terrain
factor in current predictive soil mapping is often based solely on
topographic attributes — elevation, slope gradient, profile curvature,
contour curvature, topographic wetness index, etc. (Bell et al., 2000;
Gessler et al., 1995; McBratney et al., 2003; Moore et al., 1993; Zhu
et al., 2010a).

Spatial gradation of slope positions (or landform positions)
plays an important role when identifying environmental combi-
nations with terrain factor. The transitions between slope
positions over space (e.g. from back slope to foot slope) are
often gradual. These transitions, or spatial gradations, capture the
transition of earth surface processes in space. Although there is a
relationship between slope positions and topographic attributes,
the spatial gradation of slope positions cannot be fully captured by
topographic attributes such as slope gradient, curvature, etc. alone
(Qin et al., 2009). This is because a slope position is a geographical
object with a fuzzy boundary, and conveys qualitative and spatial
contextual information as well as local geometric information.
Locations on different slope positions might have the same
topographic attributes, yet be associated with different geograph-
ical processes.

The quantification of the spatial gradation of slope positions
(referred to as fuzzy slope position hereafter) is assumed to be
important in digital soil mapping and other terrain-related geograph-
ical or ecological modeling at fine scale (MacMillan et al., 2000;
Schmidt and Hewitt, 2004). Many researchers have discussed the
relationship between the fuzzy slope positions and the transition of
geographical processes, anticipating their usefulness in digital soil
mapping (MacMillan et al., 2000; Qin et al., 2009; Ventura and Irvin,
2000). However, currently the fuzzy slope positions are often first
converted to ‘crisp’ slope positions before being used in predictive soil
mapping, if used at all. In this way, the quantitative information on
spatial gradation of slope positions is lost.

Using purposive sampling as an example in this paper, we show
the usefulness of information on spatial gradation of slope positions in
digital soil mapping. We illustrate this through the prediction of the
spatial distribution of soil organic matter (SOM) in small, low-relief
catchments at a finer scale. The research issue is whether or not the
information on spatial gradation of slope positions can benefit the
Please cite this article as: Qin, C.-Z., et al., Mapping soil organic matter in
Geoderma (2011), doi:10.1016/j.geoderma.2011.06.006
purposive sampling approach in predicting soil mapping at a finer
scale.

2. Basic idea

The basic idea of this research is that slope positions reflect the
integrative effect of earth surface processes, and that the spatial
gradation of slope positions can be used to capture the transitional
nature of such processes over a slope. Information on the spatial
gradation of slope positions would then be comprehensive and
indicative of spatial variation of soil properties, especially for small,
low-relief areas.

Fuzzy slope positions can play two roles to support the devel-
opment of a purposive sampling approach to predicting spatial
distribution of soil properties in small, low-relief areas, given similar
non-terrain environmental factors (e.g., geology, land use). First, slope
positions can be treated as environmental combinations, so that areas
with high membership values of slope positions can be targeted in
order to obtain typical soil property values of environmental
combinations. This is acceptable, since the slope positions compre-
hensively reflect the terrain conditions that assert significant effect on
the spatial distribution of soil properties along a slope. In this way the
required number of field samples might be minimized because the
number of slope position types in a small, low-relief area is often very
limited.

Second, fuzzy slope positions can be used to weight the typical soil
property values in particular slope positions to predict the spatial
distribution of the soil properties, by the weighted average model
used in Zhu et al. (2010a). This means that soils associated with
similar environmental combinations have similar properties, a
position that is supported by soil–landscape model theory, in
particular as advocated in the SCORPAN model (McBratney et al.,
2003). Zhu et al. (2010b) have shown that the weighted-average
model works well over areas where the soil–environment relation-
ship is nonlinear.

3. Method

3.1. Quantification of spatial gradation of slope positions

With the aim of minimizing the number of field samples required
in a soil survey, we have adopted a slope position classification
system consisting of only five slope positions: ridge, shoulder
slope, back slope, foot slope, and channel. This system forms a
sequence of segments from top to bottom of a slope. If necessary,
the system can be further subdivided to include the convexity
and concavity of the surface shape along the contour (Qin et al.,
2009).

