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Abstract: Theoretical Maximum Speedup Ratio (TMSR) can be used as a goal for 14�

improving parallel computing methods for distributed hydrological models. Different 15�

types of distributed hydrological models need different TMSR estimation methods 16�

because of the different computing characteristics of models. Existing TMSR 17�

estimation methods, such as those for sub-basin based distributed hydrological models, 18�

are inappropriate for grid-based distributed hydrological models. In this paper, we 19�

proposed a TMSR estimation method suitable for grid-based distributed hydrological 20�

models. With this method, TMSRs for hillslope processes and channel routing 21�

processes are calculated separately and then combined to obtain the overall TMSR. A 22�



branch-and-bound algorithm and a critical path heuristic algorithm are used to 1�

estimate TMSRs for parallel computing of hillslope processes and channel routing 2�

processes, respectively. The overall TMSR is calculated according to the proportions 3�

of computing these two types of processes. A preliminary application showed that the 4�

more the number of sub-basins, the larger the TMSRs and that the compact 5�

watersheds had larger TMSRs than the long narrow watersheds. 6�

7�
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10�

1. Introduction  11�

Theoretical Maximum Speedup Ratio (TMSR) in parallel computing of 12�

distributed hydrological models is defined as the potential maximum speedup ratio 13�

value that can be obtained under a given number of processors (Wang et al., 2012). It 14�

can be used as a goal for improving parallel computing methods for distributed 15�

hydrological models. Different types of distributed hydrological models need different 16�

TMSR estimation methods because of the different computing characteristics of 17�

models. 18�

Currently, there has been little published work on estimating TMSR for parallel 19�

computing of grid-based distributed hydrological models, which are an important type 20�

of hydrological model (Borah and Bera, 2004). Existing related researches mainly 21�

focus on TMSR estimation for sub-basin based distributed hydrological models 22�



(Apostolopoulos and Georgakakos, 1997; Li et al., 2011; Wang et al., 2012). For 1�

example, Apostolopoulos and Georgakakos (1997) proposed a method for estimating 2�

TMSR by representing sub-basins in a watershed using Directed Acyclic Graph 3�

(DAG). Li et al. (2011) and Wang et al. (2012) estimated TMSR for parallel 4�

computing of sub-basin based distributed hydrological models by analyzing the basin 5�

width function. 6�

These TMSR estimation methods for sub-basin based distributed hydrological 7�

models all assume that the amounts of computation for each sub-basin are the same 8�

(Wang et al., 2012), which is not true for grid-based distributed hydrological models 9�

as the numbers of grid cells in each sub-basin vary widely. So existing TMSR 10�

estimation methods for sub-basin based distributed hydrological models are 11�

inappropriate for grid-based distributed hydrological models. The objective of this 12�

paper is to propose a new TMSR estimation method suitable for grid-based distributed 13�

hydrological models considering their computing characteristics. 14�

2. Basic idea 15�

This paper also uses sub-basin as the basic unit for parallel computing because 16�

communication among sub-basins is low and sub-basin based parallel computing has 17�

been proved to be effective (Vivoni et al., 2011; Wang et al., 2011). According to the 18�

computation characteristics processes in sub-basins can be divided into two types: 19�

hillslope processes (such as infiltration and evaporation) and channel routing 20�

processes (such as channel flow and sediment routing). For hillslope processes 21�

calculations are independent among sub-basins while for channel routing processes 22�



calculations for one sub-basin depends on the calculation results of its upstream 1�

sub-basins. Thus, different strategies should be adopted for parallel computing of 2�

these two types of processes. Different TMSR estimation methods should also be used 3�

accordingly. Our idea is first to estimate the TMSRs for these two types of processes, 4�

respectively and then combine them to obtain an overall TMSR.  5�

3. TMSR estimation method 6�

3.1 Assumptions 7�

The assumptions for the TMSR estimation method in this paper are as follows: 8�

(1) Groundwater follows the direction of overland flow and there is only 9�

interaction between upstream and downstream sub-basins (Li et al., 2011). 10�

(2) Communication overhead among sub-basins is low, so it can be ignored for 11�

simplicity (Li et al., 2011; Wang et al., 2012). 12�

3.2 Estimation process 13�

Step 1: Estimating TMSR for parallel computing of hillslope processes 14�

For parallel computing of hillslope processes, due to the fact that there are no 15�

dependencies among sub-basins, the goal of task scheduling is to assign n16�

independent tasks (one task for each sub-basin) to m processors with the objective of 17�

minimizing execution time. The execution time of hillslope processes for a sub-basin 18�

can be represented by the number of hillslope cells in this sub-basin because generally 19�

the more the number of cells, the more the execution time there will be. Thus, the 20�

serial computing time can be represented by the total number of hillslope cells in the 21�

watershed.  22�



Estimating TMSR in this situation is a classical Multiprocessor Scheduling 1�

Problem. In this paper, a branch-and-bound algorithm for exact solution of the 2�

problem (Dell’Amico and Martello, 1995) is used to get the minimum execution time 3�

of parallelizing hillslope processes under m processors. Then TMSR for hillslope 4�

processes is calculated by dividing the serial computing time by the minimum parallel 5�

computing time. 6�

Step 2: Estimating TMSR for parallel computing of channel routing processes 7�

According to assumption (1) the dependence among sub-basins for calculations of 8�

channel routing processes can be represented by a tree-structured DAG 9�

(Apostolopoulos and Georgakakos, 1997; Li et al., 2010) (Fig. 1). Each node in the 10�

