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This article presents a set of artificial surfaces simulating complex terrain types for
evaluating the performances of grid-based flow direction algorithms. The proposed
artificial surfaces were developed based on sine and cosine functions and thus can
simulate four complex terrain types: a convex-centred slope, concave-centred slope,
saddle-centred slope and straight-ridge slope; such features are typical and widespread
in real landscapes. We analytically solved the theoretical values of specific catchment
area (SCA) for the proposed artificial surfaces. Compared with existing artificial sur-
faces for evaluating flow direction algorithms, the proposed artificial surfaces provide
a better representation of common terrain types in the real world. To analyse the feasi-
bility of the proposed artificial surfaces, two sets of artificial digital elevation models
(DEMs) were created by sampling the proposed artificial surfaces with different reliefs
at a series of resolutions (i.e. 1, 5, 10 and 20 m). Four representative flow direction algo-
rithms were applied to these artificial DEMs: D8, D-inf, FD8 and MFD-md. The root
mean square error, mean error and standard deviation in the computed SCA from flow
direction algorithm show that MFD-md generally yielded lower error under simulated
terrain conditions than D8, D-inf and FD8. The cumulative frequency distributions of
errors from the tested flow direction algorithms with the proposed artificial DEMs can
effectively reflect the inherent characteristics of each algorithm. MFD-md performed
more similarly to FD8 in low-relief terrains and more similarly to D-inf in high-relief
terrains. The map of errors from each tested algorithm is available for a spatially explicit
evaluation of the occurrence of errors. Over most of the area, the D-inf algorithm
underestimated the SCA when FD8 overestimated the SCA.

Keywords: artificial surface; error assessment; specific catchment area; flow direction
algorithm; gridded digital elevation models

1. Introduction

Specific catchment area (SCA, or specific contributing area), which is defined as the ups-
lope contributing area per unit contour length, is one of the most important topographic
attributes (Moore et al. 1991, Hengl and Reuter 2009). SCA is widely used not only as
a basis for many secondary topographic attributes, such as topographic wetness index
and stream power index, but also in many hydrological, pedagogical and geomorpholog-
ical applications (Wilson and Gallant 2000). In real applications, computation of SCA is

*Corresponding author. Email: qincz@lreis.ac.cn

ISSN 1365-8816 print/ISSN 1362-3087 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/13658816.2012.737920
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

gr
ap

hi
c 

Sc
ie

nc
es

 &
 N

at
ur

al
 R

es
ou

rc
es

 R
es

ea
rc

h]
 a

t 1
6:

22
 1

4 
N

ov
em

be
r 

20
12

 



2 C.-Z. Qin et al.

generally dependent on a flow direction algorithm designed to be compatible with gridded
digital elevation models (DEMs) (Li et al. 2005).

To date, many grid-based flow direction algorithms have been designed to calculate
SCA (e.g. O’Callaghan and Mark 1984, Freeman 1991, Quinn et al. 1991, Costa-Cabral
and Burges 1994, Quinn et al. 1995, Tarboton 1997, Qin et al. 2007, Zhou et al. 2011).
Recently, Wilson et al. (2008) provided a thorough review of the current flow direction
algorithms. The key difference between these algorithms is if the flow from a cell can be
drained into more than one downslope neighbouring cell and if so, how to partition the flow
among the downslope neighbouring cells. Different flow direction algorithms might pro-
duce very different SCA results (Wolock and McCabe 1995, Wilson et al. 2008); therefore,
an error assessment of flow direction algorithms is vital (Zhou and Liu 2002).

Real DEMs are often applied to the assessment of flow direction algorithms (Wolock
and McCabe 1995, Wilson and Gallant 2000). However, real DEMs are discrete represen-
tations of actual continuous topographic surface and contain errors that are hardly known
spatially. Thus, the assessment of flow direction algorithms using real DEMs can only be
relative or comparative. It is affected not only by the flow direction algorithms involved but
also by the real data containing errors (Zhou and Liu 2002). Furthermore, the ‘true’ SCA
of actual topography is hardly to be calculated analytically. Gallant and Hutchinson (2011)
recently proposed the first method to calculate the ‘true’ SCA on real DEMs by solving a
differential equation, which defines the rate of change of SCA along flow path as a function
of SCA and plan curvature on the path. However, a numerical solution required is by con-
verting the DEM to a mathematical surface with continuous first derivatives and piecewise
continuous second derivatives (Gallant and Hutchinson 2011). As a result, the computed
SCA for the same area may vary due to the choice of DEMs as well as the interpolation
methods.

