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Raster-based slope estimation is routine in GIS. Like many other terrain attributes,
the slope at a location is determined from elevations of surrounding cells. This spatial
extent – ‘neighborhood size’ – is often treated as the ‘spatial scale’ of the calculation.
In fact, neighborhood size and spatial scale are two connected yet different concepts, but
few studies have investigated the relationship between them. The distinction is impor-
tant because neighborhood size is under user control whereas spatial scale is merely
implicit in the computational method. This article attempts to clarify and provide a more
precise meaning of the two terms by considering slope operators from the standpoint
of the frequency (or wavenumber) domain. This article derives analytical expressions
for the amplitude response functions of four popular slope estimators. These are used
to characterize the individual methods and also to show that the neighborhood size and
spatial scale of a slope calculation are not numerically the same. In fact, because there is
no single spatial scale that can be unambiguously associated with a given neighborhood
size, neighborhood size cannot be an adequate indicator of spatial scale. Furthermore,
this article shows that different indices of ‘scale’ yield different impressions about the
action of a slope estimator and its response to changing neighborhood size. Therefore, it
is necessary to examine the amplitude response function when investigating the spatial
scale. The article also provides guidance for GIS practitioners when selecting a slope
estimation method.

Keywords: neighborhood size; spatial scale; window size; slope; terrain analysis

1. Introduction

Slope is a widely used terrain characteristic and serves as a key input for a diverse
array of environmental analysis and modeling. At present, the dominant way to calcu-
late slope is through raster-based terrain analysis, which generates terrain derivatives in
orthogonal directions from a gridded digital elevation model (DEM). These derivatives
are calculated from elevations within a ‘neighborhood’ of surrounding cells, and for that
reason the neighborhood size affects the spatial scale of features appearing in the result-
ing raster. Neighborhood size is explicit and under user control, whereas the spatial scale is
implicit and neither readily apparent by inspection of the neighborhood nor unambiguously
measured. However, spatial scale is far more important than neighborhood for most pur-
poses, which suggests landscape analysts should have a clear understanding of the scales
associated with various slope estimation methods. This is especially important given the
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2 J. Gao et al.

increasing availability of high-resolution DEMs, whose scales1 are often much smaller than
those of relevant physical processes (Zhu 2008, Zhu et al. 2008). Slope estimators, which
have the potential to amplify small-scale features, are of particular concern in this regard.
The purpose of this article is to clarify the distinction between neighborhood and scale and
to compare the action of several popular slope estimation methods in terms of their effect
on landscape features having various spatial scales.

From a mathematical standpoint, slope is the gradient vector and, for analytical sur-
faces, is obtained by maximizing the directional derivative. However, throughout this
article ‘slope’ means the magnitude of the gradient and thus the direction (slope aspect) in
what follows is not considered. Most raster GIS processing involves the use of local meth-
ods whose extent is typically described in terms of a ‘roving window size’ (e.g., ESRI®

2010). The roving window is a rectangular area centered on the pixel of interest that moves
through the input DEM pixel by pixel during the slope estimation. So, ‘roving window
size’ and ‘neighborhood size’ convey similar information. However, the former is usually
(and in this article) expressed as the number of pixels in each dimension, while the latter
is expressed in metric units. Therefore neighborhood size numerically equals the product
of input DEM resolution and roving window size; for example, a 3 × 3 window means a
square area with edges of three pixels in length and would correspond to a neighborhood
of 30 m when used with a DEM having 10 m resolution. Hereafter ‘window size’ is used
to mean the width and height of the roving window.

The ‘spatial scale’ of a landform feature is the horizontal extent of the feature. The
spatial scale of a rill might be 2 m, while the spatial scale of a hill could be 200 m. Typical
landscapes contain multiple scales, but for a particular application only some scales are
relevant, and the ideal slope computation would capture those and ignore the others. As is
well known, a DEM or any other matrix can be represented using a discrete Fourier series,
which decomposes the surface into a finite number of sinusoids of progressively shorter
wavelength. In the spatial domain the reciprocal of wavelength is ‘wavenumber’ with units
of inverse length (e.g., m−1). Wavenumber is directly analogous to frequency in the time
domain. Although ‘frequency’ should not technically be applied to spatial fields, this arti-
cle will follow convention and use the term throughout the discussion. The reader should
remember that frequency here means cycles per unit distance rather than cycles per unit
time. For the examples above, the frequency of the rill is 1/2 m−1, and the frequency of the
hill is one hundred times lower, 1/200 m−1.

If one accepts that Fourier series is an appropriate representation of the land surface,
any particular slope calculation will treat information at various scales differently, sup-
pressing some frequencies, amplifying others, and leaving the rest untouched. Therefore,
a slope operator is like a digital filter of the input DEM and the ‘spatial scale’ of a slope
calculation refers to the frequencies that pass through the filter and are reflected in the
resulting slope matrix. Clearly, the definitions of ‘neighborhood size’ and ‘spatial scale’
are very different.

