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Abstract:

Many researchers have examined the impact of detailed soil spatial information on hydrological modelling due to the fact that
such information serves as important input to hydrological modelling, yet is difficult and expensive to obtain. Most research
has focused on the effects at single scales; however, the effects in the context of spatial aggregation across different scales are
largely missing. This paper examines such effects by comparing the simulated runoffs across scales from watershed models
based on two different levels of soil spatial information: the 10-m-resolution soil data derived from the Soil-Land Inference
Model (SoLIM) and the 1 : 24000 scale Soil Survey Geographic (SSURGO) database in the United States. The study was
conducted at three different spatial scales: two at different watershed size levels (referred to as full watershed and sub-basin,
respectively) and one at the model minimum simulation unit level. A fully distributed hydrologic model (WetSpa) and a
semi-distributed model (SWAT) were used to assess the effects. The results show that at the minimum simulation unit level
the differences in simulated runoff are large, but the differences gradually decrease as the spatial scale of the simulation
units increases. For sub-basins larger than 10 km2 in the study area, stream flows simulated by spatially detailed SoLIM soil
data do not significantly vary from those by SSURGO. The effects of spatial scale are shown to correlate with aggregation
effect of the watershed routing process. The unique findings of this paper provide an important and unified perspective on
the different views reported in the literature concerning how spatial detail of soil data affects watershed modelling. Different
views result from different scales at which those studies were conducted. In addition, the findings offer a potentially useful
basis for selecting details of soil spatial information appropriate for watershed modelling at a given scale. Copyright  2011
John Wiley & Sons, Ltd.
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INTRODUCTION

Geographic information systems (GIS) allow easy incor-
poration of spatially detailed heterogeneous watershed
information, such as land use, elevation, and soil data,
into hydrological models. However, the spatial resolution
of soil data is usually lower than other input information,
such as Digital Elevation Model (DEM) and vegetation
data (Band and Moore, 1995; Zhu, 1997) due not only
to the large amounts of resources required but also the
overall difficulty of producing soil spatial information
at detailed spatial scales. Therefore, it is important to
evaluate the potential benefits of using detailed soil spa-
tial information in hydrological modelling, particularly
meso-scale watershed hydrological modelling, to com-
pare improvement of model performance versus the costs
of detailed soil spatial information production. More-
over, it is necessary to examine the underlying mecha-
nism for detailed soil spatial information to affect model
performance.

* Correspondence to: Xianfeng Song, Graduate University of Chinese
Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing
100049, China. E-mail: song.osgeo@gmail.com

The effects of the resolution of soil spatial information
on hydrological modelling have been the focus of many
studies, but findings from these studies have not been
consistent (Mednick et al., 2008). Several studies have
reported differences in simulated stream flow based on
different soil maps but have not drawn any firm con-
clusions concerning their accuracy (Levick et al., 2004;
Peschel et al., 2006; Kumar and Merwade, 2009). Some
researchers have argued that detailed soil data have the
potential to improve simulation accuracy (Bosch et al.,
2004; Di Luzio et al., 2004; Anderson et al., 2006). Con-
versely, other studies have shown that varying soil res-
olution has a limited effect on stream-flow predictions
(Cotter et al., 2003; Chaplot, 2005; Di Luzio et al., 2005;
Moriasi and Starks, 2010; Mukundan et al., 2010). At the
same time, researchers have reported that the effects of
resolution of soil spatial information on model results
vary with environmental conditions (Zhu and Mackay,
2001; Quinn et al., 2005; Geza and McCray, 2008). For
example, in evaluating the effects of detailed soil spa-
tial data from the soil-land inference model (SoLIM)
(Zhu et al., 2001) on watershed modelling in compari-
son to the Soil Survey Geographic (SSURGO) database
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using a RHESSys model, Zhu and Mackay (2001) found
that the effects of detailed soil spatial information vary
with soil moisture conditions and slope aspects. Quinn
et al. (2005) found that the effects vary with the size of
the hill slope partitions used as basic unit for simula-
tion. Geza and McCray (2008) concluded that the State
Soil Geographic (STATSGO) Database performs better
in SWAT modelling relative to SSURGO before calibra-
tion, while SSURGO performs better after calibration.
Both were considered to be at the same satisfactory level
of performance.

The effect of watershed size on model response to
soil spatial detail has not been adequately considered
as existing studies have been mainly conducted at fixed
watershed sizes. Watershed response is often highly non-
linear and dominated by different processes at different
scales. Robinson et al. (1995) showed that at small scales
the process is dominated by the hill slope response, but
the response at large scales is dominated by channel
network hydrodynamics. Therefore, special considera-
tion is required to understand the effects of scale on
model response to spatial details in soil data in watershed
modelling.

Only a few studies have reported the effects of water-
shed size on hydrological response to input resolution of
spatial data, with Wang and Melesse (2006) and Shrestha
et al. (2006) among them. Wang and Melesse (2006)
reported that discrepancies between the simulated dis-
charges of STATSGO and SSURGO in the SWAT model
are larger at upstream locations compared to those far-
ther downstream within the study area. They attributed
this mainly to the fact that soil merely influences overland
hydrologic processes. When moving downstream, the rel-
ative importance of channel processes increases and the
role of soil in hydrological processes decreases. Shrestha
et al. (2006) noted the important effects of watershed
size on the selection of meteorological data resolution
for modelling applications. Thus, their criterion for data
selection was based on the influence of meteorological
data at the macro-scale and, as a result, might not be
suitable for the selection of detailed geographic data (e.g.
soil data) at the meso-scale level.