Information on fuzzy slope positions is derived through an
approach based on typical locations of slope positions (Qin et al.,
2009). This approach is in two parts: the first is to extract pro-
totypes for each slope position in the study area by formulating a
set of rules based on terrain attributes and domain knowledge. It
should be noted that the number of prototypes for a given slope
position type is often too large to be treated as locations for field
sampling. The second is to compute the similarity of a given
location to the prototypes for slope positions. The detailed steps
for deriving the fuzzy slope positions can be found in Qin et al.
(2009).

3.2. Purposive sampling based on fuzzy slope positions

The derived fuzzy slope positions are used to determine the typical
soil property value for each slope position type. In this step, samples
are taken at locations with high fuzzy membership values (e.g., close
to 1, given the range of membership is the interval [0, 1]) in one slope
small low-relief catchments using fuzzy slope position information,
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position type, and with very low fuzzy membership value (e.g., close
to 0) in other slope position types. With the aim of minimizing
the number of field samples, we can then set a single field sampling
point per slope position type, using above rule.
Fig. 1. Map of the study area. a) location of the study area; b) topography of the

Please cite this article as: Qin, C.-Z., et al., Mapping soil organic matter in
Geoderma (2011), doi:10.1016/j.geoderma.2011.06.006
3.3. Estimating soil property values using fuzzy slope positions

In this step the weighted average model adopted from Zhu (1997)
was used to predict the spatial distribution of soil properties using
model-development area; c) topography of the model-extrapolation area.

small low-relief catchments using fuzzy slope position information,
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fuzzy slope positions (‘fuzzy slope position weighted’, FSPW). The
predicted value of a soil property at a given location is the weighted
average of the typical soil property value at each slope position
and the fuzzy membership values of the location in these slope posi-
tions, given by:

Vij =
∑
n

k=1
SkijV

k

∑
n

k=1
Skij

ð2Þ

where Vij is the predictive soil property value at location (i,j); Sijk is the
membership value in the k-th type of slope position for location (i, j);
Vk is the typical soil property value for the k-th type of slope position;
and n is the number of slope position types.

4. Case study

4.1. Study area and data

4.1.1. Study area
The study area is located in the low-relief part of the Nenjiang

watershed in north-eastern China (Fig. 1a). It consists of two portions
(catchments) about 8 km apart, with similar environmental condi-
tions: one for model development (Fig. 1b) and the other for model
extrapolation (Fig. 1c). Soils in the study area are formed on deposits
of silt loam loess. The parent material is the same over both areas.
Land use at the time of the study was mainly soybean and wheat
farming.

The model-development area is a small catchment of about 4 km2.
Its elevation difference is about 60 m and the average slope gradient is
2.4°. Themodel-extrapolation area is about 60 km2 in size. The elevation
difference is about 100 m and the average slope gradient is 2°

4.1.2. Digital elevation model (DEM)
The DEMwas created from a 1:10,000 topographical map with the

contour interval of 2.5 m. The contour lines were digitized from
scanned paper maps. TopoGrid and TINLATTICE functions of ArcGIS
software were combined to create the DEM on a 10 m universal
transverse Mercator (UTM) grid. During the creation of the DEM, the
approach proposed by Hengl et al. (2004) was applied to reducing
errors in the DEM. Before the calculation of topographic attributes, a
DEM pre-processing algorithm proposed by Planchon and Darboux
(2001) was used to remove depressions and revise flat areas with a
very gentle slope gradient (0.1% in this study), which is more suitable
for low-relief areas (Qin et al., 2006).
Fig. 2. Field points in the mo

Please cite this article as: Qin, C.-Z., et al., Mapping soil organic matter in
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4.1.3. Soil sampling
In the model-development area, 48 soil sampling field points

were selected (Fig. 2), mainly along transects, and based on spatial
transitions between slope positions. Four transects were designed
across the area from east to west, the field sampling points being
defined both by typical location and transitions between slope
positions. The first transect started at the highest point on the
ridge and extended to the start of the main channel. The second
transect started at the ridge and stretched along the side ditch.
The third transect extended from ridge to channel in a line
perpendicular to the contours of the side slope in the southern
part of the area. The fourth transect extended from the ridge to
the lowest point of the main channel. Some sampling points were
also located along the main channel and along a contour on the
back slope. It is considered that these encompassed the major
terrain variations in this area, including variations between slope
positions.