In addition, various slope operators may exhibit different filtering effects on the input
information even when using the same neighborhood. To give an example, Figure 1 is a
LIDAR-generated DEM of a small part of Mt. Erebus, Ross Island, Antarctica. The spatial
resolution is 2 m, and the image contains 106 × 106 pixels. Figure 2 shows slopes as
estimated by four methods discussed in detail later, where Horn’s and Evans’ methods
have a fixed 3 × 3 window, and 3dMapper®’s and Wood’s methods allow user-defined
window size. Figure 2 is based on 13 × 13 and 37 × 37 windows, respectively. The first
two slope maps contain many small-scale features with slopes above 30%, whereas the
others give very different impressions. If from a process standpoint one was interested in
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International Journal of Geographical Information Science 3

Figure 1. DEM of a part of Mt. Erebus, Ross Island, Antarctica.

scales larger than 25 m, the first two methods would clearly be inappropriate. That said,
would 13 × 13 be the appropriate size? Should one pick a window somewhat larger or
smaller than the desired scale? Further, as is seen in Figure 2, given the same window size,
different methods provide different estimations. What method–neighborhood pair fits the
desired scale the best? Answering these questions requires a more formal analysis of the
relation between neighborhood size and scale.

In some ways this article follows Hodgson (1995) who empirically tested the ‘best
represented cell size’ (scale) of three slope calculation methods using a 3 × 3 window.
The major drawback of an empirical methodology, as discussed by Hodgson (1998), is
that the method used to determine true values has important implications and the compar-
isons are therefore inevitably biased. Also, new slope estimators, which allow user-defined
neighborhood size, have been developed in the past 10 years. Such methods are motivated
by an understanding that relevant spatial scales are not necessarily commensurate with
the DEM resolution, but no studies have characterized methods from the scale perspec-
tive. This article does so by considering slope estimators from the frequency standpoint.
Besides the obvious conceptual appeal, the frequency viewpoint offers analytical tools that
can provide new insights on these issues. The article derives analytical expressions for the
filtering effects of four popular slope calculation methods and aims to address the follow-
ing questions: (1) What is the relationship between neighborhood size and spatial scale in
commonly used slope estimators? (2) How should one select an appropriate slope operator
for a particular GIS application? (3) What constitutes an ideal slope estimator?

2. Slope estimation from frequency perspective

2.1. Frequency approach

As mentioned in the introduction, any function F(t) can be disassembled into simple func-
tions of different frequencies – a Fourier series, provided that (1) F(t) is single-valued and
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4 J. Gao et al.

Horn’s method, 3 × 3 window

3dMapper’s method, 37 × 37 window

3dMapper’s method, 13 × 13 window

Evans’ method, 3 × 3 window

Wood’s method, 13 × 13 window

Wood’s method, 37 × 37 window

65–100

30–65

20–30

12–20

6–12

2–6

0–2

Slope (%)

Figure 2. Slopes of Mt. Erebus, using various methods and roving window sizes.

finite, (2) F(t) is defined for every point over some basic interval, and (3) F(t) has a finite
number of maxima, minima, and discontinuities in that interval (Rayner 1971, Pinkus and
Zafrany 1997, Morgan 2005). For a DEM, the domain is obviously discrete, with F – the
elevation – defined at the nodes of the (x, y) grid. Equally obviously, the DEM meets the
three requirements. Also, no feature smaller than twice the resolution h of the DEM can be
represented in the DEM, thus the highest frequency in the corresponding Fourier series is
always 1/(2h) = 0.5f DEM (the so-called Nyquist frequency). Therefore, letting zj,k be the
elevation at row j column k, the DEM has a complex representation as
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International Journal of Geographical Information Science 5

zj,k =
0.5fDEM∑

fx=0

0.5fDEM∑
fy=0

c
[
fx, fy

]
exp

(
2π i(jfx + kfy)

)
(1)

where i = √−1, fx and fy are frequencies in the x- and y-directions, and c
[
fx, fy

]
are com-

plex numbers. Using the Euler relation c exp(−iθ ) = c(cos θ + i sin θ ) one sees that the
exponentials are sinusoids with amplitude and phase determined by the leading coefficients
c
[
fx, fy

]
. The absolute value |c [

fx, fy
] | is the amplitude of zj,k at

[
fx, fy

]
and the argument

arg(c
[
fx, fy

]
) is the phase. That is, if c

[
fx, fy

] = a + bi,

amplitude
[
fx, fy

] = (a2 + b2)1/2, phase
[
fx, fy

] = arctan(b/a)

Methods for determining the coefficients c
[
fx, fy

]
are of no particular concern here. The

important idea is that any DEM can be thought of as containing features at many scales, and
through the coefficients c

[
fx, fy

]
, Equation (1) provides a way to compare the amplitudes

of those features.

2.2. Digital filters and amplitude response

Hamming (1989) and other texts define a digital filter as an arbitrary linear operation.
In raster-based terrain analysis, slopes are estimated ultimately as weighted sums of
elevations surrounding the pixel of interest (central pixel):

Sj,k =
n∑

r=−n

n∑
s=−n

wr,szj+r,k+s

That is, the slope estimator can be written as a matrix of constants w, with each element
paired with and multiplied by an element of the DEM. This is an arbitrary linear operation,
so raster-based slope estimators are digital filters.