From what has been discussed in the literature, selec-
tion of an appropriate level of soil spatial data for mod-
elling a new watershed still poses difficulties. Thus, the
important, but inadequately investigated, effects of spa-
tial scale on hydrologic response to levels of detail of
soil spatial information need to be examined.

This study evaluates the effects of detailed soil spatial
information on hydrologic modelling under different
spatial scales, that is, two at different watershed size
levels (referred to as full watershed and sub-basin,
respectively), and one at the model minimum simulation
unit level. Two models, a semi-distributed Soil and Water
Assessment Tool, or SWAT model (Arnold and Fohrer,
2005) and a fully distributed Water and Energy Transfer
between Soil, Plants and Atmosphere, or WetSpa model
(Liu et al., 2003; Safari et al., (in press)) were used to
examine the effects. Two different levels of soil spatial

information were used in this exercise: the widely used
and most detailed traditional soil survey database in the
United States, SSURGO, at a scale of 1 : 24 000, and the
more detailed soil spatial data with a spatial resolution
of 10 m generated from the SoLIM approach (Zhu et al.,
2001). This study was conducted in the northwest of the
state of Wisconsin’s Dane County in the mid-western US.

MATERIALS AND METHODS

The study area

Description. Brewery Creek in western Dane County
between Middleton and Cross Plains in the US state
of Wisconsin is an agricultural catchment area with a
rich spatial database, including detailed soil spatial data
(Figure 1). The study area covers about 19Ð5 km2 and
the elevation of the watershed ranges from about 273 m
to 381 m above sea level. This area has a somewhat
dissected topography due to its location between the
glaciated eastern Dane County and the un-glaciated part
of western Dane County, known as the Driftless Area
(Graczyk, et al., 2003). Brewery Creek flows through
outwash and alluvium composed of sandstone and some
shale, with most of the bedrock in the watershed being
dolomite. The soils are silt loams poorly drained in valley
bottoms and highly erodible in the uplands (Glocker and
Patzer, 1978). The bed material of the stream channel
is mostly composed of soft silt and clay. Agriculture
constitutes the major activity and land use of this
watershed with the most prevalent crop being hay grown
on 30% of the watershed area; other crops include
corn and mixed row crops grown on 18 and 4% of
the watershed area, respectively. In addition, a notable
amount of deciduous forest (22%) and grassland (16%)
exists with the remainder area comprising a mix of
evergreen forest, wetlands, and urban areas.

Average annual precipitation for the past 30 years was
approximately 30 inches (780 mm) per year based on
data from the National Oceanic Atmospheric Administra-
tion (NOAA) weather station at the Dane County Airport,
Madison, Wisconsin, located close to the study area.

Data collection. DEM provided by the US Geological
Survey (USGS) with a 10 ð 10 m grid size was used for
computing slope gradients, extracting stream networks,
and delineating sub-basins in the watershed. A SoLIM
soil map at 30 feet resolution produced in the digital
soil mapping project of Dane County conducted by
the US Department of Agriculture (USDA) using the
approach developed by Zhu et al. (2001) was used as the
detailed soil spatial information (Figure 2). A SSURGO
soil map at 1 : 24 000 scale (Figure 3) was used as a
source of coarser soil spatial information after its attribute
tables were converted to a SWAT soil database by a
pre-processing extension (Peschel et al., 2006). Land-
use data were derived from the WISCLAND Land
Cover data provided by the Wisconsin Department of
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Figure 1. Location of the study area

Figure 2. SoLIM soil map (Numbers with initial character of ‘A’ in the legend are names of soil map units defined by United States Department of
Agriculture)

Natural Resources (WiDNR), Madison, Wisconsin, with
a resolution of 30 m.

Daily precipitation data on the days above 0° from
1992 to 1996 were collected from a USGS rain gauge
located in the centre of the Brewery Creek watershed.
Snowfall and daily temperature data were obtained from
the Charmany Research Farm Station located about
15 km to the southeast of the watershed outlet. The

daily stream flow data observed and used for model
calibration were obtained from USGS Gauging Station
number 05 406 470, which is located in lower Brewery
Creek near Cross Plains (Figure 1).

Soil data and its differences. SSURGO is the most
detailed level of soil mapping conducted by the Natu-
ral Resources Conservation Service (NRCS) using the
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Figure 3. SSURGO soil map (Numbers with initial character of ‘A’ in the legend are names of soil map units defined by United States Department
of Agriculture)

Figure 4. Differences in soil spatial details in Brewery Creek: (a) SSURGO soil map; (b) SoLIM soil map (The dashed line in (b) represents the soil
type boundary for the SSURGO map as shown in (a))

traditional soil survey method (USDA, 1993). SSURGO
delineates different soil map units through manual draw-
ing of polygons. The smallest soil map unit is usu-
ally slightly larger than approximately 2 ha (Geza and
McCray, 2008).

SoLIM was developed to overcome the limitations of
conventional soil surveys (Zhu and Band, 1994; Zhu
et al., 1996). This approach combines knowledge of soil-
landscape relationships with GIS techniques under fuzzy
logic to map soils at a finer spatial detail and higher
attribute accuracy (Zhu et al., 2001). The fuzzy logic

concept in representing spatial information makes SoLIM
data superior to traditional soil maps in terms of retaining
soil spatial heterogeneity (Zhu, 1997). The accuracy of
a conventional soil map is about 60% while that of a
SoLIM soil map is about 80% (Zhu et al., 2001).