Artificial surfaces have been developed to evaluate the performances of flow direc-
tion algorithms (Zhou and Liu 2002, Pan et al. 2004). Artificial surfaces are defined by
mathematical functions; so the uncertainty associated with data errors can be avoided.
Meanwhile, it is possible to analytically solve the theoretical SCA at any position on
the artificial surface. Because the theoretical SCA keeps unchanged for a given artificial
surface, the artificial surface can be sampled at different resolutions to create artificial
DEMs with different grid sizes for a multiple-scale analysis (Qin et al. 2011). Thus, the
performances of flow direction algorithms can be evaluated in a quantitative and data-
independent way based on the difference between the theoretical SCA and computed SCA
(Zhou and Liu 2002).

The simplest artificial surfaces ever proposed for evaluating flow direction algorithms
are those with all contours being concentric circles or parallel straight-lines, for example,
cones, inverse cones and inclined planes (Pan et al. 2004, Chirico et al. 2005). For these
surfaces, the theoretical SCA value at every point along a given contour is constant and
equal to the total upslope area of this contour divided by the contour length. Unfortunately,
such terrain types are rare and the SCA value along contours is often variable in the real
world.

Zhou and Liu (2002) proposed an ellipsoid, an inverse ellipsoid and a hyperbolic
paraboloid to evaluate the performances of flow direction algorithms (Figure 1 and
Table 1), respectively, simulating convex slope, concave slope and saddle surface with
variable SCA along contours. From the mathematical definition of an artificial surface,
theoretical SCA at every point can be analytically solved as the limit value of total con-
tributing area (TCA) while the contour length (CL) tends to zero (Zhou and Liu 2002),
that is,
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Pan et al.’s (2004) model Zhou and Liu’s (2002) model

(a)

(b)

(Cannot model this terrain type)

(c)

Figure 1. Examples of artificial surfaces proposed by Pan et al. (2004) and Zhou and Liu (2002).
(a) Convex slope (divergent flow), (b) concave slope (convergent flow) and (c) saddle slope.

Table 1. Definitions and theoretical SCAs of artificial surfaces proposed by Zhou and Liu (2002).

Surface Model Definition Theoretical SCA∗,∗∗,∗∗∗

Convex
slope

Ellipsoid x2

a2 + y2

b2 + z2

c2 = 1,
z > 0

SCA =
√

a4
1y2

1+b4
1x2

1
a2
1+b2

1

Concave
slope

Inverse
ellipsoid

x2

a2 + y2

b2 + z2

c2 = 1,
z < 0

SCA =
( x4

x1

)m+1−1

a2
1+b2

1

√
a4

1y2
1 + b4

1x2
1, xi �= 0;

SCA =
( y4

y1

)1+1/m−1

a2
1+b2

1

√
a4

1y2
1 + b4

1x2
1, xi = 0

Saddle Hyperbolic
paraboloid

x2

a2 − y2

b2 = z
c ,

−A < x, y < A,
(a �= b)

SCA =
( |x1|

A

)m−1
−1

b2
1−a2

1

√
a4

1y2
1 + b4

1x2
1

Straight
slope

Plane z = ax + by + c,
−A < x, y < A

SCA = A−x1
a

√
a2 + b2, where flow path

intersects with x = A;

SCA = A−y1
b

√
a2 + b2, where flow path

intersects with y = A

Notes: ∗ai, bi denote the parameters of the surface model at point (xi,yi).
∗∗m = a2

b2 .
∗∗∗For the theoretical SCA of the concave slope, (x4,y4) is the intersection point of the margin of the surface and
the flow line (y = Cont · xm, where Cont denotes the constant) passing the point (x1,y1).
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4 C.-Z. Qin et al.

