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Sampling design plays an important role in spatial modeling. Existing methods often
require a large amount of samples to achieve desired mapping accuracy, but imply con-
siderable cost. When there are not enough resources for collecting a large set of samples
at once, stepwise sampling approach is often the only option for collecting the needed
large sample set, especially in the case of field surveying over large areas. This arti-
cle proposes an integrative hierarchical stepwise sampling strategy which makes the
samples collected at different stages an integrative one. The strategy is based on sam-
ples’ representativeness of the geographic feature at different scales. The basic idea
is to sample at locations that are representative of large-scale spatial patterns first and
then add samples that represent more local patterns in a stepwise fashion. Based on the
relationships between a geographic feature and its environmental covariates, the pro-
posed sampling method approximates a hierarchy of spatial variations of the geographic
feature under concern by delineating natural aggregates (clusters) of its relevant envi-
ronmental covariates at different scales. The natural occurrence of such aggregates is
modeled using a fuzzy c-means clustering method. We iterate through different num-
bers of clusters from only a few to many more to be able to reveal clusters at different
spatial scales. At a particular iteration, locations that bear high similarity to the cluster
prototypes are identified. If a location is consistently identified at multiple iterations,
it is then considered to be more representative of the general or large-scale spatial pat-
terns. Locations that are identified less during the iterations are representative of local
patterns. The integrative stepwise sampling design then gives higher sampling priority
to the locations that are more representative of the large-scale patterns than local ones.
We applied this sampling design in a digital soil mapping case study. Different repre-
sentative samples were obtained and used for soil inference. We started with samples
that are the most representative of the large-scale patterns and then gradually included
the samples representative of local patterns. Field evaluation indicated that the additions
of more samples with lower representativeness lead to improvements of accuracy with
a decreasing marginal gain. When cost-effectiveness is considered, the representative
grade could provide essential information on the number and order of samples to be
sampled for an effective sampling design.
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2 L. Yang et al.

1. Introduction

Spatial sampling is an essential step in modeling and mapping the spatial distribution of
many geographic features. A few geographic features, such as vegetation cover, can be
observed and mapped using remote-sensing techniques (Miao et al. 2012). For many oth-
ers such as soil properties or soil classes, however, the only feasible way to map their spatial
variations is to collect point sample data in the field and conduct interpolation or predictive
mapping (Zhu et al. 2001, 2008). Sampling design, therefore, has a significant impact on
the accuracy of the mapping results (Brus and de Gruijter 1997, Gregoire and Valentine
2008, Brus and Noij 2008, Heim et al. 2009). In this article, we are talking about geo-
graphic features which usually vary continuously over space and the spatial distribution of
which is highly related with their environmental factors (environmental covariates).

Classical sampling methods (such as simple random sampling, systematic sampling,
and stratified sampling) are widely used for geographic survey as the designs are the most
straightforward (Cochran 1977; Kish 1985; Grinand et al. 2008). These sampling strate-
gies are mainly based on probability theory that allows unbiased estimates of the statistical
parameters, such as population or mean (Minasny and McBratney 2006). Spatial inter-
polation is usually conducted when the collected sampling points are used for mapping
geographic features. However, it often requires a large number of samples to comprehen-
sively capture the spatial variation of geographic features. It thus imposes a high cost on
studies that involve a large area since field sampling is often labor-intensive and expensive.

Sampling based on geostatistics has also been adopted in many studies, which draw
samples by specifying a covariance-based criterion (McBratney and Webster 1981, Haining
2003, Simbahan and Dobermann 2006, Zhu and Stein 2006, Delmelle and Goovaerts
2009). The configuration of sample locations is designed to minimize the average or
maximum of the prediction variance over a region, which is determined through a semi-
variogram. The construction of a semi-variogram usually requires a prior sampling which
also requires a large number of samples (Simbahan and Dobermann 2006) as a random
or systematic sampling would do. It has been simulated that at least 100–150 samples
are needed to estimate a semi-variogram effectively (Webster and Oliver 1992). Another
limitation of this method of sampling is that it is often difficult to verify the stationary
assumption, the basis of the geostatistical method, in many complicated field conditions.

Recent applications have started to make use of readily available secondary informa-
tion to assist sampling designs (Minasny and McBratney 2006, Brus and Heuvelink 2007,
Zhu et al. 2010, Yang et al. 2010, Qin et al. 2011b). Secondary information refers to vari-
ables which are often called environmental covariates that spatially correlate with the target
geographic features, and can be obtained from satellite imagery, aerial photography, dig-
ital elevation models, soil sensors, and so on. Although environmental covariates can be
helpful when designing sampling schemes, most of the sampling designs are still derived
using classical sampling methods or geostatistical techniques (Minasny and McBratney
2006, Minasny et al. 2007), and thus possess the limitations mentioned in the above two
paragraphs.