Parts of the SSURGO and SoLIM soil maps from the
same area inside Brewery Creek are shown in Figure 4.
The SSURGO soil map (Figure 4(a)), which was gener-
ated through the manual drawing of soil polygons, only
shows the distribution of soil types occupying large areas.
It is hard to capture detailed soil variation over space and,
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thus, only presents the general distribution of two major
soil types in Figure 4(a). Owing to the enhanced abil-
ity of SoLIM in capturing and retaining spatial detail,
the SoLIM soil map (Figure 4(b)) captures soil spatial
information at a much finer resolution. As a result, five
soil types are depicted over the area shown in Figure 4.
As is shown in Figure 4(a) and (b), spatial differences
between the conventional SSURGO soil map and the
detailed SoLIM soil map are significant.

Description of the models

The SWAT model is a watershed-scale model for
long-term assessment. It has proven to be an effective
tool in the assessment of water resources and non-point
pollution problems over a wide range of scales and
environmental conditions around the globe (Gassman
et al., 2007). A detailed description of SWAT is given
in Neitsch et al. (2005), and a comprehensive review of
SWAT development, its application, and model analysis
can be found in Gassman et al. (2007).

SWAT simulates the hydrological process based on
the spatial characteristics of climate, topography, soil
properties, land use and management practices. It uses
a semi-distributed approach to represent the spatial vari-
ability of the watershed by subdividing it into a number
of sub-basins. Each sub-basin is further subdivided into
hydrological response units (HRUs) to reflect the spa-
tial differences in evapotranspiration and other hydrologic
conditions and reactions. HRUs with small areas are usu-
ally merged with other larger HRUs and, thus, often
neglected in reducing complexity and modelling time.
In each sub-basin, one HRU might consist of many spa-
tially disconnected patches formed by the same land use
and soil type. The water balance for each HRU is rep-
resented by storage in snow, soil, shallow aquifers, and
deep aquifers. The soil profile is subdivided into soil lay-
ers with homogeneous properties. The soil water balance
is a key component of the model that includes evapora-
tion, infiltration, plant uptake, surface runoff, lateral flow,
and percolation to lower layers (Neitsch, et al., 2005;
Arnold and Allen, 1996).

Runoff for each HRU is area weighted and totaled to
attain an aggregate runoff within each sub-basin. SWAT
then routes water through the stream network to the
outlet of the watershed. Stream flow in the sub-basin and
the watershed outlet consists of surface runoff, lateral
subsurface flow, and base flow.

WetSpa is a grid-based, distributed hydrologic model
that simulates water and energy transfer between soil,
plants, and the atmosphere originally developed by Wang
et al. (1996) and adapted for flood prediction over an
hourly time scale by De Smedt et al. (2000). A detailed
description of WetSpa is given in Liu and De Smedt
(2004). WetSpa is able to predict peak discharge and
hydrographs for any location in a channel network and
can estimate flood runoff composition and contributions
from certain land use classes. Four layers, or zones, are
considered in the vertical direction for each grid cell:

the vegetation, root, transmission, and saturated zones.
The hydrologic processes considered within each cell are
precipitation, snow melt, interception, depression, surface
runoff, infiltration, evapotranspiration, percolation, inter-
flow, groundwater flow, and water balance in the root
and the saturated zones. Soil moisture content is a crucial
factor in the model because it affects the hydrologic pro-
cesses of surface runoff, actual evapotranspiration, inter-
flow, and percolation from the root zone. Soil hydraulic
parameters can be extracted from the 12 USDA soil tex-
ture classes provided by Rawls et al. (1982) and Cosby
et al. (1984).

Runoff from different cells in the watershed is routed
to the watershed outlet, depending upon flow veloc-
ity and wave damping coefficients, using the diffusive
wave approximation method. An approximate solution
proposed by De Smedt et al. (2000) in the form of an
instantaneous unit hydrograph (IUH) was used to relate
the discharge at the outlet to the available water at the
start of the flow path.

Experiment design

The objective of this study is to examine the spatial
scale effects on response of simulated water yield to soil
spatial details. To fulfill a comprehensive investigation,
two different hydrological models are adopted and dif-
ferent soil datasets were fed into identical model settings
for simulation of different spatial levels. Simulated water
yields from the two soil datasets with model parame-
ters uncalibrated or calibrated either with SoLIM or with
SSURGO were compared. Each of the calibrated param-
eter sets was used for two model runs: one for SoLIM
and the other for SSURGO. Water yield from different
soil datasets under the same parameter set was then com-
pared. Thus, the difference of model performance was
merely caused by the difference of soil data.

Figure 5 shows the effects of spatial scale on the
hydrologic response to soil spatial detail investigated by
separately comparing the simulated water yield based on
different soil data at the minimum modelling unit level

SSURGO
DEM, Landuse,

Climate

SWAT/WetSpa

SoLIM

SWAT/WetSpa

Wateryield of
minimum

modeling unit

Wateryield of
minimum

modeling unit

streamflow
of

subbasins

streamflow
of

subbasins

compare

compare

streamflow
of

watershed

streamflow
of

watershed
compare

Figure 5. Comparisons of simulated water yield based on SoLIM and
SSURGO data under different spatial scales
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SSURGO
DEM, Landuse,

Climate

SWAT/WetSpa

SoLIM

SWAT/WetSpa

Calibrated
SWAT/WetSpa

based on
SSURGO

Calibrated
SWAT/WetSpa
based on SoLIM

Calibration Calibration

Figure 6. Model calibration procedure: derivation of parameter sets
calibrated with SoLIM or SSURGO

(HRU level for SWAT; the cell unit level for WetSpa),
sub-basin level, and Brewery Creek watershed level.