SCA = lim
CL→0

TCA

CL
(1)

TCA for a contour segment of a given CL can be recognised as the upslope area bounded
by flow paths at the initial and terminal vertices of this segment of contour. The flow path
is the trace line of the flow along the maximum hydraulic slope. The maximum hydraulic
slope is estimated as the maximum downslope gradient. In this way, theoretical SCA of
Zhou and Liu’s (2002) artificial surfaces was analytically solved (Table 1).

To the best of our knowledge, the work of Zhou and Liu (2002) has hitherto presented
the only existing method for creating artificial surfaces with variable SCA values along
contours for evaluating flow direction algorithms. Artificial surfaces for more complex
slope types, such as the Gauss synthetic surface (Zhou et al. 2006) and the general poly-
nomial fitted function (Minár and Evans 2008), have also been proposed to evaluate the
computation of local topographic attributes (e.g. slope gradient and curvature) or to analyse
the land surface morphology. But theoretical SCA of these surfaces is hardly to be analyt-
ically solved for practical application in evaluating flow direction algorithms, because the
difficulty in solving the theoretical SCA analytically increases dramatically for the artificial
surfaces simulating complex surfaces.

However, the terrain types simulated by Zhou and Liu’s (2002) artificial surfaces are
still oversimplified and can rarely be used to simulate complex terrain types. Hill slopes
similar to those considered in their simulations are rarely found in the real world. The
maximum slope angle on the convex slope simulated by Zhou and Liu’s (2002) ellipsoid
surface is always 90◦, whether or not the terrain condition simulated is low relief or high
relief (further discussion is provided in Section 3). These convex slopes cannot be realistic.
Similarly, the concave slopes simulated by Zhou and Liu’s (2002) inverse ellipsoid surface
are also unrealistically with a maximum slope angle being 90◦. According to the defini-
tion of Zhou and Liu’s (2002) saddle surface (Table 1 and Figure 1c), the elevation range
of the simulated saddle surface has no limit until user assigns the boundaries arbitrarily.
In this case, the theoretical SCA value at a given position on the simulated surface does
not have a specific value, because it is influenced by the user-assigned boundaries. This is
also unrealistic.

This article proposes a set of artificial surfaces with the theoretical SCA analyti-
cally solved; hence evaluating the performance of grid-based flow direction algorithms
on complex terrain types.

2. Basic idea

Performances of flow direction algorithms applied to complex terrain types should be eval-
uated using artificial surfaces (Zhou and Liu 2002). This is because complex terrain types,
rather than simple terrain types, are commonplace in the real landscape. For example,
slope is a complex terrain type because it often shows a smooth transition between slope
positions, such as from a convex ridge top with low gradient, to a steeper planar slope
and finally to a concave valley with low gradient (Qin et al. 2009). It is one of the most
widespread terrain types in real landscapes. Existing methods cannot simulate this complex
terrain type.

The sine and cosine functions could be applied in designing artificial surfaces for eval-
uating the performances of flow direction algorithms, for two reasons. First, the conceptual
profile of a typical slope is similar to the curves of the sine and cosine functions. Thus,
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complex terrain types could be simulated with artificial surfaces defined by sine and cosine
functions. Second, if an artificial surface is defined with sine and cosine functions, it is
possible to analytically solve the theoretical SCA value of this surface due to the simple
functional form of the definition. Therefore, sine and cosine functions (or combinations
thereof) are highly suited to model artificial surfaces. These artificial surfaces can simulate
complex terrain types that are typical and widespread in real topography.

3. A set of new artificial surface models

3.1. Artificial surfaces and their theoretical SCA

We designed a set of new artificial surface models based on sine and cosine functions
(named as sine–cosine models), which simulate the convex-centred slope, concave-centred
slope, saddle-centred slope and straight-ridge slope, respectively. These four complex
terrain types and their spatial combinations are widespread in real landscapes. The sine–
cosine models and corresponding analytic solutions to the SCA equations are shown in
Table 2. The detailed theoretical solutions to the SCA equations (Equation (1)) by follow-
ing Zhou and Liu’s (2002) method are not included in this article due to the limited length,
and interested readers can demand these solutions by sending email to the corresponding
author of this article.