When costs associated with field sampling become impractically high in some applica-
tions, one may consider dissipating the costs by collecting a number of required samples
using resources available for the time being and augmenting these with further samples
when more resources become accessible in the future. This is achieved via stepwise
or multiple-stage sampling (Beckett 1968, Cochran 1977, Mckenzie and Ryan 1999).
An important issue for stepwise sampling is how to design samples for each stage effec-
tively. This article presents an efficient stepwise sampling strategy, which is to collect
samples that are most highly representative of the area of interest first, and then collect
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International Journal of Geographical Information Science 3

samples that are less representative. Samples collected later thus provide valid complemen-
tary information on the spatial variation of the geographic features of the samples collected
first. All samples in a hierarchy of representativeness grade are designed at the beginning,
which is why we call this method an integrative sampling design. Section 2 introduces the
basic idea and procedure of the method. It is then illustrated with a case study on sampling
for digital soil mapping. The proposed method is assessed and the results are discussed in
the end.

2. Methodology

2.1. The basic idea

The spatial distribution of geographic features is often highly correlated with the distri-
bution of their environmental covariates, and usually is a result of the spatial process of
formation and development of geographic features involving these environmental covari-
ates. For example, soil has long been considered as the result of the interaction of its
formative environment, including climate, parent material, terrain, and vegetation con-
ditions (Jenny 1980, Hudson 1992). Therefore, soil distribution has been mapped from
the distribution of environmental covariates such as bedrock, slope gradient and aspect,
drainage conditions, and so on.

Inherent spatial autocorrelation of the environmental covariates relevant to the distri-
bution of a target geographic feature could lead to the development of natural aggregates
or clusters of the target geographic feature spatially. As spatial autocorrelation of envi-
ronmental covariates happens across different scales, naturally occurring clusters of the
geographic feature under concern may exist at multiple scales in a hierarchy: from those
representing large-scale spatial patterns (existing at a large spatial extent) to those repre-
senting very local ones. For instance, in landform classification, large ridges, side slopes,
and valleys may be the main categories on a large scale, existing on the top of a hierarchy
across scales. Small draws, convex knobs, on the main ridges, along the side slopes or in
the valleys, on the other hand, represent local variations and thus are categories on a lower
tier in the hierarchy (MacMillan and Shary 2009).

The basic idea of our stepwise sampling design is to extract samples top-down through
such hierarchy of spatial clusters. When sampling at a particular scale, samples are to
be chosen based on how representative they are to the prototypes of the clusters/classes.
In a previous study (Zhu et al. 2010), we developed a methodology to generate clusters
from environmental covariates to approximate the naturally occurring aggregates in the
target geographic feature. The number of clusters generated has been found in a previous
study (Yang et al. 2010) to correlate with different spatial scales in a hierarchy generally.
While a few clusters could be generated to represent the main patterns on a large scale on
the top of the hierarchy, increasing the number of clusters leads to the emergence of new
patterns which occur at finer scales. If we take landform classification as an illustration
again, three clusters could be generated to represent the main ridge, side slope, and valley
features. When we increase the number of clusters to four or five, the clusters generated
could include now typical ridge, valley, as well as some local patterns such as a draw
along the main slope, a convex shoulder, or a relatively flat ridge top. In other words,
the dominant large-scale patterns could always be detected when the number of clusters
is small and large, but small-scale local patterns can only be revealed when the number
of clusters is larger. This prompted us to approximate the hierarchy of patterns based on
the repeated occurrence of such patterns when we change the number of clusters to be
generated. We can thus design samples representing large-scale variations by identifying
locations which are consistently showing up as part of the large-scale patterns and samples
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4 L. Yang et al.

representing local-scale variations by identifying locations which are only showing up as
part of local-scale patterns in a stepwise manner based on clustering analysis of multiple
numbers of clusters.

2.2. The sampling design

We employ the following three measures to organize the sample candidates into a hierar-
chy based on which sampling will be performed: representative grade, representative area,
and representative level (membership). Representative grade is the frequency with which a
location emerges in a cluster analysis below. Representative area refers to the spatial cov-
erage of a given pattern that indicates certain class configuration under one representative
grade, and the representative level is the level or degree of specific locations belonging to
a given pattern, which is determined by membership values to classes in the pattern. Based
on this idea, the sampling design consists of two steps as follows.

2.2.1. Determination of hierarchy

2.2.1.1. Computation of representative grade. The hierarchy of a representative grade
for candidate samples is determined through a cluster analysis using a fuzzy c-means
(FCM) classifier (Bezdek et al. 1984). FCM is employed to generate representative
grades firstly based on the environmental variables (covariates) relevant to the target
geographic features. FCM is a classifier that first optimally partitions a data set (such as
the environmental database) into a given set of classes and then computes the membership
of an instance associated with each class (Bezdek et al. 1984). The FCM classifier is
performed in multiple iterations with each iteration identifying a different number of
clusters. For example, FCM can be performed to identify 4–10 clusters for a given area.
In this case, seven iterations will be performed with Iteration 1 for identifying four clusters
and Iteration 2 for five clusters, and so on. Each of these iterations is referred to as ‘x
cluster iteration,’ where x is the number of clusters to be extracted. The rule to choose
a range of clustering iterations is to choose a range which could cover both large-scale
and local patterns of spatial variation of a geographic feature in the study area. To find
an appropriate range, one can test a number of ranges of clustering iterations and look
into the scale ranges of the generated environmental clusters. To test how different ranges
of clustering iterations will influence the designed sampling scheme, we conducted a
sensitivity analysis in the case study in Section 3.5.