The response of a model to soil information may vary
with the settings of its parameters. Some parameterisa-
tion may obscure the effects of soil representation on the
models. In terms of a multivariate parameterisation, cal-
ibration of some parameters must be compensating for
some other adjustments made in other parameters as well
as changes to the spatial characterisation of soil prop-
erties. To escape from the risk of specific findings that
were generated by one parameter setting and could never
be verified in other cases, we repeated the experiments
in three different parameter sets using two hydrologic
models. The following three parameter sets were pre-
pared for each model: (1) A default parameter set before
model calibration; (2) A parameter set after calibration
with SSURGO soil data; (3) A parameter set after cal-
ibration with SoLIM soil data. Among these calibrated
sets of parameters, the parameter category is the same,
but their values vary from each other to some extent. The
model calibration procedures are shown in Figure 6.

The SoLIM and SSURGO soil data was switched as
input under each of the three parameter sets. Simulated
water yields from different soil datasets were compared
under a fixed parameter set to guarantee the water yield
differences are solely from the input soil data. The effects
of soil spatial detail on watershed hydrological modelling
were then investigated under each of the three different
parameter sets mentioned above across different scales.

Parameter specification and parametrisation

ArcSWAT version 1.0.6 with the SWAT2003 executive
program was used in this study. Threshold for land use
and soil type area proportion to form an HRU in a sub-
basin were set to 0 to retain HRUs with small area sizes
in order not to lose soil spatial information. The widely
used Soil Conservation Service (SCS) runoff curve num-
ber method adjusted for soil moisture conditions (Arnold,
et al., 1993) was used to estimate surface runoff.

WetSpa (Version 2004) was used in this study. The
SoLIM and SSURGO soil maps were converted to 12

USDA soil texture classes based on the top soil layer
textural properties. The hydrologic parameter values were
derived for each soil texture by the model. Default
textural hydraulic values provided by the model were
used except for the soil field capacity (FC), the saturated
water content (SAT), and the wilting point water content
(WP). These three important soil water parameters were
derived from the soil profile of the respective soil type
maps, not the derived soil texture maps, to maintain
their original spatial information. The land use map was
reclassified into 14 classes for extraction of vegetation-
related parameters and then further reclassified into 6
hydrologic land use classes for simulation of storm
runoff partitions from different land use types, i.e. crops,
grassland, forest, urban areas, bare soil, and surface
water.

Model calibration

Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970),
which is commonly used to report model performance
in watershed modelling (Moriasi et al., 2007) and is
widely integrated into software packages as objective
function for auto-calibration, is applied in this study as
the objective function during calibration processes. It is
worth noting that recent works reveal that Nash-Sutcliffe
coefficient summarizes model performance relative to an
extremely weak benchmark (the observed mean output)
and does not measure model quality in absolute terms
(Schaefli and Gupta, 2007; Gupta et al., 2008).

The objective function is shown as follows:

Objective Function D maximize
1 �

N∑
iD1

�observedi � predictedi�
2

N∑
iD1

�observedi � observed�2


 �1�

where observed i and predicted i are daily measured
values and simulated values, respectively, and N is the
number of days of the modelling period.

The parameters were separately calibrated using
SoLIM and SSURGO soil data for both SWAT and
WetSpa by daily observed stream flow data from the out-
let of the watershed (USGS gauge 05 406 470) over the
years 1993–1996. The simulation period was for 5 years:
1 January 1992 to 31 December 1996. The first year,
1992, was used to initialize the model (warm-up period).

For a thorough investigation of the effects of soil
data spatial resolution on simulated water yield, soil
parameters were not calibrated to retain their original
differences between two soil datasets. Seven calibrated
parameters and their details are given in Table I for
the SWAT model. Calibration was carried out with the
help of the SWAT-CUP software package (Abbaspour,
2007). Nine global parameters for WetSpa (Table II) were
calibrated using PEST (Doherty, 2004).

Table III shows the Nash-Sutcliffe efficiency coeffi-
cient, or NSE, before and after calibration. Before model
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Table I. Parameters and their optimal values based on SoLIM and SSURGO data for SWAT

Parameter Description Default value Range Calibrated value

SoLIM SSURGO

CN2 Initial SCS CN with normal soil moisture Da (0Ð8 ¾ 1Ð2)Da 0Ð8Da 0Ð81 Da

ESCO Soil evaporation compensation factor 0Ð95 0Ð01 ¾ 1 0Ð14 0Ð40
SMTMP Snow melt base temperature (degree) 0Ð5 �5 ¾ 5 2Ð34 3Ð9
ALPHA BF Baseflow alpha factor (days) 0Ð048 0 ¾ 1 0Ð019 0Ð041
GWQMN Threshold depth of water in shallow

aquifer for return flow to occur (mm)
0Ð0 0 ¾ 5000 49Ð1 40Ð2

RCHRG DP Deep aquifer percolation fraction 0Ð05 0 ¾ 1 0Ð24 0Ð29
CH K2 Effective hydraulic conductivity in main

channel (mm/hr)
0Ð0 0 ¾ 150 67Ð5 115Ð2

a D: Default parameter values in SWAT, the values may vary with Hydrologic Response Units.