Artificial surfaces created by sine–cosine models can simulate diverse terrain con-
ditions with variable SCA values along the contours. Controlled by the spatial extent
parameters a and b (Table 2), the artificial surfaces have variable spatial extent. The
relief of the artificial surfaces created is also variable and is determined by specifying
the relief parameter c (Table 2). Figure 2 shows examples of artificial surfaces created by
the sine–cosine models and the corresponding theoretical SCA surfaces.

3.1.1. The convex-centred slope

The convex-centred slope (Figure 2a), which is convex in the central part of the surface,
is constructed from a cosine function. Starting from the summit point at the centre of the
artificial surface, the slope changes gradually from convex to concave along the profile.
This complex terrain type not only includes the simple convex terrain type simulated by
the ellipsoid surface in Zhou and Liu (2002), but also simulates the general spatial context
of convex terrain in real topography (the transition from convexity to concavity).

The maximum slope angle of the convex-centred artificial surfaces varies when the
relief of the artificial surface varies. The greater the relief (achieved by increasing the relief
parameter), the larger the maximum slope angle. The position with the maximum slope
gradient is in the middle of the back slope of the convex-centred artificial surface. In this
position, the profile curvature is zero and from here to the summit, the profile curvature is
convex with a value that gradually increases to a maximum (i.e. cπ2

/
2a2). The greater is

the relief, the larger is the maximum of the profile curvature. From this middle position to
the lowest position, the profile curvature of the convex-centred artificial surface gradually
decreases to a minimum (i.e. −cπ2

/
2a2). The greater the relief, the lower the minimum of

the profile curvature.
The characteristics shown in the convex-centred artificial surfaces are common where

convex terrain occurs within real topography, but cannot be simulated by the ellipsoid
model in Zhou and Liu (2002). No matter how the relief in the ellipsoid surface proposed
by that model is simulated, the maximum slope angle is always 90◦ and located at the
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Figure 2. Examples of artificial surfaces proposed in this article (see Table 2), the theoretical SCA
surfaces and the comparison domains.
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8 C.-Z. Qin et al.

lowest position at the foot of the slope. The maximum of the profile curvature (i.e. a
/

c2) is
also always located at the lowest position. The minimum of the profile curvature is always
located at the summit and is a non-zero positive value (i.e. c

/
a2). Although Zhou and Liu

(2002) suggested using part of the ellipsoid surface instead of the whole artificial surface
in practice, the maximum slope angle in such a case is again located at the lowest position
at the foot of the slope. Thus, the slope is still unrealistic. This shows that the convex-
centred slope can simulate the convex terrain types encountered in real topography more
realistically than the ellipsoid surface proposed in Zhou and Liu (2002).

3.1.2. The concave-centred slope

The concave-centred slope (Figure 2c) constructed by a cosine function, which is con-
cave in the central part of the surface, is an inverse version of the convex-centred slope.
Therefore, the results of comparable analysis between the concave-centred slope and Zhou
and Liu’s (2002) inverse ellipsoid surface are similar to that between the convex-centred
slope and the ellipsoid surface. The complex terrain type simulated by the concave-centred
surface includes not only the simple concave terrain type represented by the inverse ellip-
soid surface in Zhou and Liu (2002), but also the general spatial context of concave terrain
in real topography. The concave-centred slope is more realistic than it defined in the inverse
ellipsoid model.

3.1.3. The saddle-centred slope

The saddle-centred slope (Figure 2e) is constructed from the product of two sine functions.
The saddle point is at the centre of this surface. On this artificial surface, the ridge line
shows a smooth transition from convex to concave as position changes from the summit to
the saddle point. In the direction orthogonal to the ridge line, the profile originating from
the saddle point shows a smooth transition from convex to concave when moving from the
saddle point to the bottom of the depression. The spatial context of the saddle simulated
by the saddle-centred slope has a finite range of elevation that is unaffected by the user-
assigned boundaries. The theoretical SCA value at a given position has a specific, finite
value that is unaffected by the boundaries assigned arbitrarily by the user. This situation
is similar to that found in real saddle terrain but cannot be simulated by Zhou and Liu’s
(2002) hyperbolic paraboloid surface (as we described in Section 1).