The results of FCM under x cluster iteration are as follows: (1) centroids of the x
classes, a cluster centroid is a vector of values of environmental covariates, which is com-
puted as the mean of all input data weighted by their membership to the given class and
(2) fuzzy membership maps of the study area associated with x classes, in which fuzzy
membership values range continuously between 0 and 1, with 0 indicating no membership
or completely different from the class prototype and 1 indicating a full membership or
total resemblance to the class prototype. Representative locations of a particular class are
those bearing high membership values to this class. Operationally, we can define a mem-
bership threshold as a cut off value which is usually greater than 0.5 (Yang et al. 2010)
and then reclassify the fuzzy membership maps into only 0 and 1 values, with 1 indicat-
ing representative locations (of any class) and 0 indicating nonrepresentative ones. For
each iteration, all the fuzzy membership maps are converted to 0–1 maps in this way for
identifying representative locations for each class. There is no certain objective way to
define a threshold. We conducted a sensitivity analysis on the membership threshold in the
case study in Section 3.5.
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International Journal of Geographical Information Science 5

Representative grade here refers to the number of times a location emerges as a rep-
resentative location across all iterations. It is supposed that locations consistently showing
up above a membership threshold in clusters at multiple clustering iterations most possi-
bly represent large-scale spatial patterns. If a particular location is repeatedly labeled as
being representative at multiple iterations, this point is thus likely a representative point
of a certain large-scale pattern and has a high representative grade. On the other hand, a
location that is labeled as being representative at only one or two iterations is more likely
a representative of a pattern that exists at some local level and therefore the location has a
low representative grade. Based on this notion, the reclassified 0–1 valued maps of all iter-
ations are overlaid to produce a frequency map, with values at each location representing
the representative grade, the number of times that the location is considered representative
of a cluster, a direct indicator of the representativeness of the location in the scale hierarchy
from the top-down perspective.

2.2.1.2. Determination of representative area and representative level. It is possible to
have locations with the same representative grade representing different environmental
clusters. For example, a particular location with a representative grade of 2 might be repre-
sentative of ‘class 2’ during the three cluster iteration and ‘class 4’ during the four cluster
iteration. Another location with the same representative grade 2 might have been selected
from ‘class 3’ during the three cluster iteration and then from ‘class 4’ during the five
cluster iteration.

We introduced the concept of ‘environmental cluster chain’ to further examine the
patterns of class configuration under each representative grade. In this way the different
patterns at the same level on the hierarchy can be distinguished. This environmental clus-
ter chain is a chain which records the specific list of classes and the associated cluster
iteration. For the example above, the environmental cluster chain for the first location is
noted as 3Class2–4Class4 and that for the second location is 3Class3–5Class4.

The representative area and the representative level are determined with reference to an
environmental cluster chain. The representative area for a chain is the number of locations
(pixels) which is representative for all classes in the chain and the representative level is
the average of the fuzzy membership values in all classes in the chain. This is a measure of
the average representativeness of the location to all classes it belongs to.

2.2.2. Selection of samples

Considering these three indices, samples are then selected according to the following
guidelines:

• Samples are selected at locations with priority from the highest representative grade
to lower ones.

• For locations with the same representative grade, those whose environmental cluster
chains cover a larger area have the higher priority.

• For each environmental cluster chain, priority is given to samples with higher
average membership values.

• The number of samples for each representative grade can be one or more, which
could be decided according to the sampling budget.

Figure 1 illustrates the implementation flowchart.
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6 L. Yang et al.

Figure 1. Sampling design flowchart.

3. A case study on digital soil mapping

3.1. Study area and environmental data

We applied the sampling strategy and assessed its effectiveness in a digital soil mapping
case study. The study area is 60 km2 in size, and is located in Heshan farm of Nenjiang
County in Heilongjiang Province, China (Figure 2). The elevation in the area ranges from
276 to 363 m with a gentle gradient. The soils in the area are formed on deposits of silt loam
loess and have a thick A-horizon with high organic matter content. Crops in the watershed

Figure 2. Location of the study area.
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International Journal of Geographical Information Science 7

at present are generally limited to soybean and wheat (Miao et al. 2011). The land use and
soil management is generally uniform across the study area.

Four topographic variables (slope gradient, planform curvature, profile curvature, and
topographic wetness index) were used in this study as environmental covariates. The reason
for including only topographic variables is that other environmental conditions which are
usually considered as the covariates for soil, such as macroclimate, vegetation conditions,
and parent materials, are overall uniform over this small area (Zhu et al. 2010).