Table II. Calibrated global parameters and their optimal values for WetSpa

Parameter Description Default value Calibrated value

SoLIM SSURGO

Ki Interflow scaling factor 2Ð5 15 8Ð1
Kg Baseflow recession coefficient 0Ð01 0Ð001 0Ð0012
K ep PET correction factor 1Ð0 0Ð86 1Ð0
G0 Initial groundwater storage (mm) 30 100 235
G max Maximum groundwater storage in depth (mm) 120 1000 1028
T0 Base temperature for estimating snow melt (degree) 0 �0Ð084 �0Ð96
K snow Temperature degree-day coefficient for calculating

snow melt (mm/degree/day)
2Ð0 2Ð5 1Ð7

K run Exponent reflecting the effect of rainfall intensity on
runoff coefficient when the rainfall intensity is very
small

3Ð0 6 4Ð2

P max Rainfall intensity threshold for adjusting runoff
coefficient (mm/day)

60 203 300

Table III. Nash-Sutcliffe efficiency (NSE) before and after model calibration

Soil data input Parameter sets for WetSpa Parameter sets for SWAT

Default Calibrated based
on SoLIM

Calibrated based
on SSURGO

Default Calibrated based
on SoLIM

Calibrated based
on SSURGO

SoLIM �2Ð01 0Ð49 0Ð48 �13Ð96 0Ð32 0Ð26
SSURGO �1Ð41 0Ð28 0Ð57 �15Ð34 0Ð15 0Ð29

calibration, NSE is negative for each model and each
soil data. This implies a large deviation of the simulated
stream flow from the observed values using default model
parameters. After model calibration, higher NSE values
indicate improved model performance. NSE after model
calibration is somewhat low, which is partly because soil
parameters are not included for calibration. However, the
purpose of this study is to examine the simulated water
yield difference between the two soil datasets, therefore,
fitness of simulated values versus observed values would
be less important.

Evaluation indices of the simulated differences

Four indices, total volume difference (TD), relative dif-
ference (RD), root mean squared difference (RMSD), and
consistency coefficient (CC ) were used to measure the

difference in magnitude between simulated stream flows
based on SoLIM and SSURGO soil data, respectively.
RD and relative mean absolute error (R-MAE ) were used
to measure spatial differences between simulated water
yield maps.

TD was used to measure the yearly average volume
difference between simulated stream flows

TD D 1

Nyear

(
N∑

iD1

Qi
SoLIM �

N∑
iD1

Qi
SSURGO

)
�2�

where Qi
SoLIM and Qi

SSURGO are the simulated stream
flows on day i using SoLIM or SSURGO, respectively;
Nyear is the number of years; and N is number of days
simulated.

RD was used to measure the relative deviation in
simulated water volume based on SoLIM compared to

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 26, 1390–1404 (2012)

1396 R. LI ET AL.



that from SSURGO

RD D

N∑
iD1

Qi
SoLIM �

N∑
iD1

Qi
SSURGO

N∑
iD1

Qi
SSURGO

ð 100% �3�

RMSD was used to measure the average daily differ-
ence in simulated stream flows between simulation based
on SoLIM soil data and that based on SSURGO soil data

RMSD D
√√√√ 1

N

N∑
iD1

�Qi
SoLIM � Qi

SSURGO�2 �4�

The Nash-Sutcliffe efficiency, NSE, is very commonly
used, and was found to be the best objective function
for reflecting the overall fit of a hydrograph (Sevat and
Dezetter, 1991). The CC used in this study to measure
consistency between simulated results based on SoLIM
and SSURGO, being approximate to NSE, was calculated
as follows:

CC D 1 �

N∑
iD1

�Qi
SoLIM � Qi

SSURGO�2

N∑
iD1

�Qi
SSURGO � QSSURGO�2

�5�

The theoretical range for the CC is the same as that for
NSE, i.e. from negative infinity to one. A low value (e.g.
<0Ð5) would indicate poor consistency between the two
simulated stream flow data series. A good consistency
would have a CC close to 1Ð0.

R-MAE was used to describe the average difference
between the values of the two maps, considering both
the positive and negative differences

R-MAE D

M∑
jD1

jQj
SoLIM � Qj

SSURGOj

M∑
jD1

Qj
SSURGO

ð 100% �6�

where Qj
SoLIM and Qj

SSURGO are the simulated yearly
average total water yield volumes at grid cell j based
on SoLIM and SSURGO, respectively, and M is the
number of total grid cells. The difference between RD
and R-MAE is that the former represents a total volume
difference while the latter represents an average ‘local’
difference.

RD and R-MAE (Equations (3) and (6)) were used
to describe the equilibration effect of the negative and
positive differences. R-MAE between the two maps
was designated as the ‘averaged spatial difference’; RD
between two maps as ‘spatially balanced difference’.
Therefore, a difference between R-MAE and RD shows
quantitatively the cancelation effect (an instance of spatial
aggregation effect) at that spatial scale. R-MAE and RD

were derived following three steps: First, raster maps of
the average annual water yield of the study watershed
were derived at the HRUs in the SWAT model and at
the cells in the WetSpa model (water yield here refers to
the average annual volume of water generated from each
modelling unit before routing); Second, the boundary of
each sub-basin was extracted; Third, R-MAE and RD
were calculated for each sub-basin based on the simulated
water yield of each raster cell within the sub-basin using
SoLIM and SSURGO.