3.1.4. The straight-ridge slope

The straight-ridge slope (Figure 2g) is constructed from a cosine function. A straight ridge
lies along the middle of the artificial surface. All contours are straight and parallel to the
ridge. Both parts of any one profile intersected by the straight ridge are symmetrical. There
is a smooth transition from convex to concave when moving from ridge to valley along
the profile. Compared with the simple planar terrain simulated by Zhou and Liu’s (2002)
planar surface, the straight-ridge slope can simulate the general spatial context of a terrain
type with parallel flow and thus is more typical of real topography.

3.2. Comparison domains for artificial surfaces

We imported the concepts of the computational domain, influence domain and comparison
domain proposed by Pan et al. (2004) for applying the artificial surfaces proposed above to
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the performance evaluation of flow direction algorithms. The computational domain of an
artificial surface is defined as the region in which we apply a flow direction algorithm for
computing SCA, that is, the spatial extent of the artificial surface. The influence domain is
defined as the area inside the computational domain that receives a flow contribution from
the lateral boundaries. The comparison domain, which is the area inside the computational
domain but outside the influence domain, receives no flow contribution from the bound-
aries (Pan et al. 2004). The performances of flow direction algorithms are only evaluated
in the comparison domain, thus avoiding the influence of the user-assigned boundaries on
the computed SCA.

The comparison domains of the four types of artificial surfaces proposed in this article
are shown in Figure 2b, d, f, and h as the white areas with isolines in the extent of artificial
surfaces. For the convex-centred slope and concave-centred slope, the comparison domain
is the same as the computational domain (Figure 2a–d). For the saddle-centred slope, we
narrowed the range of the comparison domain by assigning the summit as the endpoint of
the ridge line in the comparison domain. The point at which the profile originating from
the saddle point in the direction orthogonal to that of the ridge line reaches the bottom of
the depression was defined as being the endpoint in the comparison domain (Figure 2f),
thereby focusing attention on the saddle part of the saddle-centred slope.

4. Application

In this section, the proposed artificial surfaces are applied to evaluate the performances
of grid-based flow direction algorithms, so that the feasibility of the proposed artificial
surfaces can be instantiated.

4.1. Experimental design

Two artificial surface examples having different reliefs but the same spatial extents were
created for each type of proposed artificial surfaces. The two relief grades represent high-
relief and low-relief topography and were defined by setting the relief parameter c to be
70 and 20 m, respectively. For the convex-centred slope and concave-centred slope artifi-
cial surface types, the spatial extents of the artificial surfaces were defined as 800 × 600 by
setting the parameters a = 400 and b = 300 (in units of meters, being consistent with that
of the relief parameter). For the saddle-centred slope, the spatial extents of the artificial
surfaces were defined as 800 m × 800 m by setting the parameter a = 400 m. The artificial
surfaces for the straight-ridge slope were created by setting the parameter a = 300 m. The
ridge was oriented at 30◦ (east to north) and had a length of 1200 m. Although the param-
eter settings are arbitrary, we suppose that there is less loss of generality. Figure 2 shows
the high-relief examples of proposed artificial surfaces and the corresponding theoretical
SCA surfaces. The theoretical SCA surfaces were created by equations in Table 2.

The artificial DEMs were created by sampling the artificial surface examples at a series
of resolutions (i.e. 1, 5, 10 and 20 m), for a quantitative and multiple-scale assessment of
flow direction algorithms. The series of resolutions used in this study are comparable with
those used in many applications at finer scale (e.g. Kienzle 2004, Erskine et al. 2007, Qin
et al. 2011). We think the grid size coarser than 20 m is not sufficient for representing
the continuous change of the artificial surface examples in raster manner and performing
statistical analysis in this study.
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10 C.-Z. Qin et al.

These artificial DEMs were applied in the error assessment of four representatives
of grid-based flow direction algorithms, namely, D8 (O’Callaghan and Mark 1984), D-
inf (Tarboton 1997), FD8 (Quinn et al. 1991) and MFD-md (Qin et al. 2007). D8 is a
classic single flow direction algorithm in which all water from a cell flow into one and
only one neighbouring cell with the steepest downslope. It has been implemented in many
widely used GIS software packages, such as ArcGISTM (Environmental Systems Research
Institute, Inc., www.esri.com).