A 10-m resolution Digital Elevation Model (DEM) (Figure 3) was created from a
1:10,000 topographic map. Data layers on slope gradient, planform curvature, and profile
curvature were derived from the DEM. Topographic wetness index was calculated accord-
ing to the following equation (Beven and Kirkby 1976; Quinn et al. 1995): w = ln (a/tanβ),
where a is the cumulative upslope area draining through a point (per unit contour length)
and β is the slope gradient at the point. Because the relief of our study area is gentle and
the floodplain is wide, we used the multiple flow direction strategy MFD-md to calculate
the upslope drainage area (a) (Qin et al. 2007, Zhu et al. 2010, Qin et al. 2011a).

Environmental data layers were preprocessed before FCM clustering to remove out-
liers and to standardize the ranges of each layer. The outliers were data values with low
frequency located at the ends of the data histograms, which were mostly errors introduced
during the creation of the DEM and would have a strong impact on the clustering results.

Figure 3. DEM of the study area.
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8 L. Yang et al.

These values were then replaced with values next to these extremes to preserve the integrity
of data volume. For standardization, elevation, slope gradient, and topographic wetness
index were stretched to 0–100. The profile curvature and planform curvature were stretched
to –50 to 50, keeping the 0 value (means linear along the plane of curvature) unchanged.
Specifics of the preprocessing method were detailed in our previous studies (Zhu et al.
2010).

3.2. Sampling design

FCM clustering was performed on the four environmental data layers. The fuzzy exponent,
a weighting exponent for fuzziness in the FCM algorithm, is 2.0 in this case study, as
recommended in a previous study (Zhu et al. 2010). We iterated through 8–13 clusters to
cover both large-scale and local patterns of soil types in this study area. Fuzzy membership
maps of the environmental cluster classes for each iteration were generated. We also tested
the other two ranges of clustering iterations for our study area to test how different ranges
of clustering iterations will influence the designed sampling scheme in Section 3.5.

3.2.1. Determination of hierarchy

We used a membership threshold of 0.6 in the case study to identify representative locations
(pixels) of the environmental clusters. We also experimented with different threshold values
and performed a sensitivity analysis. The results and discussion on these are provided in
Section 3.5. Figure 4a shows the fuzzy membership map of environmental cluster class
3 for the 10 cluster iteration is extracted and Figure 4b is the two-valued map showing the
representative locations of this class with a threshold of 0.6.

The 0–1 reclassification maps of all cluster classes for a particular iteration were com-
bined first to produce an overall map for that iteration. An ‘OR’ operation was used to

Figure 4. A fuzzy membership map (a) and the reclassified two-valued map (b).
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International Journal of Geographical Information Science 9

Figure 5. The representative grade map.

combine the individual maps. The results from all six iterations (8–13 clusters) were then
overlaid to produce the representative grade map shown in Figure 5. As we iterated through
six cluster numbers, a value 6 on the resulting map means that the pixel is considered
as a representative location of environmental clusters during all six iterations. The mini-
mum value of a pixel is 0, which means the pixel is not a representative location of any
environmental cluster during any iteration.

3.2.2. Sampling

Three hundred and twenty-two different environmental cluster chains were extracted
from the representative grade map. Sometimes an environmental cluster chain with
a lower representative grade can be the subset of (or is completely embedded in)
a longer chain with a higher representative grade. In this case, we eliminate the
shorter chain from the list based on the consideration that the longer chain should
have covered the pattern represented by the shorter chain but with a higher repre-
sentative grade. For example, all classes in the chain ‘9Class7–10Class3–11Class7–
12Class5–13Class18 (ID 75)’ with representative grade 5 are included in the chain
‘8Class4–9Class7–10Class3–11Class7–12Class5–13Class1 (ID 10)’ with a representative
grade 6. We thus eliminate chain ID 75. After this elimination step, 35 environmental
cluster chains were left (Table 1). An environmental cluster class ID of N/A in Table 1
means that the pixel is not a representative location of any environmental class under
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10 L. Yang et al.

Table 1. The environmental cluster chains after elimination.

Representative
grade

Environmental
cluster chain

ID
Class ID under iterations 8, 9, 10, 11, 12,

and 13 in turn

Number of
environ-
mental
cluster
chains

6 18 1 2 5 1 11 6 9
21 5 5 2 6 10 3
10 4 7 3 7 5 1
30 2 9 9 4 6 5
1 2 9 9 4 6 2
2 7 8 10 8 7 7
7 3 1 4 10 8 12

13 6 4 8 2 4 4
17 6 4 8 3 2 9

5 8 0 3 6 5 3 13 7
15 8 0 7 9 1 11
20 8 3 6 5 0 13
19 5 5 0 3 2 9
9 8 3 6 0 1 13

32 1 2 5 1 0 5
3 7 8 10 0 12 7

4 12 3 1 4 0 0 8 4
29 8 3 0 9 1 0
22 6 6 0 2 0 4
11 6 6 0 0 4 4

3 5 0 0 0 11 9 10 12
14 0 4 7 0 0 11
28 0 0 0 8 7 8
33 3 0 0 0 3 8
26 4 7 0 0 0 12
16 0 4 7 2 0 0
31 1 0 0 0 6 5
6 0 6 1 0 0 4
4 0 0 7 9 12 0