The amplitude response function (R) is one of the tools used to characterize the action
of digital filters. The amplitude response at a given frequency gives the proportion of that
frequency’s amplitude that remains after the filter is applied (see, for example, Burt et al.
2009):

R
[
fx, fy

] = amplitude
[
fx, fy

]
of output

amplitude
[
fx, fy

]
of input

If the value is unity, the filter does not affect the features having that frequency. An ampli-
tude response value of zero means that frequency is completely removed. A filter’s
pattern of different behaviors (removing, exaggerating, etc.) at different frequencies is its
amplitude response function.

By finding the amplitude response function of a slope estimator, one can see what scales
emerge in the slope field and what scales are effectively blocked. This allows comparison
of output scales with neighborhood size; and the relationship between the two may be
examined.
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6 J. Gao et al.

2.3. Amplitude response function for the mathematical definition of slope

Slope has a precise mathematical definition for continuous analytical surfaces and can be
expressed as an angle (θ ) or in a dimensionless ratio form. In particular, the slope is found
from the partial derivatives:

S_math = tan θ =
[(

∂Z

∂X

)2

+
(

∂Z

∂Y

)2
]1/2

where Z is the elevation and X and Y are the coordinate axes.
To deduce the amplitude response function of the mathematical slope filter, one should

first look at a simplified input terrain, which consists of only one frequency in the X dimen-
sion, fx, and only one frequency in the Y dimension, fy, and has amplitude unity and phase
zero:

zj,k = exp
(
2π i(jfx + kfy)

)
Then, the mathematical slope can be calculated as follows:

(
∂Z

∂X

)
j,k

= 2π ifx exp
(
2π i(jfx + kfy)

)
(

∂Z

∂Y

)
j,k

= 2π ify exp
(
2π i(jfx + kfy)

)
S_mathj,k = 2π i(f 2

x + f 2
y )1/2 · exp

(
2π i(jfx + kfy)

)
In this slope expression, the frequency term is the same as the frequency term in
the elevation expression, but its coefficient is changed from the real number 1 to the
imaginary number 2π i(f 2

x + f 2
y )1/2. So, the amplitude of

[
fx, fy

]
in the slope surface is

2π (f 2
x + f 2

y )1/2 and the phase is π/2. The slope calculation caused a phase change of
π/2, because it ultimately is a differential operation. A simple way to understand this
is to realize that, given a sinusoid function sin f , its derivative is cos f = sin(f + π/2);
therefore, the differential operation adds a π/2 phase shift to the original frequency.
All of the slope estimators considered in this article produce the appropriate phase
shift, and thus only changes in amplitude are relevant. According to the definition,
the amplitude response at

[
fx, fy

]
is

R_math
[
fx, fy

] =
amplitude

[
fx, fy

]
of S_math

j,k

amplitude
[
fx, fy

]
of zj,k

= 2π (f 2
x + f 2

y )1/2

1

= 2π (f 2
x + f 2

y )1/2

Let fx and fy be independent variables; then this expression becomes the amplitude response
function of the mathematical slope calculation. As mentioned in Section 2.1, the meaning-
ful range of fx and fy is [0,0.5f DEM]. For the sake of simplicity, fx and fy are normalized
by f DEM, so that no matter what DEM resolution is used, the meaningful range of fx and fy
is always [0, 0.5]. This makes f DEM the unit of frequency domain. Because f DEM = 1/h,
this also makes the DEM resolution h the unit of spatial domain. As a result window size
is the only factor that influences neighborhood size. Using this convention fx ∈ [0, 0.5],
fy ∈ [0, 0.5]. It is important to note that although using the sampling frequency f DEM to
normalize the frequency domain is a long-held convention in digital filter analysis, the
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International Journal of Geographical Information Science 7

choice of normalizing factor is arbitrary. However, because normalization merely scales the
horizontal axes of the amplitude response function, conclusions about amplitude response
patterns are unaffected by the normalization value used.

In this particular case, we see that R_math is an increasing function of frequency and
it would be so for any normalizing value. Clearly, the mathematical derivative amplifies
high frequencies (small scales). If applied to the hill and rill examples, the mathematical
slope filter increases the amplitude of the rill by about 4.44 times, whereas the hill will
be attenuated by the factor 0.044. Thus small-scale features will be more dominant in the
resulting slope field.

3. Four raster-based slope gradient calculation methods

Many (perhaps all) raster-based slope estimators are based on approximations to the par-
tial derivatives of Z; thus they are approximations of one sort or another to S_math. Two
strategies are commonly used: finite difference methods and polynomial methods. Among
the four popular slope estimators that this article investigates, Horn’s estimator (1981)
employs the finite difference strategy and Evans’ (1979, 1980), Wood’s (1996), and the
3dMapper®’s (2004) estimators use the polynomial method.