Two soil samples were collected at each field point: one from a
depth of 10–15 cm (referred to as the first layer) and one from a
depth of 35–40 cm (referred to as the second layer). Each soil sample,
weighing about 100 g, was sealed in a plastic bag for laboratory
analysis. The Tyurin method was used to measure the SOM content as
percentages of the samples (Bao, 2000). At one field point a second-
layer SOM value was not obtained, because the material at the
required depth comprised mainly gravel and coarse sand which could
not be used for SOMmeasurement. Table 1 shows the statistics of the
measured SOM values.

In the model-extrapolation area, 102 field points were sampled
(Fig. 3) and the SOM content in the first (10–15 cm) layer was
measured; the results were then used to evaluate the performance
of the model when extrapolated to watersheds nearby. Three
sampling strategies were adopted in selecting the field points
(Fig. 3): regular sampling, subjective sampling, and transect
sampling. A regular sampling grid 1100 m×740 m was used to
collect validation points for the overall performance of the model
extrapolation. Further, we conducted subjective sampling in areas
with unique characteristics and where the spatial variation of soil
might not have been captured by regular sampling mostly on ridges,
shoulder slopes and foot slopes (Fig. 3). We also used transect
sampling to cover major environmental variations along the short-
est distance from ridge to channel. Two such transects were
sampled: one approximately E–W with sample spacing about
80 m, and one approximately N–S with sample spacing about
60 m (Fig. 3). With this combination of sampling strategies, major
soil variation in the area was covered for evaluating the model
extrapolation.
del-development area.

small low-relief catchments using fuzzy slope position information,
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Table 1
Descriptive statistics of measured soil organic matter content.

Minimum
(%)

Maximum
(%)

Mean
(%)

Std. Deviation
(%)

Model-development area
(first layer) (48 samples)

0.836 6.900 3.749 1.502

Model-development area
(second layer) (47 samples)

0.302 6.487 1.825 1.504

Model-extrapolation area
(first layer) (102 samples)

2.245 9.180 4.336 1.189

Table 2
Parameter settings for extracting and deriving the fuzzy slope positions in the study
area. Fuzzymembership function applied to deriving fuzzy slope position is one of three
curve shape types obtained by adjusting the shape-controlling parameters (i.e. w1 and
w2): ‘S’-shaped, ‘bell’-shaped, and ‘Z’-shaped (see Qin et al., 2009). The profile curvature
protocol assigns a negative value for concavity and a positive value for convexity.

RPI Profile curvature
(×10−3 m−1)

Slope (°)

Typical
locations

Fuzzy
inference

Typical
locations

Fuzzy
inference

Typical
locations

Fuzzy
inference

Ridge ≥0.99 ‘S’; w1=0.05 [−0.5,
0.5]

‘bell’;
w1=w2=1

Shoulder
slope

[0.8, 0.9] ‘bell’;
w1=w2=0.1

≥ 0.5 ‘S’; w1=1

Back
slope

[0.4, 0.6] ‘bell’;
w1=w2=0.2

[−0.01,
0.01]

‘bell’;
w1=w2=1

Foot
slope

[0.1, 0.2] ‘bell’;
w1=w2=0.1

≤ −0.5 ‘Z’; w2=1

Channel ≤0.01 ‘Z’; w2=0.1 [−0.5,
0.5]

‘bell’;
w1=w2=1

≤ 0.5 ‘Z’;
w2=2
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4.2. Model implementation