25 0 8 7 0 12 0
27 3 0 0 0 7 8
35 0 0 6 0 3 8

2 23 7 0 1 0 0 0 3
24 0 0 0 2 12 0
34 8 8 0 0 0 0

the corresponding iteration. Figure 6 shows the maps of environmental cluster chains.
Environmental cluster chain with pixels less than 200 is not picked in the figure, because
it is not clear to display when each map of environmental cluster chain is small. However,
if all of the environmental cluster chains for one representative grade are with pixels less
than 200, then we keep the environmental cluster chain with the biggest area for this repre-
sentative grade for integrity of the representative grade. Figure 7 shows an example of the
average membership map of an environmental cluster chain.

Based on the sampling design guidelines in Section 2.2, we drew samples in the order
from the highest representative grade 6 to the lowest representative grade 2. For those envi-
ronmental cluster chains whose coverage is very limited, we consider them representing
some untypical features and excluded them from sampling. In our experiment, no sample
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Figure 6. Environmental cluster chains through 8–13 clusters.

Figure 7. Part of the average membership map for chain ID 10.
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Table 2. The order and number of the selected samples.

Representative
grade

Environmental
cluster chain ID Number of pixels

Number of
samples in order

Total number
of samples

6 18 18, 873 3 21
21 6337 6
10 5775 9
30 1921 12
1 877 15
2 231 18
7 183 21

13 14
17 3

5 8 1078 24 15
15 613 27
20 451 30
19 47 33
9 45 36

32 10
4 3 4

12 49 39 3
29 19
22 13
11 1

3 5 339 42 27
14 324 45
28 193 48
33 67 51
26 58 54
16 46 57
31 43 60
6 40 63
4 31 66

25 20
27 20
35 1
23 13 0
2 24 8

34 2

was drawn from environmental cluster chains with less than 20 pixels (such as IDs 13, 17,
32, and 3). As a result, there is no sample selected from representative grade 2. For each of
the remaining environmental cluster chains, we sampled three points with the highest aver-
age membership values (representative level). The final sampling order and numbers are
listed in Table 2. Stepwise sampling should be following the top-down order in the table.
For example, the first row and the fourth column of the table mean that the three points
selected for Chain 18 should be collected in field first, then three points for Chain 21,
10, and so on. There is no sampling order between three samples for each environmental
cluster chain.

3.3. Sampling and sampled soil types

Soil was sampled at the centers of the pixels selected by the sampling design. Due to
the inaccessibility of some points in the original sampling design, field investigations
at 48 samples were eventually made (Figure 8). Based on the assumption that samples
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Figure 8. Samples observed under different representative grades.

designed on certain environmental cluster chain are all the typical points of this envi-
ronmental cluster chain, we did not collect more samples to substitute those inaccessible
points since each environmental cluster chain has at least one sample but one could rep-
resent the environmental cluster chain. This is one of the advantages of this approach
because we know the other possible locations which can meet a similar goal. Soil type
was identified at the subgroup level in the Chinese soil taxonomy system (Chinese Soil
Taxonomy Research Group 2001) by a local soil classification expert at each site. Soil
types for samples of representative grade 6 include Mollic Bori-Udic Cambosols, Lithic
Udi-Orthic Primosols, Pachic Stagni-Udic Isohumosols, Typic Hapli-Udic Isohumosols,
and Fibric Histic-Stagnic Gleyosols-Typic Haplic Stagnic Gleyosols. Samples of repre-
sentative grade 5 supplemented a new soil subgroup: Typic Bori-Udic Cambosols, while
samples of representative grade 4 did not add any new soil types. Samples of representative
grade 3 supplemented another instance of Typic Hapli-Udic Isohumosols, which means the
Typic Hapli-Udic Isohumosols in this area has two soil instances under different environ-
mental combinations. The soil instance of Typic Hapli-Udic Isohumosols from samples
of representative grade 3 was located at footslopes, while the other soil instance of Typic
Hapli-Udic Isohumosols obtained from samples of representative grade 6 was located at
backslopes, and these two instances were separated spatially (Zhu et al. 2010).

In order to investigate the physical meaning of the representative grade, we examined
the landscape positions of the selected samples. Specifically, we analyzed how samples of
different representative grades might correlate with environmental conditions, in this study
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Table 3. The number of points with different representative grades occurring on different terrain
positions.