3.1. Horn’s method

Using finite differences to approximate the derivatives, Horn (1981) developed a widely
used estimator based on a 3 × 3 window (see Figure 3a). The partial derivatives are
approximated as follows:

(
∂Z

∂X

)
j,k

= (zj+1,k+1 + 2zj+1,k + zj+1,k−1) − (zj−1,k+1 + 2zj−1,k + zj−1,k−1)

8h

(
∂Z

∂Y

)
j,k

= (zj+1,k+1 + 2zj,k+1 + zj−1,k+1) − (zj+1,k−1 + 2zj,k−1 + zj−1,k−1)

8h

where h is again the DEM cell size in units of z. This method is used by ArcGIS® and
therefore might be the most widely applied in GIS applications.

     

     

     

     

     

z
j-n,k-n

z
j,k-n

z
j+n,k-n

z
j-n,k

z
j-n,k+n

z
j,k+n

z
j+n,k

z
j+n,k+n

z
j,k

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

   

   

   

z
j-1,k-1

z
j,k-1

z
j+1,k-1

z
j-1,k

z
j,k

z
j+1,k

z
j-1,k+1

z
j,k+1

z
j+1,k+1

X

 

Y
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Figure 3. Roving windows.
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8 J. Gao et al.

Derivation of the amplitude response function for Horn’s method is similar to the
derivation of R_math. Start again with the simplified input terrain. The partial derivatives
are estimated as follows:

(
∂Z

∂X

)
j,k

= {[
exp

(
2π i(fx + fy)

) + 2 exp(2π ifx) + exp
(
2π i(fx − fy)

)]
− [

exp
(
2π i(−fx + fy)

) + 2 exp(−2π ifx)
+ exp

(
2π i(−fx − fy)

)]} · exp
(
2π i(jfx + kfy)

)
/8

(
∂Z

∂Y

)
j,k

= {[
exp

(
2π i(fx + fy)

) + 2 exp(2π ify) + exp
(
2π i(−fx + fy)

)]
− [

exp
(
2π i(fx − fy)

) + 2 exp(−2π ify) + exp
(
2π i(−fx − fy)

)]}
· exp

(
2π i(jfx + kfy)

)
/8

Using the Euler identity sin x = [exp(ix) − exp(−ix)]/(2i) and the identity sin(x + y) =
sin x cos y + cos x sin y, the partial derivatives are simplified:

(
∂Z

∂X

)
j,k

= i

2
sin 2π fx(1 + cos 2π fy) exp

(
2π i(jfx + kfy)

)

(
∂Z

∂Y

)
j,k

= i

2
sin 2π fy(1 + cos 2π fx) exp

(
2π i(jfx + kfy)

)

The amplitude of
[
fx, fy

]
in the slope surface can be written accordingly; and after dividing

by the amplitude in the elevation surface, the amplitude response function of Horn’s slope
estimator can be written as

R_horn = 1

2

{
[sin 2π fx(1 + cos 2π fy)]2 + [sin 2π fy(1 + cos 2π fx)]2

}1/2

where here and throughout the remainder of the article fx ∈ [0, 0.5], fy ∈ [0, 0.5].

3.2. Evans’ method

Evans (1979, 1980) proposed using least squares to compute the coefficients of a quadratic
polynomial which best fits the elevations in a 3 × 3 window, and then using the partial
derivatives of that polynomial to calculate terrain derivatives for the central pixel of the
window. Evans’ approximation of a local surface is in the form z = ax2 + by2 + cxy +
dx + ey + f . The partial derivatives for x and y are then as follows:

∂Z

∂X
= 2ax + cy + d

∂Z

∂Y
= 2by + cx + e

D
ow

nl
oa

de
d 

by
 [

Ji
ng

 G
ao

] 
at

 1
2:

00
 0

1 
M

ar
ch

 2
01

2 



International Journal of Geographical Information Science 9

Since only the slope at the central point of the quadratic surface is of interest, by adopt-
ing a local coordinate system with the origin located at the point of interest, the partial
derivatives can be simplified as follows (given x = y = 0):

∂Z

∂X
= d,

∂Z

∂Y
= e

To solve for the six coefficients of the polynomial, Evans (1979) noted that the
least squares fit for a 3 × 3 window is greatly simplified by the arrangement
of data on the square grid and gave the expressions for the six coefficients.
For slope estimation:

d = (zj+1,k+1 + zj+1,k + zj+1,k−1) − (zj−1,k+1 + zj−1,k + zj−1,k−1)

6h

e = (zj+1,k+1 + zj,k+1 + zj−1,k+1) − (zj+1,k−1 + zj,k−1 + zj−1,k−1)

6h

Evans’ estimator inspired a family of polynomial methods (Hengl and Reuter 2009). One
well-known variation was proposed by Zevenbergen and Thorne (1987), who argued that
if the modeled surface does not coincide with the nine original elevations, it does not
represent the land surface accurately. They then suggested, as an improvement to Evans’
polynomial, a partial quadratic equation which requires nine coefficients. With the nine
data points in a 3 × 3 window, a unique solution of the coefficients ensures fidelity
at each measured pixel; however, this fidelity makes the method sensitive to elevation
errors. Florinsky (1998) found that Evans’ method among three other methods, including
Zevenbergen and Thorne’s, is least affected by elevation errors and is the most accurate,
assuming S_math is the true slope.