D-inf, as one of the most frequently used flow direction algorithms, determines the flow
direction as the direction of the steepest descent on the eight planar triangular facets formed
between the cell of interest and its neighbouring cells (Tarboton 1997). In D-inf, the flow
direction angle is represented as a continuous quantity between 0 and 2π . Flow from each
cell drains to at most two neighbouring cells. D-inf algorithm has been implemented in the
TauDEM© tool developed by Prof. David G. Tarboton (http://hydrology.usu.edu/taudem/
taudem3.1/).

FD8 and MFD-md algorithms are representatives of multiple flow direction (MFD)
algorithms with a fixed-flow-exponent scheme and adaptive-flow-partition scheme, respec-
tively (Qin et al. 2007). In the FD8 algorithm, flow from a cell drains into all downslope
neighbouring cells based on the flow partition scheme, as follows:

di = (tan βi)p × Li∑8
j=1 (tan βj)p × Lj

(2)

where di is the proportion of flow draining into the i-th neighbouring cell, tan βi is the
slope gradient between the central cell and its i-th neighbouring cell, the exponent p is
the flow partition exponent (p = 1 in FD8) and Li is the effective contour length of the
i-th neighbouring cell. The value of Li is 0.5 for downslope cells in cardinal directions,
0.354 for downslope cells in the diagonal directions and 0 for non-downslope cells (Quinn
et al. 1991). In the MFD-md algorithm, a linear function of maximum downslope gradient
is used to replace the flow partition exponent p in Equation (2) to model the flow partition,
making the algorithm adaptive to the local terrain conditions (Qin et al. 2007).

When each artificial DEM was sampled from the proposed artificial surface, a theo-
retical SCA grid was also created by sampling the corresponding theoretical SCA surface
at the same resolution as that of the artificial DEM. Thus, the errors in the flow direction
algorithm can be quantitatively calculated by

Ei = SCAi − SCAtrue
i (3)

where Ei is the error in the flow direction algorithm at the i-th cell, and SCAtrue
i and SCAi

are the theoretical SCA and the computed SCA for the i-th cell, respectively.

4.2. Aspects of evaluation

The performance of flow direction algorithm applied to the proposed artificial DEMs can
be evaluated from three aspects. First, the errors in the tested flow direction algorithms at
different DEM resolutions can be quantitatively assessed using the root mean square error
(RMSE), mean error (ME) and standard deviation (SD). Second, the cumulative frequency
distribution of error in the flow direction algorithms applied to each artificial DEM can be
computed for the evaluation of the systematic bias of each tested flow direction algorithm.
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Furthermore, the map of the error in each tested flow direction algorithm can be used for a
spatially explicit evaluation of the error in the flow direction algorithm. Note that the eval-
uation by each artificial DEM is made only for the cells completely in the corresponding
comparison domain.

4.3. Results

Table 3 lists the RMSE, ME and SD when applying D8, D-inf, FD8 and MFD-md to the
proposed artificial low-relief DEMs at a series of resolutions. The table also shows that
each flow direction algorithm yielded much lower errors for convex-centred or straight-
ridge slope than for concave-centred or saddle-centred slope. D8 performed worst at all
tested resolutions.

For convex-centred slope, RMSE values from other tested flow direction algorithms are
much lower than from D8 (Table 3). MFD-md performed best at the resolutions of 1 and
5 m. Under the convex-centred DEMs with resolutions of 10 and 20 m, RMSE from MFD-
md is slightly higher than that from D-inf but still lower than that from FD8 or D8. When
the resolution of the artificial DEM is progressively coarsened from 1 to 20 m, RMSE
values from MFD-md and FD8 increase slightly and constantly. Contrarily, RMSE values
from D8 and D-inf decrease slowly and constantly with coarsening the DEM resolution.

For concave-centred slope, the RMSE values from D-inf, FD8 and MFD-md are very
close. FD8 performed best under the 1-m DEM when D-inf performed best under the
concave-centred DEMs with other resolutions. RMSE from each tested flow direction algo-
rithm decreases constantly when the DEM resolution gets coarser. The level of decrease in
RMSE from D8 is much higher than those from D-inf, FD8 and MFD-md.