4.2.1. Deriving fuzzy slope positions
As set out in Section 3, fuzzy slope positions were derived using

the method of Qin et al. (2009). The rules for extracting prototypes of
slope positions and deriving fuzzy slope positions in this study area
were set by combining the slope position definitions of Pennock et al.
(1987), MacMillan et al. (2000), and Schmidt and Hewitt (2004). The
rules used for this study area (see Table 2) were specified for local
topographic attributes (i.e., slope gradient, profile curvature) and a
regional terrain index— the relative position index (RPI) proposed by
Skidmore (1990), which approximately estimates how far a location is
from ridge or valley. RPI is calculated from the Euclidean distance to
the nearest valley divided by the sum of the Euclidean distances to the
nearest valley and ridge.

Fig. 4 shows the similarity to the back slope type derived using
these rules for the model development area. By comparing the shaded
Fig. 3. Field points from different sampling strategies in the model-extra

Please cite this article as: Qin, C.-Z., et al., Mapping soil organic matter in
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relief map with this similarity map we can see that the derived fuzzy
back slope captures the spatial gradation of the back slope well.

4.2.2. Purposive sampling in model-development area and SOM mapping
Individual field points were used to determine the typical SOM

value for each type of slope position. Thus, there are a total of five
modeling points for the FSPW model. The typical SOM value for each
of the five slope position types was set to be the value of a sample at
which the similarity to that slope position type was as high as possible
and the similarity to other slope position types as low as possible. The
polation area. (The base map is the hardened slope position map).

small low-relief catchments using fuzzy slope position information,
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Fig. 4. Map of the similarity to the back slope type derived in the model-development area.

Fig. 5. Locations of the five modeling points for the FSPW model in the model-development area. (The base map shows the maximum similarity to slope positions).
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similarity values for the final set of modeling points in their respective
slope position types are larger than 0.97 for the model-development
area. The spatial distribution of these five modeling points is shown
in Fig. 5 and their corresponding SOM values are given in Table 3. The
SOM map was derived by combining the fuzzy slope positions and
the typical SOM value for each type of slope position calculated from
Eq. (2).

4.3. Evaluation method

The prediction of SOM based on fuzzy slope positions was
evaluated in both the model-development and model-extrapolation
areas. The model-development area was used to assess the suitability
of the FSPW model; the model-extrapolation area was used to
Table 3
Similarity values and SOM measurement of the modeling points for the FSPW model.

Sample
ID

Similarity value

Ridge Shoulder slope Back slope Foot slope

HB8-01 1 0.43 0.03 0
HB8-03 0.14 0.97 0.11 0
HB8-28 0 0 1 0
HB8-10 0 0 0.09 0.98
HB8-32 0 0 0.03 0.37

Please cite this article as: Qin, C.-Z., et al., Mapping soil organic matter in
Geoderma (2011), doi:10.1016/j.geoderma.2011.06.006
examine the portability of the developed model when extrapolated to
nearby watersheds.

The performance of the FSPW model was assessed both qualita-
tively and quantitatively in each area. Qualitatively, the evaluation of
the predicted results was based both on domain knowledge of soil
science, and field knowledge. The quantitative assessment was based
on a comparison between the predicted and measured values of soil
properties at the evaluation points using correlation coefficient (CC),
mean absolute error (MAE), and root mean square of error (RMSE),
defined by:

CC =
N∑OP−∑O∑Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N∑O2− ∑Oð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N∑P2− ∑Pð Þ2
q ð3Þ
Slope position SOM (%)

Channel First layer Second layer

0 Ridge 3.57 1.08
0 Shoulder slope 3.50 1.47
0 Back slope 3.18 0.98
0.58 Foot slope 1.52 3.84
0.98 Channel 6.77 2.81

small low-relief catchments using fuzzy slope position information,
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Table 4
Correlation and partial correlation between SOM and topographic attributes in the
model-development area.