RESULTS

Simulation differences at the minimum modelling unit
level

A simulated water yield map for WetSpa was generated
from the modelling results of each cell unit. The simu-
lated water yield map for the SWAT model was derived
by allocating the water yield of each HRU to its spatial
location. Simulated annual water yield difference maps
between SoLIM and SSURGO soil data were derived for
each model under each parameter set.

Table IV shows the statistics of the simulated water
yield difference map. As shown in the table, the area for
annual water yield differences above 10% is larger than
55% of the study area when WetSpa is used for each
parameter set. The area for annual water yield differences
above 10% for SWAT model varies from about 9Ð6%
before model calibration to 57% after calibration. The
large area for differences above 10% indicates that
obvious differences in simulation exist over a large part
of the study area owing to the differences of input soil
information.

The spatial distribution of the simulated annual water
yield differences for parameter set calibrated with SoLIM
is shown in Figure 7. As can be seen in the figure, the
large water yield differs at many local areas, with positive
and negative differences appearing at various locations.
The results from either WetSpa (Figure 7(a)) or SWAT
(Figure 7(b)) show that large water yield differences
originate from differences between SoLIM and SSURGO
soil information.

Simulated stream flow differences while varying
sub-basin sizes

The effect of varying sub-basin sizes on simulated
stream flow differences was investigated by plotting
the stream flow differences against the sub-basin area.
Differences of the yearly total stream flow volume

Table IV. Proportion for area with simulated annual water yield
difference larger than 10% due to difference of input soil

information

Parameter set WetSpa (%) SWAT (%)

Default 55Ð35 9Ð6
Calibrated with SSURGO 57Ð77 57Ð0
Calibrated with SoLIM 61Ð83 57Ð1
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Figure 7. Differences between simulated annual water yield (WYLD) based on SSURGO and SoLIM with parameters set calibrated with SoLIM soil
data: (a) WetSpa model; (b) SWAT model (calculated by subtracting SSURGO results from the SoLIM results)
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Figure 8. Variation of the differences between WetSpa-simulated stream flows based on SSURGO or SoLIM with sub-basin size: (a) yearly average
volume difference; (b) relative difference in yearly volume; (c) consistency coefficient; (d) root mean squared difference

and daily stream flow between different soil spatial
information for each sub-basin are shown in Figures 8
and 9.

As shown in the figures, the yearly average volume
differences (TD and RD) and daily differences (RMSD)
generally decrease with an increase in the size of sub-
basin. Consistency of simulated daily stream flow based
on SSURGO and SoLIM is generally higher at larger sub-
basin sizes (Figure 8(c) and 9(c)). Large differences at

small sub-basin size indicate that inconsistent simulated
results appeared at small sub-basin levels for different
soil spatial information. Smaller differences at larger
sub-basin sizes indicate an increased consistency in
the simulated results using SSURGO and SoLIM soil
information.

Variation in the differences with sub-basin size shows
that large differences generally appear locally and dif-
ferences gradually become smaller as the sub-basin size
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Figure 9. Variation of the differences between SWAT simulated stream flow based on SSURGO or SoLIM with sub-basin size: (a) yearly average
volume difference; (b) relative difference in yearly volume; (c) consistency coefficient; (d) root mean squared difference

increases. The simulated results differ very little when
the area is larger than 1000 ha (Figures 8 and 9), and,
finally, the simulations become consistent at the outlet of
the watershed (a total area of nearly 2000 ha).

Differences at the watershed outlet

The simulated daily stream flows based on SSURGO
or SoLIM soil data for the whole study area before and
after model calibration are shown in Figure 10 and their
difference is listed in Table V.

Time series of simulated daily stream flow at watershed
outlet from different soil data are shown in Figure 10.
Discernible differences between the simulated water yield
of SoLIM and SSURGO appear at peak runoffs, espe-
cially for calibrated models when simulated water yield
is decreased to a comparable volume to that of observed
values. Which of the two soil datasets can produce
a higher peak runoff may vary with parameter set-
tings. The two models generally produced comparable
runoff using SoLIM to that of SSURGO under default
parameter values (Figure 10(a) and (d)), though simu-
lated water yield was much higher than observed val-
ues. After model calibration, simulated runoff peaks
were comparable in magnitude to observed peaks, and
WetSpa using SoLIM produces higher runoff than using
SSURGO under parameter set calibrated based on
SSURGO (Figure 10(c)), while SWAT using SSURGO
produces higher runoff than using SoLIM under parame-
ter set calibrated based on SoLIM (Figure 10(e)). Under
the same parameter set, which soil dataset can produce
higher peak runoff may vary with events (Figure 10(b)

and (f)). Figure 10 shows that, difference between simu-
lated runoff of the two soil datasets varies with models,
parameter settings and events. However, the consistency
coefficients between the simulated runoff of SoLIM and
SSURGO exceed 0Ð90 for most parameter sets for either
WetSpa or SWAT model, except for 0Ð89 for WetSpa cal-
ibrated with SoLIM. The largest RD observed in yearly
average stream-flow volumes was 4Ð79 and 2Ð68% for
WetSpa and SWAT, respectively. The overall small dif-
ference between stream flows based on SSURGO and
SoLIM at the watershed outlet suggests that the simu-
lated daily stream flow series from 1993 to 1996 based on
SoLIM are similar to that based on SSURGO at Brewery
Creek watershed scale.