The amplitude response function of Evans’ slope estimator can be found similarly as
before, resulting in

R_evans = 1

3

{
[sin 2π fx(1 + 2 cos 2π fy)]2 + [sin 2π fy(1 + 2 cos 2π fx)]2

}1/2

3.3. Wood’s method

Using a fixed 3 × 3 window, the neighborhood size of all the techniques reviewed
above is constrained by the resolution of input DEM. Wood (1996) argued that since
DEM resolution is often arbitrarily defined and not necessarily related to the required
scale of analysis, a fixed 3 × 3 window may not always produce appropriate results.
Given the utility of quadratic parameterization, Wood (1996) then proposed a gener-
alization of Evans’ method where the window is m × m and under user control. His
method uses all the pixels within the m × m window to fit the six coefficients of
Evans’ quadratic polynomial and then calculates terrain derivatives analytically from the
polynomial. The coefficients are solved through six simultaneous equations, which after
simplification are
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10 J. Gao et al.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
x4

j

∑
x2

j y2
j 0 0 0

∑
x2

j∑
x2

j y2
j

∑
x4

j 0 0 0
∑

x2
j

0 0
∑

x2
j y2

j 0 0 0
0 0 0

∑
x2

j 0 0
0 0 0 0

∑
x2

j 0∑
x2

j

∑
x2

j 0 0 0 m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
zjx2

j∑
zjy2

j∑
zjxjyj∑
zjxj∑
zjyj∑
zj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where a to f are the coefficients, xj and yj are the horizontal coordinates of the center of
each pixel in the window, and zj is the elevation of each pixel in the window.

To calculate slope gradient, only coefficients d and e are needed. Without solving the
entire matrix, they can be simply obtained as follows:

d =
∑

zjxj∑
x2

j

, e =
∑

zjyj∑
x2

j

Wood’s method has proven effective in multiscale terrain analysis (Schmidt et al. 2003,
Schmidt and Andrew 2005). It is implemented in the Geographic Resources Analysis
Support System (GRASS GIS®), module r.param.scale (GRASS Development Team
2009). As Wood’s method is a generalization of Evans’ method, the two give exactly the
same results when using a 3 × 3 window (n = 1).

To deduce the amplitude response function for Wood’s slope estimator, the procedure
used above gives

R_wood = 1

(2n + 1)
∑n

j=1 j2

⎧⎪⎨
⎪⎩

⎡
⎣

⎛
⎝1 + 2

n∑
j=1

cos 2π jfy

⎞
⎠ n∑

j=1

(j sin 2π jfx)

⎤
⎦

2

+
⎡
⎣

⎛
⎝1 + 2

n∑
j=1

cos 2π jfx

⎞
⎠ n∑

j=1

(j sin 2π jfy)

⎤
⎦

2
⎫⎪⎬
⎪⎭

1/2

where n determines the window size (m × m = (2n + 1) × (2n + 1))

3.4. 3dMapper®’s method

Wood’s method incorporates the consideration of multiscale analysis, but it is computa-
tionally consuming. Based on its definition, the amount of computation is proportional to
n2. In GRASS GIS®, the maximum window size is limited to 69. However, when work-
ing with high-resolution DEMs, the desired scale may demand a bigger window, and the
computation cost will be extravagant.

3dMapper® (Burt and Zhu 2004), a terrain visualization and mapping program, uses
a method that is both computationally efficient and allows variable neighborhood sizes.
Utilizing Evans’ polynomial for terrain derivative estimation, 3dMapper® lets the user set
a neighborhood size, calculates a window accordingly, and uses pixels at the window cor-
ners and edge mid-points to fit the six coefficients of Evans’ polynomial (see Figure 3b).
Derivatives are then calculated for the central pixel of the window.

The two coefficients needed for slope estimation are
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d = (zj+n,k+n + zj+n,k + zj+n,k−n) − (zj−n,k+n + zj−n,k + zj−n,k−n)

6nh

e = (zj+n,k+n + zj,k+n + zj−n,k+n) − (zj+n,k−n + zj,k−n + zj−n,k−n)

6nh

For 3dMapper®’s method, the amount of computation is constant and independent of n.
The computational requirements are so low that the estimation can be done on the fly in
an interactive environment. As with Wood’s method, the 3dMapper® method is identical
to Evans’ method for a 3 × 3 window (n = 1).

Using the same procedure, one can deduce the amplitude response function for
3dMapper®’s slope estimator:

R_3dMapper = 1

3n

{
[sin 2πnfx(1 + 2 cos 2πnfy)]2 + [sin 2πnfy(1 + 2 cos 2πnfx)]2

}1/2

4. Results and discussion

4.1. Neighborhood size and spatial scale

Figures 4–6 show the amplitude response functions determined in the previous section for
the four slope estimators. In each figure, the two horizontal axes indicate fx and fy, respec-
tively; the vertical axis indicates the amplitude response; and R is plotted as a surface.
As seen in the figures, for all four slope estimators the amplitude response varies strongly
with frequency, and there are spectral regions of high response that appear as one or more
bands or ridges on the surface. The frequencies falling into these bands pass through the
filter more than other frequencies, so they emerge more strongly in the resulting slope
raster. These frequencies therefore correspond to the spatial scale of the calculation.