Topographic attribute First-layer SOM Second-layer SOM

Correlation Partial
correlation

Correlation Partial
correlation

Elevation −0.246 0.102 −0.304⁎ −0.051
Slope gradient −0.111 0.074 0.018 0.113
Sin(Aspect) −0.175 −0.039 −0.295⁎ −0.130
Cos(Aspect) −0.068 0.133 −0.242 −0.200
Profile curvature −0.212 0.165 −0.383⁎⁎ −0.031
Horizontal curvature −0.705⁎⁎ −0.237 −0.780⁎⁎ −0.438⁎⁎

Topographic wetness index 0.755⁎⁎ 0.433⁎ 0.723⁎⁎ 0.240

⁎ Correlation is significant at the 0.05 level (2-tailed).
⁎⁎ Correlation is significant at the 0.01 level (2-tailed).
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MAE =
∑ P−Oj j

N
ð4Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ P−Oj j2

N−1

s
ð5Þ

where O and P are the observed and predicted values of a particular
soil property, and N is the number of soil samples.

In both areas a multiple linear regression (MLR) model regressing
SOM against a set of topographic variables was developed as a
reference for assessing the FSPW method. For the development of
MLR in this study we selected elevation, slope gradient, slope aspect,
Fig. 6. Soil organic matter contents predicted by FSPW and MLR. a) SOM (10–15 cm) by FSP
MLR.

Please cite this article as: Qin, C.-Z., et al., Mapping soil organic matter in
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profile curvature, horizontal curvature, and topographic wetness
index as the predictive variables, being similar to those chosen in
other studies (e.g. Bell et al., 2000; Gessler et al., 1995). According to
the SCORPAN framework (McBratney et al., 2003), additional vari-
ables can be used in the production of a predictive digital soil map, but
these (e.g., land cover, climate and parent material) are almost
identical over the small, low-relief areas in this study. We believe that
it was appropriate in the present work to use only the terrain variables
for predictive soil mapping. Compared with other topographic
attributes, the slope aspect is less used in predictive soil mapping.
However King et al. (1999) showed that there might be a strong
relationship between soil property and slope aspect, even in low-
relief, gently sloping areas. We retained the slope aspect as one of the
predictors in this study. The sine and cosine of the aspect were
computed for developing MLR model. Slope gradient, aspect and
curvatures were computed by widely-used algorithms (see Shary
et al., 2002). The topographic wetness index was computed by a
multiple-flow-direction-based algorithm which can be adapted to
local terrain conditions (Qin et al., 2011). Table 4 shows the
correlation and partial correlation between SOM and topographic
attributes in the model-development area. All 48 field points were
used to develop the MLR model by the stepwise variable selection
method with default criteria in SPSS 11.0 (i.e., Probability-of-F-to-
enter≤0.050 and Probability-of-F-to-remove≥0.100). For the first-
layer SOM, only the topographic wetness index was selected to build
the MLR model. For the second-layer SOM, only horizontal curvature
was selected to build the MLR model. When more variable enters
the MLR model for the second-layer SOM, the coefficient of model
will get much worse.
W; b) SOM (35–40 cm) by FSPW; c) SOM (10–15 cm) by MLR; d) SOM (35–40 cm) by

small low-relief catchments using fuzzy slope position information,
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Fig. 6 (continued).
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5. Results and discussion

5.1. Results and discussion for model-development area

The spatial distributions of SOM content in the first and second
layers as predicted by the FSPW model are shown in Fig. 6a and b;
those from the MLR model are shown in Fig. 6c and d. The FSPW
model predicts a much smoother spatial transition than MLR.
Smooth transition of SOM content over a small, low-relief watershed
seems reasonable since it matches the smooth, low-relief terrain
observed in the field. For example, the smooth decrease of first-layer
SOM predicted by FSPW in the foot slope (Fig. 6a) corresponds to a
more rapid change in slope gradient in the downslope direction in
this area.