DAG represents the calculation task of channel routing processes for a sub-basin. The 11�

goal of task scheduling for channel routing processes is to distribute tasks in the DAG 12�

among a given number of processors to achieve minimum execution time. The 13�

execution time of channel routing processes for a sub-basin can be represented by the 14�

number of channel cells in this sub-basin and the serial computing time can be 15�

represented by the total number of channel cells in the watershed. 16�

(Fig. 1 is about here) 17�

The scheduling problem for this case belongs to the static task scheduling 18�

problems and the critical path heuristic algorithm has been proved to be effective on 19�

solving such problems (Shirazi et al., 1990). This paper uses the critical path heuristic 20�

algorithm to obtain the minimum execution time of channel routing processes 21�

parallelized on a given number of processors. To illustrate this algorithm, some terms 22�



are defined as below. 1�

(1) The “accumulation time” of a processor Pi, AT(Pi), is the total time needed for 2�

a processor to finish all the tasks assigned to it. 3�

(2) A node is said to be “mature” if it is ready to be assigned to a processor, that 4�

is, this node has no precedent nodes or all its precedent nodes have been 5�

already completed. 6�

(3) The “exit path” of a node means the path from this node to the exit node 7�

(representing the outlet sub-basin) and the length of exit path is the sum of 8�

execution time of every node in this path.. 9�

The longest exit path (the critical path, e.g. G-D-C-A in Fig.1) determines the 10�

minimum possible execution time for parallel computing. So the basic principle of 11�

this algorithm is to assign the mature node with the largest exit path length at current 12�

time. Load balance is achieved by assigning this mature node to the processor with 13�

the minimum accumulation time. The steps of the algorithm are given as follows: 14�

(1) Calculate the length of exit path for each node in the DAG. This can be 15�

accomplished by a recursive algorithm:  16�

a) The length of exit path for the exit node is equal to the execution time of 17�

this node; 18�

b) The length of exit path for other nodes is equal to the execution time of 19�

this node plus the exit path length of its downstream node. 20�

(2) Assign tasks following the steps below: 21�

a) Choose the processor with the minimum accumulation time, Pmin;22�



b) Find a mature node with the largest exit path length; 1�

c) If this mature node can be found, assign this node to Pmin;2�

d) If there is no mature node available, assign a dummy node to Pmin. The 3�

length of the dummy node is equal to the difference between AT(Pi) and 4�

AT(Pmin). Here AT(Pi) is the smallest accumulation time that is strictly 5�

larger than AT(Pmin).6�

e) Repeat a)-d) until all tasks are completed. 7�

When the minimum parallel computing time is obtained using the above 8�

algorithm TMSR for channel routing processes is calculated by dividing the serial 9�

computing time by the minimum parallel computing time. 10�

Step 3: Estimating the overall TMSR 11�

The overall TMSR can be calculated by combing the TMSRs of hillslope 12�

processes and of channel routing processes: 13�

��                        (1) 14�

where Rall is the overall TMSR; Rhs and Rch are the TMSRs for hillslope processes and 15�

channel routing processes, respectively; phs and pch are the proportions of computing 16�

hillslope processes and channel routing processes in the total amount of computations 17�

respectively. phs + pch = 1. The values of phs and pch are determined by the simulation 18�

methods used for hillslope and channel processes and these values can be determined 19�

by profiling model simulations using a performance profiler (for example, Intel®20�

VTune™). 21�



4 Application 1�

The proposed TMSR estimation method was implemented using the Python 2.6 2�

programming language. Six watersheds in China (the Qingshuihe watershed in Hebei 3�

province and its two sub-watersheds, the Fenkeng watershed in Jiangxi province and 4�

its two sub-watersheds) were selected as the study area (Fig. 2). The area, shape and 5�

sub-basin division information of these watersheds is shown in Table 1. The basin 6�

elongation ratio was adopted to represent the shape of watershed and it was defined as 7�

the ratio of the diameter of a circle with the same area as the basin to the maximum 8�

basin length (Schumm, 1956). The basin elongation ratio is large for compact 9�

watersheds (e.g.  Fenkeng1) and small for long narrow watersheds (e.g. Qingshuihe2 10�

and Fenkeng2). The numbers of sub-basins were selected in order to represent the 11�

range from 40 to 500, a range determined empirically. The 90m resolution SRTM 12�

(Shuttle Radar Topography Mission) DEM data were used for the TMSR calculation 13�

of these six watersheds with different numbers of sub-basins. 14�

(Fig. 2 is about here) 15�

(Table 1 is about here) 16�

TMSRs for different numbers of processors form a TMSR curve (as shown in Fig. 17�

3). It should be pointed out that TMSRs in these curves are theoretical values 18�

calculated by Equation (1) rather than experimental values by running a real 19�

distributed hydrological model. Fig. 3 shows the estimated TMSR curves for parallel 20�

computing of both sub-processes (i.e. hillslope and channel routing processes) and the 21�

model in the Qingshuihe watershed when the number of sub-basins is 101. All TMSR 22�



curves reached plateaus after the numbers of processes exceeded certain thresholds. 1�

These thresholds represent the maximum numbers of processors that parallel 2�

computing of distributed hydrological models can make use of. Parallelizing channel 3�

routing processes has much smaller TMSRs than parallelizing hillslope processes, so 4�

reducing pch improves overall TMSRs dramatically. 5�

(Fig. 3 is about here) 6�

Fig. 4 shows the estimated TMSRs under enough number of processors for 7�

different numbers of sub-basins in the six watersheds assuming pch is 10%. It is 8�

obvious that the more the number of sub-basins, the larger the TMSRs were. For the 9�

hillslope processes, the relationships between TMSR and number of sub-basins were 10�

quantitatively similar for watersheds with different areas and shapes. This reflected 11�

the similarities among all watersheds to some extent. Meanwhile for the channel 12�

routing processes and the whole model, the relationships between TMSR and number 13�

of sub-basins were affected by the shapes of watersheds. Generally, TMSRs are larger 14�

for compact watersheds (e.g. Fenkeng2)  than for long narrow watersheds (e.g. 15�

Qingshuihe1 and Fenkeng1). 16�

(Fig. 4 is about here) 17�

5 Conclusion 18�

This paper proposed a TMSR estimation method for parallel computing of 19�

grid-based distributed hydrological models. In this method, TMSRs for hillslope 20�

processes and channel routing processes are calculated separately. Then they are 21�

combined to obtain overall TMSR. A preliminary application showed that the more 22�



the number of sub-basins, the larger the TMSRs and that the compact watersheds had 1�

larger TMSRs than the long narrow watersheds. 2�
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Figure List 1�

Fig. 1: Example of representing the dependence relationships among sub-basins (a) 2�

using a tree-structured Directed Acyclic Graph (b). Node A is the exit node, 3�

representing the outlet sub-basin. The first number in a DAG node represents the 4�

execution time of corresponding channel routing processes and the second number in 5�

a DAG node represents the exit path length correspondingly. Fig. 1(a) was modified 6�

from Wang et al. (2010). 7�

Fig.2: Location, DEM, and the drainage network of the study areas, including the 8�

Qingshuihe watershed and its two sub-watersheds (Qingshuihe1 and Qingshuihe2), 9�

the Fenkeng watershed and it two sub-watersheds (Fenkeng1 and Fenkeng2).  10�

Fig. 3: Estimated TMSR curves for parallel computing of both sub-processes and the 11�

model in Qingshuihe watershed when the number of sub-basins is 101. “Hillslope 12�

processes” and “Channel routing processes” in the legend means the TMSR curves for 13�

parallel computing of hillslope processes and channel routing processes, respectively. 14�

“Overall” means the overall TMSR curve of the model. “pch” means the proportion of 15�

computing channel routing processes in the total amount of computations.�16�

Fig. 4: Estimated TMSRs under enough number of processors for different numbers 17�

of sub-basins in the six watersheds assuming pch (the proportion of computing channel 18�

routing processes in the total amount of computations) is 10%. 19�

20�

Table List 21�

Table 1: Area, shape and sub-basin division information of the six watersheds. 22�



1�

Table 1 2�

Area, shape and sub-basin division information of the six watersheds. 3�

Name Area (km2) Basin elongation ratio List of sub-basin division numbers 
Qingshuihe 2178 0.5 [55, 101, 203, 277, 491] 
Qingshuihe1 231 0.56 [53, 134, 253, 346, 498] 
Qingshuihe2 354 0.38 [45, 95, 227, 324, 507] 
Fenkeng 6323 0.47 [57, 103, 193, 341, 501] 
Fenkeng1 373 0.62 [45, 95, 235, 324, 487] 
Fenkeng2 475 0.36 [45, 79, 193, 257, 476] 
�4�

� A�new�method�for�estimating�theoretical�maximum�speedup�ratio�was�proposed.�5�

� TMSRs� for� hillslope� processes� and� channel� processes� were� estimated�6�

respectively.�7�

� Channel�processes�have�much�smaller�TMSRs�than�hillslope�processes.�8�

� For�one�watershed,�the�more�the�number�of�sub�basins,�the�larger�the�TMSRs.�9�

� The�compact�watersheds�had�larger�TMSRs�than�the�long�narrow�watersheds.�10�
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