For saddle-centred slope with all tested resolutions, MFD-md performed best and
D8 performed worst. RMSE from FD8 is slightly higher than that from MFD-md when
RMSE from D-inf is higher than that from FD8. RMSE from each tested flow direc-
tion algorithm decreases constantly when the DEM resolution gets coarser. The level of
decrease in RMSE from D8 is much higher than that from D-inf, FD8 or MFD-md. This
situation is similar to that for concave-centred slope.

For straight-ridge slope, MFD-md performed best under the DEMs with almost all
tested resolution. Only under the DEM with 20 m resolution, RMSE from MFD-md is
slightly higher than that from D-inf but still much lower than that from FD8 or D8. When
the resolution gets coarser, RMSE from MFD-md, FD8 and D8 increase slightly and con-
stantly. Contrarily, RMSE from D-inf decreases slowly and constantly with coarsening the
DEM resolution.

Table 4 lists the RMSE, ME and SD when applying each flow direction algorithm to the
artificial high-relief DEMs at a series of resolutions. The comparison between Tables 3 and
4 shows that with coarsening the DEM resolution, each tested flow direction algorithm has
the same error-changing trends under different reliefs. For D8, D-inf and FD8, the RMSE
values under high-relief terrains are almost the same as those under the low-relief DEMs.
The only exception is under the saddle-centred DEMs with 1 m resolution, which RMSE
values from D8, D-inf and FD8 applied with high relief are higher than the corresponding
RMSE values with low relief. For MFD-md algorithm, RMSE values under artificial high-
relief DEMs are generally lower than under the corresponding low-relief DEMs, although
the case of the saddle-centred DEM with 1 m resolution and the cases of the straight-ridge
DEMs with resolutions of 1 and 5 m show the opposite situation.

The above quantitative assessment with the proposed artificial DEMs with different
reliefs at a series of resolutions shows that the applicable conditions (e.g. terrain condition
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and resolution of DEM) of the tested flow direction algorithms are different. The MFD-md
algorithm generally performed better under simulated terrain conditions than D-inf,
FD8 or D8.

The cumulative frequency distributions of errors from the flow direction algorithms
were computed for the artificial DEMs with 1 m resolution for a given type of proposed
artificial surface under different reliefs (Figure 3). Figure 3 shows that the cumulative fre-
quency distributions of errors from D8, D-inf and FD8 are invariant under different reliefs.
These results are consistent with the steepest downslope-direction characteristic of D8 and
D-inf and the fixed-flow-partition characteristic of FD8, respectively. The number of cells
in which D8 yields a negative error is obviously larger than the number of cells in which
D8 yields a positive error. This means that the D8 algorithm tends to underestimate the
SCA. D-inf algorithm also tends to underestimate the SCA, but with a much lesser degree
than D8 algorithm. FD8 yields a positive error in almost all cells; so the FD8 algorithm
tends to overestimate the SCA.

Figure 3 shows that MFD-md yields error near zero in more cells than D8, D-inf or
FD8. This indicates that MFD-md performs better than D8, D-inf or FD8. As the terrain of
the artificial DEMs varies from low relief to high relief, the cumulative frequency distribu-
tion of errors from MFD-md shows a transition between those of FD8 and D-inf (Figure 3).
This means that MFD-md performs more similarly to FD8 in low-relief terrains and more
similarly to D-inf in high-relief terrains. The performance of MFD-md with the artificial
DEMs is consistent with the properties of MFD-md, which is adaptive to the local terrain
conditions as was also shown in an application using a real DEM of a watershed (Qin et al.
2007). The cumulative frequency distributions of errors from the flow direction algorithms
applied with other tested resolutions show similar phenomena. Limited by the length, those
with other tested resolutions are not listed in this article.

The map of error in each tested flow direction algorithm is available for a spatially
explicit and detailed evaluation on the occurrence of error. The error maps of flow direction
algorithms tested with the convex-centred DEMs with 1 m resolution (Figure 4a) show
that the error maps for D8, D-inf and FD8 are invariant under different reliefs, while the
error maps for the MFD-md algorithm vary between reliefs of the artificial DEM. The
magnitude of error in D8 is much larger than that in D-inf or MFD. In addition, the error
from D8 shows a regular change between positive and negative in different directions from
the summit of the convex-centred slope (Figure 4a). This is obviously an effect of the error
accumulation originating from the single-flow-direction scheme in D8, which is avoided in
the other tested flow direction algorithms.