The figures also show that all four methods depart substantially from the mathemati-
cal definition of slope, with high frequencies attenuated rather than amplified, but there is
no consistency in the amount of attenuation. It should be mentioned that 3dMapper® was
designed for visualization, and that by default the DEM is smoothed by varying amounts
before slope estimates are computed. Because the DEM seen by the program will not have
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Figure 4. Amplitude response surface of Horn’s method.
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Figure 6. Amplitude response surfaces of 3dMapper®’s method and Wood’s method. (When n = 1,
i.e., 3 × 3 window, both methods have the same amplitude response surface as Evans’ method.).
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variance at small scales, the high-frequency peaks in R_3dMapper are somewhat mislead-
ing when the 3dMapper® program itself is used. The plots are, however, a correct depiction
of the slope estimation method alone.

To investigate the relationship between neighborhood size and spatial scale, the fre-
quency of neighborhood size and the passing bands of the slope estimators are compared.
The frequency of a neighborhood size is the reciprocal of the neighborhood size, which is
the same in X and Y owing to the square shape of the window:

fNH−x = fNH−y = 1

Neighborhood Size
= 1

Window Size×h
= 1

Window Size
fDEM

Because the frequency domain has been normalized by f DEM, the normalized frequency of
a neighborhood is simply 1/Window Size.

Figure 7 contrasts the frequency of neighborhood size and the fx = fy transects of
different slope estimators’ amplitude response surfaces. The fx = fy transect is a good indi-
cator of the amplitude response function, because (1) it shows roughly the same trend as
cross-sections in other directions; (2) in so doing one can compare the amplitude response
functions of different methods in one figure; and (3) the frequency of neighborhood size is
on this transect.

As shown in Figure 7, for none of the analyzed slope estimators does the neighborhood
size fall into a major passing band(s). Therefore, the neighborhood size and the spatial
scale are not numerically the same. It is also important to note that neighborhood size
corresponds to only one frequency/scale, while all the frequencies/scales that fall into the
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Figure 7. Amplitude response functions at different window sizes, when f x = f y.
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14 J. Gao et al.

passing band(s) are part of the ‘scale’ of the slope estimator. Thus there is no single scale
that can be associated with an estimator.

4.2. Neighborhood size and scale indices

In order to understand the relationship between neighborhood size and spatial scale, it is
necessary to compare the passing bands of different slope estimators (see Figure 8).

The comparison remains difficult, because the definition of ‘passing’ is application-
specific and can be fuzzy. For some situations, people might want to define passing as
amplitude response greater than 0.5, while for some other situations, 0.8 might be an
appropriate threshold. However, the peaks (maxima) of a curve are objectively defined, so
here the peaks on the fx = fy amplitude response transect (f peak) are used as an admittedly
incomplete indicator for the passing bands of a slope estimator.

Another index for passing scales is suggested by the fact that all of the investigated
estimators depart progressively more from the mathematical derivative as f increases
(Figure 8). One could argue that if a method’s amplitude response is less than half of the
mathematical derivative’s response function, the method is not passing those frequencies.
Therefore one can use the transition frequency f trans, where R(f )/R_math(f ) < 0.5 for all
f > ftrans, as another indicator for the passing band of a slope estimator.

Table 1 lists the frequencies and scales corresponding to these indicators of passing
bands on the amplitude response transects in Figure 8.

As shown in Figure 7 and Table 1, when using the same window size, the peak fre-
quency (f peak), transition frequency (f trans), and widths of passing bands all vary among
different slope estimation methods. When considering f peak, the methods differ in the num-
ber of passing bands. There is obviously no constant multiplier that can convert the window
size to the peak passing scale(s). Even if one considers only f trans, notable differences
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Figure 8. Amplitude response functions of all four methods, when f x = f y.
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Table 1. Window size versus indicators of passing bands on the f x = f y transect.

Method
Window

size
Neighborhood

size f peak

Scale of
f peak f trans

Scale of
f trans

Horn 3 × 3 3 h 0.168 f DEM 5.95 h 0.199 f DEM 5.03 h

Evans 3 × 3 3 h 0.149 f DEM 6.71 h 0.179 f DEM 5.59 h

3dMapper 5 × 5 5 h 0.075 f DEM 13.33 h 0.089 f DEM 11.24 h
n = 2 0.425 f DEM 2.35 h

7 × 7 7 h 0.051 f DEM 19.61 h 0.060 f DEM 16.67 h
n = 3 0.282 f DEM 3.55 h

0.384 f DEM 2.60 h

19 × 19 19 h 0.018 f DEM 55.56 h 0.020 f DEM 50.00 h
n = 9 0.093 f DEM 10.75 h

0.129 f DEM 7.75 h
0.204 f DEM 4.90 h
0.240 f DEM 4.17 h
0.315 f DEM 3.17 h
0.351 f DEM 2.85 h
0.426 f DEM 2.35 h
0.462 f DEM 2.16 h

Wood 5 × 5 5 h 0.085 f DEM 11.76 h 0.102 f DEM 9.80 h
n = 2

7 × 7 7 h 0.060 f DEM 16.67 h 0.072 f DEM 13.89 h
n = 3

19 × 19 19 h 0.022 f DEM 45.45 h 0.026 f DEM 38.46 h
n = 9

between methods are seen. It is interesting to note that for all methods the spatial scale
of the lowest f peak is somewhat larger than or very close to twice the neighborhood size
and f trans is not too different from the lowest f peak. Of course, if one had used a transition
threshold different than 0.5, this would not be so. All of the above shows the inability of
window size to express the complicated nature of spatial scale.