Representative grades included Summit Backslope Steepest slope Footslope Floodplain

6 3 6 3 0 5
5 0 11 0 0 0
4 0 3 0 0 0
3 0 15 0 2 0

terrain conditions, at different scales. We counted the number of samples found on each
terrain position based on representative grades (Table 3). It shows that samples of represen-
tative grade 6 represent summit, backslope, steepest slope, and floodplain, which are the
main terrain positions of the study area. Samples of representative grades 5 and 4 represent
more detailed patterns on backslope, which is one of the main terrain types with the largest
spatial coverage and with small and local features on them such as small draws and divides.
Samples of representative grade 3 represent some more detailed patterns on backslope and
footslope positions, which are minor terrain features in the study area. Samples of repre-
sentative grades 6, 5, 4, and 3 altogether represented almost all of the terrain features in
our study area. Minor terrain features such as smaller local variations within backslope
than those local variations within backslope captured by samples of representative grade
3 were not represented. Since these local variations represent minor terrain features with
very small spatial coverages, we do not need extra sampling for them. The above observa-
tion shows that samples of different grades do capture terrain features at different levels of
scale: high grades corresponding to major patterns and low grades corresponding to minor
patterns, also see Figure 6.

3.4. Digital soil mapping and validations

To evaluate the proposed sampling method, digital soil mapping using different groups
of samples was conducted. We experimented with four groups. The first group contains
only samples of representative grade 6. The second to fourth groups added points of
representative grades 5, 4, and then 3, respectively.

In this study, we applied the SoLIM framework, a knowledge-based digital soil map-
ping approach, to infer soil distribution (Zhu and Band 1994, Zhu 1999, Zhu et al. 2010).
With this approach, knowledge on the relationships between soils and their environmental
conditions is first acquired from the samples in the form of fuzzy membership functions
(curves). The discussion on the details of extracting fuzzy membership curves from sam-
ples is beyond the scope of this article, but interested readers are referred to Zhu et al.
(2010) for the specifics.

We used the first group of samples to extract the fuzzy membership curves for the
five main soil subtypes (Mollic Bori-Udic Cambosols, Lithic Udi-Orthic Primosols, Pachic
Stagni-Udic Isohumosols, Typic Hapli-Udic Isohumosols, and Fibric Histic-Typic Haplic
Stagnic Gleyosols). The fuzzy membership curves of the five soil types from grade 6 were
refined using the samples from grade 5, and the fuzzy membership curves of Typic Bori-
Udic Cambosols were added. The fuzzy membership curves of all the six soil types were
refined with samples of representative grades 4 and 3 successively. Thus, we obtained four
sets of knowledge on the relationships between soils and their environmental conditions
from the four groups of samples. Different fuzzy membership maps of the respective soil

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

gr
ap

hi
c 

Sc
ie

nc
es

 &
 N

at
ur

al
 R

es
ou

rc
es

 R
es

ea
rc

h]
 a

t 2
2:

25
 0

5 
M

ar
ch

 2
01

2 



International Journal of Geographical Information Science 15

(a) (b)

(c) (d)

Figure 9. Hardened soil maps using different groups of samples: (a)–(d) using groups 1–4.

types were inferred using the respective sets of knowledge. These maps were then hardened
(Zhu 1997) to create soil type maps by assigning each location the label of the soil type with
the highest membership value. Figure 9 shows the four hardened soil maps. Comparing the
four maps, it shows that the digital soil maps made using the samples from representative
grade 6 (Figure 9a) capture most of the soil types in the study area, while digital soil maps
that incorporate the samples from representative grades 5–3 show more spatial details, such
as soil variations across the backslopes.

Field validation was conducted to evaluate accuracies of the generated soil maps.
Field sites were selected through three sampling strategies: regular sampling, subjective
sampling, and transect sampling. Regular sampling was used for collecting validation
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Figure 10. Location of validation points on contour lines in the study area.

points which were used to validate the overall performance of the inferred soil maps. With
an 1100 m × 740 m grid arrangement, 33 validation points were collected (Figure 10,
shown in blue). Subjective sampling was conducted to investigate areas with unique charac-
teristics where soils were not covered by regular sampling. These unique areas are locations
on summit, steep slope, and floodplain positions. Seven subjective points were collected
(Figure 10, shown in yellow). Transect sampling was conducted in such a way that it cov-
ered major environmental variations within the shortest distance from ridge top to valley
bottom (Figure 10, in red). These were used to evaluate how well the soil maps capture
the spatial variation of soil in a catena. The transect we sampled consists of 10 validation
points which are on average 100 m apart. In total, 50 validation samples were collected in
the study area, and all samples were classified at the soil subgroup level by the local soil
classification expert.

The field-observed soil subgroups at these validation sites were compared with the
soil subgroups inferred through digital soil mapping at these locations. The overall accu-
racies of the four groups of samples and the corresponding sample sizes used for the
inference are listed in Table 4. It indicates that with only 12 samples in the first group,
the overall accuracy of the inferred soil map is 62%. With the addition of samples, the
accuracy of soil mapping increases, but the rate of such increase slows down. Tables 5
and 6 show the producer’s accuracies and user’s accuracies of the soil maps using the
four groups of samples separately. With the addition of samples, producer’s accuracies for
Typic Hapli-Udic Isohumosols and Typic Bori-Udic Cambosols increase with vibrations.
With the addition of samples of representative grade 4, the producer’s accuracy for Typic
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Table 4. The overall accuracies of the soil maps using different groups of samples.