The MLR model predicts the spatial distribution of SOM to contain
many seemingly unreasonable irregular transitions, especially along
the contour, which correlate with minor features in the DEM. These
minor features add unwanted and rough variation in the topographic
Table 5
Evaluation results of SOM predicted in the model-development area.

Predictive model Evaluation points O

C

FSPW
(with 5 modeling points)

43 (independent with modeling points) 0

MLR
(with 48 modeling points)

48 (same as modeling points) 0
cross-validation 0

⁎⁎ Correlation is significant at the 0.01 level (2-tailed).

Please cite this article as: Qin, C.-Z., et al., Mapping soil organic matter in
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attributes (such as topographic wetness index and horizontal
curvature). The rough variation is amplified by the MLR model
which, by design, relates variation in the dependent variable to
variation in the independent variables whether or not the variation
makes sense in terms of changes in the actual soil properties. Such
amplification is particularly significant in areas of gently varying
topography where small local undulations in the terrain data produce
significant apparent changes in the computed topographic attributes.

The FSPW model is less sensitive to minor features in the DEM,
because the terrain information used in the FSPW model is the fuzzy
slope positions, which itself has low sensitivity to minor features. In
the computation of the similarity between any locations and a given
slope position, there is a step wherein a minimum operator integrates
the individual similarities based on individual terrain attributes (Qin
et al., 2009). Thus much of the minor variability in one topographic
attribute does not propagate to the fuzzy slope position data.

It should also be noted that the second-layer SOM map predicted
byMLR (Fig. 6d) contains areas with obviously false value ranges (e.g.,
rganic matter (10–15 cm) Organic matter (35–40 cm)

C MAE RMSE CC MAE RMSE

.404⁎⁎ 1.12 1.40 0.545⁎⁎ 0.91 1.30

.755⁎⁎ 0.81 0.98 0.780⁎⁎ 0.65 0.94

.645⁎⁎ 0.94 1.24 0.674⁎⁎ 0.77 1.16
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negative values). This is not the case in SOM maps predicted by the
FSPW model. The negative values in the MLR results relate to the
unwanted extrapolation of the regression model.

The FSPW model performance was evaluated by comparing the
model development error and cross-validation error of the MLR
model with the validation error of the FSPW model as observed in
the model-development area. The validation error of the FSPW
model is derived using the 43 points in the model-development area,
that is, the 48 model development field sampling points for MLR less
the five points used for developing the FSPW. Clearly, such an
evaluation would seem to be biased against the FSPW model.
However, since the FSPW model produces similar results as the MLR
model using this evaluation, we can conclude that the FSPW
performs better than the MLR model from the perspective of field
sample requirements.

Evaluation results (Table 5) by evaluation points show that the
correlation coefficients (CC) between predicted and measured values
are significant for both FSPW and MLR models, and the predicted
values from MLR show higher correlation with the observed values
than do those from FSPW. The SOM prediction error from FSPW is
higher than that from MLR. Considering that the number of modeling
points for FSPW in this case is only five while all 48 of the evaluation
points were the modeling points for the MLR model, we consider
that the performance of FSPW is at least comparable with, if not
better than, that of MLR for the model-development area from
the perspective of the number of samples required and the level of
accuracy achieved.

5.2. Results and discussion for model-extrapolation area

To assess the portability of the predictive models, both the FSPW
and MLR models developed in the model-development area were
applied directly to the model-extrapolation area without further
tuning. Note that there is bias (about 0.6%, as shown in Table 1)
between the mean of SOM samples in the first-layer in the model-
development area and the SOM mean in the model-extrapolation
area, although these two areas are nearby and with very similar
environmental conditions (terrain condition, parent material, land
use, etc.). We suspect this bias is the result of difference of other
natural or human factors between these two areas. The influence on
soil variation by those natural or human factors did not be directed
considered in both FSPW and MLR models in this paper. So the
performance evaluation in the model-extrapolation area is equal for
both models.