In addition, the same neighborhood size can result from different combinations of DEM
resolution and window size. For example, using a 3 × 3 window on a 9 m resolution DEM
and using a 9 × 9 window on a 3 m resolution DEM both generate a neighborhood size of
27 m. However, it has been shown that a 3 × 3 window and a 9 × 9 window can have very
different amplitude response functions, even for the same estimation method. Thus neither
window size nor the equivalent neighborhood size can quantitatively indicate the scale of
slope estimation.

Furthermore, different slope filters react differently to change in window size. First,
look at f peak. For Wood’s method, increasing the window size moves the major (peak)
passing band to lower frequencies as shown in Figures 7 and 8. Table 2 confirms this
and reveals that the scale of the peak frequency is close to 2h(2n + 1), that is, the scale
is nearly twice the neighborhood size for this range of n. Indeed, plotting the peak scale
values (Figure 9) suggests a linear relationship and fitting a least squares line gives

peak passing scale(Wood,fx=fy) = h(4.832n + 2.152) = 2h(2.416n + 1.076)

As expected, the greater the window size the greater is the peak passing scale of the
estimation.
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Table 2. Window size versus indicators of passing bands on the fx = fy transect for Wood’s method.

Window size f peak Scale of f peak f trans Scale of f trans

3 × 3, n = 1 0.149 f DEM 6.71 h 0.179 f DEM 5.59 h
5 × 5, n = 2 0.085 f DEM 11.76 h 0.102 f DEM 9.80 h
7 × 7, n = 3 0.060 f DEM 16.67 h 0.072 f DEM 13.89 h
9 × 9, n = 4 0.046 f DEM 21.74 h 0.056 f DEM 17.86 h
11 × 11, n = 5 0.038 f DEM 26.32 h 0.045 f DEM 22.22 h
13 × 13, n = 6 0.032 f DEM 31.25 h 0.038 f DEM 26.32 h
15 × 15, n = 7 0.028 f DEM 35.71 h 0.033 f DEM 30.30 h
17 × 17, n = 8 0.024 f DEM 41.67 h 0.029 f DEM 34.48 h
19 × 19, n = 9 0.022 f DEM 45.45 h 0.026 f DEM 38.46 h
21 × 21, n = 10 0.020 f DEM 50.00 h 0.024 f DEM 41.67 h

For 3dMapper®’s method, as the window size increases, the amplitude response func-
tion shows more peak passing bands; all of them are of the same height and are evenly
distributed throughout the domain of R (see Figures 6 and 7). Therefore, larger window
sizes are not associated with greater peak scales and there is no single dominant peak.

However, using f trans to indicate the passing band gives a different picture. In particular,
for both Wood’s and 3dMapper®’s methods, the scale of f trans increases monotonically with
n (see Figure 9 and Tables 2 and 3), and the increasing rates are not greatly different for
the two estimators.

These results demonstrate that, with either indicator of passing bands, different slope
filters react differently to changing window size. So, both the window size and method
must be specified in order to know the spatial scales passed by the filter. At the same time,
using different indicators of passing bands gives different impressions about the scale asso-
ciated with a particular neighborhood–method combination. Therefore, no single number
will wholly describe the scale, and one must examine the amplitude response function to
completely understand the matter.
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Table 3. Window size versus f trans on the f x = f y transect for 3dMapper®’s method.

Window size f trans Scale of f trans

3 × 3, n = 1 0.179 f DEM 5.59 h
5 × 5, n = 2 0.090 f DEM 11.11 h
7 × 7, n = 3 0.060 f DEM 16.67 h
9 × 9, n = 4 0.045 f DEM 22.22 h
11 × 11, n = 5 0.036 f DEM 27.78 h
13 × 13, n = 6 0.030 f DEM 33.33 h
15 × 15, n = 7 0.026 f DEM 38.46 h
17 × 17, n = 8 0.023 f DEM 43.48 h
19 × 19, n = 9 0.020 f DEM 50.00 h
21 × 21, n = 10 0.018 f DEM 55.56 h

For a particular application, analysts should pick the indicator(s) that best fit their
needs. The following sections of this article use the actual value of the amplitude response
in defining passing bands. Alternatively, an analyst might prefer to use the relative
definition.

4.3. Selecting an appropriate estimator

Each of the four amplitude response functions contains three independent variables: f x, f y,
and the window size n. In practice the GIS analyst usually has a target scale or scales in
mind. By calculating the reciprocal of the desired scale(s), one derives the corresponding
desired frequency(s). With these and the DEM resolution, the normalized f x and f y are
known. Inspection of Figure 8 and/or 4–6 will show the suitability of a given estimator for
analysis at the chosen scale(s).