Representative grade Number of samples Overall accuracy (%)

6 12 62
6, 5 20 70
6, 5, 4 22 72
6, 5, 4, 3 35 76

Table 5. The producer’s accuracies (%) of the soil maps using different groups of samples.

Representative grade THUI MBUC LUOP PSUI TBUC FHTHSG

6 64.29 80 75 100 0 100
6, 5 71.43 80 75 100 28.57 100
6, 5, 4 67.86 80 75 100 57.14 100
6, 5, 4, 3 78.57 80 75 100 42.86 100

Note: THUI, Typic Hapli-Udic Isohumosols; MBUC, Mollic Bori-Udic Cambosols; LUOP, Lithic Udi-Orthic
Primosols; PSUI, Pachic Stagni-Udic Isohumosols; TBUC, Typic Bori-Udic Cambosols; FHTHSG, Fibric Histic-
Typic Haplic Stagnic Gleyosols.

Table 6. The user’s accuracies (%) of the soil maps using different groups of samples.

Representative grade THUI MBUC LUOP PSUI TBUC FHTHSG

6 75 28.57 50 100 0 100
6, 5 83.33 100 42.86 71.43 28.57 100
6, 5, 4 82.61 100 75 83.33 33.33 100
6, 5, 4, 3 81.48 100 75 100 33.33 100

Note: THUI, Typic Hapli-Udic Isohumosols; MBUC, Mollic Bori-Udic Cambosols; LUOP, Lithic Udi-Orthic
Primosols; PSUI, Pachic Stagni-Udic Isohumosols; TBUC, Typic Bori-Udic Cambosols; FHTHSG, Fibric Histic-
Typic Haplic Stagnic Gleyosols.

Hapli-Udic Isohumosols decreases while that for Typic Bori-Udic Cambosols increases.
However, changes in the producer’s accuracies of these two soil types are opposite. This is
mainly because these two soil types are adjacently located on backslopes and some samples
are in transition areas of these two soil types. Comparing with the producer’s accuracies,
changes in the user’s accuracies with the addition of samples are more complex. The user’s
accuracies for Typic Bori-Udic Cambosols are low.

3.5. Sensitivity analysis

Sensitivity analysis was conducted to test the effect of the different membership thresholds
used to extract representative locations from environmental clusters and the ranges of clus-
tering iterations when employing the FCM clustering. To be considered as typical examples
of an environmental cluster, Yang et al. (2010) suggested that the fuzzy membership values
of pixels should be at least greater than 0.5. We thus started with a threshold at 0.6 in our
sensitivity testing. On the other hand, if the threshold is set to be too high, such as 0.9, the
selection of typical positions of the environmental clusters is often too narrow to allow suf-
ficient overlap during overlay to generate meaningful environmental cluster chains. We thus
tested three membership thresholds, 0.6, 0.7, and 0.8 in our study. The accuracies of the
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Figure 11. Changes of overall accuracies with sample size under different membership thresholds.

inferred soil maps with thresholds 0.7 and 0.8 are listed in Tables 5 and 6. Compared with
Table 4, which lists the accuracies with threshold set to be 0.6, the two tables show the
same pattern as that shown in Table 4, which is that mapping accuracies increase with the
increase of samples and eventually reach a similar level (Figure 11). It is shown in Tables 7
and 8, however, that for thresholds 0.7 and 0.8, the accuracies are low when only the first
group of samples is used in the inference. This indicates that fuzzy membership thresholds
do affect the effectiveness of the sampling and the resulting soil maps. One major reason
is that the number of pixels considered representative reduces when the fuzzy membership
threshold increases, and thus overlaying these pixels from multiple iterations generates dif-
ferent and most possibly environmental cluster chains that are too refined. Table 9 lists
the number of environmental cluster chains in correspondence with the landscape posi-
tions they represent with the three different thresholds for the highest representative grade
6. It shows that for thresholds 0.7 and 0.8, environmental cluster chains associated with
backslope, one of the large-scale landscape positions, are missing from this first group of
samples. This is the main reason why accuracies of the soil maps inferred using samples of
the highest representative grade are low with thresholds 0.7 and 0.8. It is only when more
samples are added from lower representative grade groups that features such as backslope
could be detected.

We tested the other two ranges of clustering iterations for our study area except for
the range 8–13, which are 7–12 and 9–14. If the generated environmental cluster chains
under different ranges of clustering iterations are the same or similar, then the designed
samples based on those chains will be the same or similar. Therefore, we compare maps

Table 7. The overall accuracies of the soil maps using different groups of samples when member-
ship threshold is set to 0.7.

Representative grade Number of samples Overall accuracy (%)

6 10 26
6, 5 15 72
6, 5, 4 21 74
6, 5, 4, 3 30 76
6, 5, 4, 3, 2 31 76
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Table 8. The overall accuracies of the soil maps using different groups of samples when member-
ship threshold is set to 0.8.