The reason for the small differences of simulated water
yield based on SoLIM and SSURGO soil dataset at the
watershed level should not be attributed to model insen-
sitivity because many soil parameters (e.g. SOL AWC,
SOL Z, SOL K ) are important for simulating runoff (van
Griensven et al., 2006; Xu et al., 2010). At the same
time, the simulated differences were large at a local
scale (Figures 7, 8, and 9). Therefore, aggregation effects
during watershed routing are the main reason for small
differences at the watershed level.

DISCUSSION

In this study, effects of parameter settings on model
response to soil data were considered by using three
different parameter sets. Parameters calibrated using
observed stream flow at watershed outlet may not reach
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Figure 10. Comparison of simulated daily stream flow of Brewery Creek based on SoLIM and SSURGO soil data

Table V. Difference in simulated stream flows at watershed outlet
from 1993 to 1996 based on SSURGO or SoLIM soil data using
either the WetSpa or SWAT models with different parameter sets.
CC : consistency coefficient of daily stream flow (with CC = 1 for
nil difference); RD : relative difference between yearly averaged

volume (with RD = 0 for nil difference)

Parameter set Index WetSpa SWAT

Default CC 0Ð99 1Ð0
RD (%) 3Ð77 �1Ð48

Calibrated with SSURGO CC 0Ð91 0Ð97
RD (%) 4Ð79 �0Ð21

Calibrated with SoLIM CC 0Ð89 0Ð94
RD (%) 2Ð38 2Ð68

their virtual values at sub-basin level, and this may affect
model response to soil dataset at sub-basin and modelling
unit levels. However, the three parameter settings used in
this study vary from each other to some extent and the
results would probably reflect the general response of

model to different soil datasets. The fact that simulated
differences are small at watershed outlet (Table V) and
larger at smaller units (Figures 7, 8, and 9) would not
be caused by calibrating different soil data to the same
observed streamflow, but originating from the water
modelling processes which aggregated soil differences,
because water yield from models calibrated based on one
soil dataset was not compared to that calibrated based on
the other soil dataset.

Differences in spatial resolution between SSURGO and
SoLIM soil maps generate spatial disagreements of soil
spatial information at local scale level. The discrepancy
of soil distribution in the two maps subsequently leads
to the spatial discrepancy in the simulated water yields.
However, soil properties might have either negative
or positive differences, thus leading to an increase or
decrease in water yield in simulation. As areal units are
added during the watershed routing process, these local
differences essentially cancel each other, resulting in only
small differences observed at the watershed outlet.
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(b) WetSpa calibrated based on SoLIM

Sub-basin size (ha)

10 100 1000 10000

S
im

u
la

te
d

 w
at

er
yi

el
d

 d
if

fe
re

n
ce

 (
%

)

–20

–10

0

10

20

30

40

50

R-MAE
RD

(c) WetSpa calibrated based on SSURGO

Figure 11. Difference between R-MAE and RD for different sub-basin sizes, WetSpa-simulated water yields: (a) default parameter set; (b) parameter
set calibrated with SoLIM; (c) parameter set calibrated with SSURGO
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(b) SWAT calibrated based on SoLIM
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(c) SWAT calibrated based on SSURGO

Figure 12. Difference between R-MAE and RD for different sub-basin sizes, SWAT-simulated water yields: (a) default parameter set; (b) parameter
set calibrated with SoLIM; (c) parameter set calibrated with SSURGO

R-MAE and RD values calculated for the sub-basins in
the study area are shown in Figures 11 and 12. R-MAE
varies considerably when the sub-basin size is small, but
gradually stabilizes when the sub-basin is larger than
1000 ha. The final R-MAE for the whole watershed sta-
bilizes at about 20% using WetSpa, and 5 and 20% using
SWAT before and after model calibration, respectively.

Large R-MAE indicates large spatial differences of sim-
ulated water yield exists using different soil data.

RD also varies considerably over small-sized sub-
basins and approaches stability when the sub-basin is
larger than 1000 ha. The trend is the same for both
WetSpa and SWAT. The decrease in RD with increased
sub-basin size shows the approximation of spatially

Copyright  2011 John Wiley & Sons, Ltd. Hydrol. Process. 26, 1390–1404 (2012)

1401SPATIAL AGGREGATION ON WATERSHED HYDROLOGICAL MODELLING



averaged mean simulated water yields based on SoLIM
and SSURGO at larger spatial scales.

R-MAE is almost steady and far from 0 when the sub-
basin is larger than approximately 1000 ha; however, RD
is much smaller and generally closer to 0 at this scale. The
large difference between R-MAE and RD at areas larger
than 1000 ha shows the spatial balancing effects of local
differences at this spatial scale. Spatial balancing effects
are caused by the cancelation of negative and positive
differences during the aggregation (routing) process of
modelling units inside the sub-basin.

The spatial balancing effect becomes larger with an
increase in sub-basin size, the reason why stream flows
simulated with SoLIM and SSURGO soil data become
similar. The differences between simulated stream flows
are much smaller when the sub-basin size is larger than
approximately 1000 ha for Brewery Creek watershed as
shown in Figures 11 and 12.