For example, if the desired normalized frequency is f x = f y = 0.05, the best window
size for 3dMapper®’s method is 7 × 7, but this estimator may amplify undesirable high-
frequency information if not smoothed beforehand. By contrast, Wood’s method with a
7 × 7 window passes the desired frequency reasonably well and notably reduces high
frequencies; however, the computational cost is much higher.

One should also consider the scales of variability within the DEM. The amplitude of
a frequency in the slope surface is the product of the amplitude of that frequency in the
input DEM and the amplitude response of the slope filter at that frequency. If either is
near zero, the product will obviously be trivial. Therefore, if the input DEM contains lit-
tle high-frequency information, one could exploit 3dMapper®’s computational advantage
without worrying about having multiple passing bands. On the other hand, if the input
DEM contains considerable small-scale variability, Wood’s method is justified despite its
higher computational cost.

To give another example, none of the estimators is satisfactory for a desired peak pass-
ing frequency of 0.1. Using larger windows will not lead to better results, because the
major passing band of Wood’s method will shift to lower frequencies, and 3dMapper®’s
method will introduce more peak passing bands at high frequencies. Remembering that for
a 3 × 3 window Wood’s and 3dMapper®’s methods are equivalent to Evans’ method, and
seeing that there is no possible window size between 3 × 3 and 5 × 5, the desired scale
fx = fy = 0.1 cannot be the peak passing scale with these existing slope estimators. In other
words, for some scales no variant of these methods can produce satisfactory results.
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In light of the limitations seen with existing estimators, it seems natural to consider the
question of what constitutes an ideal method.

4.4. Ideal slope filter

In Section 2.3, the amplitude response function of the mathematical slope filter was
derived. Along the fx = fy = f transect, the response is

R_math(fx=fy) = 2
√

2π f

As shown, the amplitude response increases linearly with frequency, and frequencies
greater than (2

√
2π )−1 ≈ 0.11 are amplified. For f = 0.25, the amplification is greater

than a factor of 2. Thus the mathematical derivative can be considered as a high-pass fil-
ter. Although R_math provides useful hints for how a differential filter should behave, one
might not want to completely match it with an actual estimator, because high frequen-
cies are often considered noise in measurements. So, an ideal slope estimator might look
something like the filter seen in Figure 10. The estimator would closely approximate the
derivative for frequencies less than a certain value f cutoff and remove the frequencies greater
than f cutoff (Hamming 1989).

None of the four examined estimators has quite the shape of the ideal slope filter.
Horn’s method has the same general pattern as the ideal slope filter, but the transition band
from the peak passing frequency to the cutoff frequency is far too wide. Evans’ method
has a narrower primary transition band, but as a trade-off it has a secondary passing band
at higher frequencies. 3dMapper®’s method has multiple peak passing bands and they all
reach the same response height. Wood’s method is the most similar to the ideal among the
four: as the window size increases, the peak passing band moves to lower frequencies and
the transition band becomes narrower.
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Figure 10. f x = f y transect of the amplitude response function of an ‘ideal’ slope estimator.
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In addition, none of the four methods has complete flexibility in changing the cutoff
frequency. Some applications might call for the estimator to be near the mathematical
definition’s response function for only a range of frequencies in the middle of the spectrum,
with frequencies below and above that range removed. None of the four methods discussed
come close to exhibiting such behavior.

Ideally one would be able to define a desired response function (i.e., the relevant spatial
scales) and also specify the associated computational burden one is willing to pay. In the
case of window methods, this amounts to specifying the neighborhood size n. This is the
province of digital filter design, for which there exists a rich literature (see, for example,
Parks and Burrus 1987, Schlichthärle 2000, De Freitas 2005). Applying that theory to GIS
slope estimation seems a worthy endeavor.

5. Conclusions

This research demonstrated that analyzing the amplitude response function of a slope esti-
mator is an effective way to investigate the relationship between the window size (which
is associated with the neighborhood size) and the implicit scale of analysis. Examination
of four popular existing slope estimators showed that neighborhood size and spatial scale
of slope estimation are not numerically the same and that there is no uniform scaling from
one to another. In fact, the definition of passing band (scale) is application-specific, and dif-
ferent indicators may give different impressions. Thus there is no single number that can
completely describe a method–neighborhood combination. One must examine the ampli-
tude response function to fully understand the estimator. That said, in comparison with the
mathematical definition of ‘slope’, all of the investigated methods suppress small scales,
but there is no consistency with regard to relative attenuation. It was also shown that know-
ing the response signature of different method–neighborhood combinations can be helpful
in selecting an estimator to accomplish a particular goal. However, given the limitations
of existing estimation methods, tools should be developed that will allow an analyst to
devise a slope operator that comes as close as possible to a target response function at an
affordable computational cost.

Note
1. Note that in this article ‘scale’ is defined as in Earth sciences and physical sciences, for

example, as the characteristic length scale in turbulence theory, or as ‘downscaling’ in climate
studies. This differs from cartographic use, where ‘scale’ is the ratio of map to Earth distance.
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