Representative grade Number of samples Overall accuracy (%)

6 9 24
6, 4 15 56
6, 4, 3 19 68
6, 4, 3, 2 21 70

Table 9. The number of environmental cluster chains with the highest representative grade in
correspondence with the landscape positions they represent.

Threshold Summit Backslope Steepest slope Footslope Floodplain Total number

0.6 1 1 1 0 3 6
0.7 1 0 1 0 3 5
0.8 1 0 1 0 2 4

of environmental cluster chains under different ranges of clustering iterations to test how
different ranges of clustering iterations will influence the designed sampling scheme.

The generated environmental cluster chains for the ranges 7–12 and 9–14 are shown
in Figures 12 and 13. Here, environmental cluster chain with pixels less than 200 is not
shown in the two figures because it is difficult to display the environmental cluster chain

Figure 12. Environmental cluster chains through 7–12 clusters.
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Figure 13. Environmental cluster chains through 9–14 clusters.

when it is small. However, if all of the environmental cluster chains for one represen-
tative grade are all with pixels less than 200, then we keep the environmental cluster
chain with the biggest area for this representative grade for integrity of the representative
grade.

It is shown in Figures 6, 12, and 13 that the environmental cluster chains for the three
ranges are very similar, especially those chains with representative grade 6 which repre-
sent the large-scale landscape patterns for the study area. Thus, the range of clustering
iterations from 8 to 13 can be considered as a reasonable range which could cover both
large-scale and local patterns of spatial variation of soil types in the study area. And choos-
ing a range of clustering iterations from clustering iterations 7–14 will not influence the
designed sampling scheme much.

4. Observations and implications

The proposed sampling strategy selects samples of different representative grades through
approximating a hierarchy of spatial variations of the geographic feature by delineating
natural clusters of its relevant environmental covariates at different scales. All the samples
are designed all at once. Samples of higher representative grades could represent large-
scale spatial patterns of the target geographic feature and those with lower grades represent
more detailed spatial patterns. Thus, sampling can be conducted in an integrated, hierarchi-
cal, and stepwise approach, which means that with limited resources the limited samples
should first be directed toward areas of high representative grades and then toward areas
of lower grades when more resources become available successively. In this way, samples
from different stages are effectively integrated through the representative grade.
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The degree of success of the proposed sampling method highly depends on how the
selected environmental covariates can depict the spatial variation patterns of the target
geographic feature. Those environmental covariates which influence the formation and
development of the target geographic features or highly covary with the target geographic
features spatially are a good choice for this sampling method. With geospatial data becom-
ing widely available, richer in volume and types, the proposed sampling strategy would
become a vital alternative to the classic sampling strategy.

5. Conclusions

This article presented an integrative hierarchical stepwise sampling design approach based
on the three indices: representative grade, representative area, and representative level.
Fuzzy clustering was employed on environmental covariates to generate multiple numbers
of clusters to determine representative grade of samples. The sampling design was imple-
mented for digital soil mapping in a study area located in northeastern China. Four groups
of samples of different representative grades were obtained and used for knowledge-based
soil inference under the SoLIM framework. Field validation was done with 50 independent
samples. The results showed that the first group of samples (those of the highest represen-
tative grade) could produce a soil map with 62% accuracy with a membership threshold of
0.6, and the mapping accuracy increased with a decreasing rate with additions of samples
from the lower representative grades. The results indicate that the proposed method is able
to differentiate samples that represent the spatial patterns of the target geographic feature
at different scales, and that stepwise sampling could be an effective and economical choice
for areas sampling can only be done at stages due to the limitation of financial and human
resources.

A sensitivity analysis shows that the choice of membership threshold in determin-
ing representative samples affects the effectiveness of the sampling result. At a higher
threshold, samples that represent large-scale features might not be fully captured in the
first group. In this case, lower representative grades may be considered for inclusion in
the first group of samples. However, prior knowledge about spatial variation of the geo-
graphic features should be used for identifying environmental cluster chains associated
with large-scale features.

We employed the SoLIM framework in this case study to infer soil maps, but it is not
required to use this soil mapping method. People certainly could use interpolation methods
or other soil mapping methods to obtain the soil maps.

In this study, we did not perform the experiment of comparison between our method
and the Latin hypercube sampling method or the sampling optimization method by UK
variance. We suppose that the biggest difference between our method and the Latin hyper-
cube sampling method is that the designed sampling points through our method are in a
hierarchy of representativeness grade, while there is no such difference between sampling
points designed by the Latin hypercube sampling method and the sampling optimization
method by UK variance. Thus, our method can indicate a sampling order which is useful
and necessary for stepwise sampling.

This study indicates that the proposed sampling method could be an effective approach
to stepwise sampling. However, investigators could also collect the representative sam-
ples determined by the approach at once if sampling cost is not a concern. Our future
efforts will focus on applying and evaluating the sampling method in larger areas and for
the modeling of other geographic features (such as vegetation), and will also include the
comparison between the proposed sampling method and other sampling methods (such as
random sampling or systematic sampling).
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