General response patterns are same for SWAT and
WetSpa to different soil data across varying sub-basin
scales, but the magnitudes of responses are different for
the two models (Figure 8 versus 9, Figure 11 versus 12).
It is clear that WetSpa is more sensitive to soil data than
SWAT, by comparison SWAT shows little sensitivity to
soil data source, and almost too little to be of concern
at the outlet of watershed. The differences of responses
between SWAT and WetSpa can be analysed from proce-
dures for the two models to derive hydrologic parameters
from soil data. As multiple HRUs were used in each
sub-basin for full consideration of soil information repre-
sentation during HRU delineations, there was no loss of
soil spatial detail from soil map to HRU representation.
Grid cell representation of WetSpa can also fully repre-
sent soil spatial distribution. Thus, difference in spatial
representation scheme between models would not be the
reason for difference of model response. However, differ-
ences exist in the soil parameter extracting process. For
SWAT model, one of the most important input parame-
ters in SWAT model to simulate runoff is CN2 which is
determined by hydrologic soil group and land use type,
and may further be adjusted by terrain slope. Hydrologic
soil group is a general soil hydrologic attributes describ-
ing the ability of a soil to generate runoff, and all types
of soils are classified into merely four groups (A/B/C/D).
Generalising of many different soil types into four hydro-
logic soil groups causes loss of detailed soil information.
As a result, most of the study area was classified as group
B using either SoLIM or SSURGO. This leads to the fact
that over 90% of the study area has the same CN2 based
on the two soil datasets; For WetSpa, soil types were
classified into 12 soil texture classes, and soil hydrologic
parameters were extracted from the corresponding soil
textures for each modelling cell. Finally, 38Ð5% of the
study area was classified as different soil texture based
on SSURGO and SoLIM soil dataset. The high consis-
tency of CN2 in SWAT model using the two soil datasets
and relative low consistency of soil texture for WetSpa
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Figure 13. Variation in daily average water yield difference, STATSGO
versus SSURGO data, with sub-basin area, derived from data in Table V

of Peschel et al. (2006)

using the two soil datasets is probably an important rea-
son for the different magnitudes of model responses to
soil data.

Data derived from other studies (Table V in Peschel
et al., 2006) show the same trend in differences of
daily average water yield using STATSGO and SSURGO
soil data as sub-basin size increases (Figure 13). The
clear trend of decrease in simulation difference with
the increase of sub-basin size shows an obvious spatial
aggregation effect.

Variation of simulated stream flow differences between
different soil spatial information with sub-basin size sug-
gests watershed size is an important factor when eval-
uating effects of spatial resolution of input data on
hydrologic modelling. The use of detailed soil spatial
information does not significantly change the simulated
stream flow compared to coarsely defined soil informa-
tion after the watershed size exceeds a certain threshold.
This relationship with watershed characteristics deserves
a separate study in itself.

Spatial aggregation effects also explain different views
reported in the literature concerning the impact of spatial
detail of soil data on watershed modelling. Summaris-
ing the data from former studies, e.g. spatial scale of
the different soil data used, the watershed size and the
corresponding simulated average stream flow differences
(Table VI), a general trend can be observed in which sim-
ulated average stream flow differences become smaller as
the study area increases. Table VI provides an opportu-
nity to verify the spatial aggregation effect emphasized in
this paper and shows its potential guidance for selecting
the required spatial detail of geographic data in a new
watershed.

CONCLUSIONS

This study assessed the scale effects of using the SoLIM
soil map at 10 m spatial resolution versus the SSURGO
map at a scale of 1 : 24 000 as the inputs for stream flow
simulations with SWAT and WetSpa models. Simulations
based on the different soil data were compared at three
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Table VI. Summary of the results derived from related studies, with the cases ordered by drainage area in ascending sequence

Reference Model Coarse soil Detailed soil Drainage area (km2) Average Stream flow differencea (%)

Di Luzio et al. (2005) SWAT 1 : 250 000 1 : 24 000 21Ð3 12Ð1
Chaplot (2005) SWAT 1 : 250 000 1 : 25 000 21Ð8 19Ð4
Wang & Melesse (2006) SWAT 1 : 250 000 1 : 24 000 515Ð4 7Ð4
Peschel et al. (2006) SWAT 1 : 250 000 1 : 24 000 540Ð0 5Ð2
Tang et al.(2000) ADAPT 1 : 250 000 1 : 24 000 1400Ð0 2Ð6
a The average difference of simulated stream flows during the entire modelling period was used here. Average stream flow difference (%) D
abs(StreamflowDetailed soil � StreamflowCorase soil)/StreamflowCorase soil 100%. This table is not exhaustive since some studies did not provide values
of simulated stream flow differences between different soil data.

spatial levels: the meso-scale watershed level, the sub-
basin level, and the model minimum simulation unit
level. Large differences between the simulated water
yields exist at the local scale (model minimum simulation
unit level and small sized sub-basin level). However, the
simulated differences generally decrease with an increase
in sub-basin size. A threshold area was found to be
approximately 1000 ha larger than which SoLIM and
SSURGO would generate similar stream flow simulations
in the Brewery Creek watershed. Differences in simulated
stream flows from different soil spatial information were
shown to be largely affected by the size of modelling
area. The effect of spatial scale detected mainly appears
to originate from spatial aggregation that balances out
differences in local runoff.

The unique findings in this paper provide an important
and unified perspective on different views reported in
the literature concerning the impact of detailed soil
information on watershed modelling. In addition, the
findings offer a useful basis for selecting the level
of detail required for watershed modelling at different
scales, important because detailed soil spatial information
is expensive and difficult to obtain over large areas. These
results are initial and obtained from the investigation of
a specific watershed. The threshold area obtained here
should be verified in other areas and with additional
factors, such as the relief of the topography and climate,
among other factors. Other response variables (e.g.,
sediments, nutrients) should also be considered in future
studies to see if similar effects exist for these response
variables.
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