The patterns in the predicted SOMmaps and the range of predicted
values (Fig. 7) are similar to those obtained in the model-
development area. The statistical indices of predicted values com-
pared to measured values for 102 independent validation points
(Table 6) show that the predicted results using the FSPW model have
a significant correlation (at the 0.01 level) between predicted and
measured values, while those from the MLR model show little
correlation.

The error in the prediction of first-layer SOM is lower with
FSPW than with MLR. Tables 5 and 6 show that the error in the
prediction of first-layer SOM with FSPW decreases when applied
directly to the model-extrapolation area. The opposite is true of the
Table 6
Evaluation results of prediction of the first-layer SOM in the model-extrapolation area
(with 102 validation points).

First-layer SOM

CC MAE RMSE

FSPW 0.319⁎⁎ 0.97 1.31
MLR 0.056 1.02 1.49

⁎⁎ Correlation is significant at the 0.01 level (2-tailed).
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MLR model which suggests that FSPW is more portable than MLR in
this case.

6. Conclusions

Spatial gradation of slope positions can reflect the integrative
effect of earth surface processes on slopes. Although currently there
are several approaches to deriving fuzzy slope positions to quantify
the spatial gradation of slope positions, fuzzy slope positions are
seldom used in digital soil mapping and other terrain-related
geographical modeling. In this paper we present a preliminary
attempt at applying fuzzy slope positions to digital soil mapping in
small, low-relief areas at fine scale.

Taking prediction of spatial distribution of soil properties as an
application domain, we applied the fuzzy slope position information
within a purposive sampling framework for predictive soil mapping in
a small, low-relief area. The fuzzy slope positions with a system of
five slope positions were derived from a prototype-based approach.
The fuzzy slope positions, treated as environmental combinations,
were used to direct purposive sampling for determining typical
soil property values in environmental combinations. Then the soil
property value at a location was predicted by a weighted average
model (FSPW) by combining the fuzzy slope positionswith the typical
soil property values of slope position types.

We selected a small, low-relief catchment in north-eastern China
as a model-development area to develop the FSPW model. Soil
samples were collected at five field sampling points (each point for a
slope position type) to obtain the typical soil organic matter (SOM)
value for each of the five slope position types. The SOM values at these
five modeling points and the fuzzy slope positions were then used to
predict the spatial distribution of SOM contents at depths of 10–15 cm
and 35–40 cm at a resolution of 10 m. We evaluated the performance
of the developed FSPWmodel both qualitatively and quantitatively by
comparing results with those from a reference model developed
based on a widely-used multiple linear regression (MLR) model.
Both of the developed models were then extrapolated to a nearby
watershed with similar environmental conditions to examine the
portability of FSPW.

The application and evaluation showed that fuzzy slope positions
effectively predict the spatial distribution of soil properties in a small,
low-relief catchment at a fine scale with fewer soil samples. In the
model-development area, the FSPW developed with only five
modeling points produced results comparable with those of MLR
using 48 modeling points, from the perspectives both of the number
of field samples required and the level of accuracy achieved. In
addition, the spatial distributions of the soil properties predicted by
FSPW matched the smooth, low-relief terrain in the study area more
closely than those predicted by MLR. Abrupt transition observed in
the MLR prediction results is more related to the minor features that
are very common in DEMs of low-relief areas. The FSPWmodel, being
less sensitive to minor features in the DEM, does not produce this
rough transition pattern in the prediction results. Validation of both
models in the model-extrapolation area shows that the FSPW model
developed in the model-development area is much more stable than
the MLR model when extrapolated to areas with similar environ-
mental conditions.

Our study has given a preliminary indication that the quantified
information on spatial gradation of slope positions (measured as fuzzy
membership values) can provide useful information for digital soil
mapping. With the aid of fuzzy slope positions, the number of field
samples needed for model development can be drastically reduced.
We believe it is also potentially useful for other terrain-related
geographic modeling. Further research will include sensitivity
analysis of FSPW for the determination of typical soil property values
on typical slope positions, together with more application assess-
ments in areas of different terrain.
small low-relief catchments using fuzzy slope position information,
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