Generally, the error from D-inf, FD8 and MFD-md is higher at the lower positions of
the convex-centred slope than at the upper positions (Figure 4a). Over most of the area,
the D-inf algorithm underestimates the SCA when FD8 overestimates the SCA. An effect
similar to that with FD8 was seen with the MFD-md algorithm applied with low relief,
but to a lesser degree. The overestimate of the computed SCA by the MFD-md algorithm
is further moderated when MFD-md was applied to a high-relief DEM (Figure 4a). Some
areas with negative error in the MFD-md algorithm are revealed where D8 has negative
error. These characteristics confirm the key features of MFD-md, in particular its ability to
adapt to the local terrain conditions, which results in MFD-md performing more similarly
to FD8 in low-relief terrains and more similarly to D8 under high-relief terrains. The error
maps of the flow direction algorithms applied with other tested resolutions show similar
characteristics. Limited by the length, those maps are not given in this article.

The error maps of flow direction algorithms tested with the concave-centred, saddle-
centred slope and straight-ridge DEMs with 1 m resolution are shown in Figure 4b, c,
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Figure 3. Cumulative frequency distributions of errors from D8, D-inf, FD8 and MFD-md algo-
rithms applied to artificial DEMs (grid size = 1 m) created from the proposed artificial surfaces.
(MFD-md (low relief) and MFD-md (high relief) in the legend means the MFD-md algorithm applied
to the low-relief (c = 20) case and the high-relief (c = 70) case, respectively). (a) Convex-centred
DEM, (b) concave-centred DEM, (c) saddle-centred slope DEM and (d) straight-ridge DEM.
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Figure 4. Maps of the error in each tested flow direction algorithm when applied to the proposed
artificial DEMs (grid size = 1 m) created from the proposed artificial surfaces. (a) Convex-centred
DEM, (b) concave-centred DEM, (c) saddle-centred slope DEM and (d) straight-ridge DEM.

and d, respectively. Similarly, Figure 4b, c, and d show that the magnitude of error in D8 is
much larger than that in D-inf, FD8 or MFD-md. Over most of the area, the D-inf algorithm
underestimates the SCA when FD8 overestimates the SCA. The MFD-md algorithm, due to
its ability to adapt to the local terrain conditions, performed better under simulated terrain
types than FD8, D-inf or D8, which has invariant error maps under different reliefs of a
specific surface simulated. The error from D8 tested with the concave-centred slope shows
a strong bias towards specific directions (Figure 4b). The information gained from the
spatially explicit error mapping is valuable not only for the evaluation of the performance
of a specific flow direction algorithm but also for a potential improvement of the algorithm
(e.g. Zhan et al. 2012).

5. Discussion and conclusions

Existing artificial surfaces developed for evaluating the performances of grid-based flow
direction algorithms only simulate oversimplified terrain types which are very uncommon
in real topography and are unrealistic. This article proposed a set of new artificial surfaces
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simulating the complex terrain types which incorporate both the simple terrain types and
their spatial context. This is valuable because the complex terrain types simulated are typ-
ical and widespread in real topography. Therefore, conclusions of algorithm performance
drawn from assessments based on the proposed artificial surfaces have wider applicability
and thus are more convincing for guiding the application of algorithm than those based on
existing artificial surfaces for evaluating flow direction algorithms.

As shown in this study, a multiple-scale analysis on the performance of flow direction
algorithms can be made based on the DEMs created by sampling the proposed artificial
surfaces at a range of resolutions. The error maps produced, when the proposed artificial
DEMs are applied to flow direction algorithms, are available to a spatially explicit and
detailed discussion on the performance of the tested algorithms. Results of testing four
representative flow direction algorithms with the proposed artificial surfaces show that
MFD-md generally yielded lower error under simulated terrain conditions than D8, D-inf
and FD8. D8 performed worst in the test. MFD-md performed more similarly to FD8 in
low-relief terrains and more similarly to D-inf in high-relief terrains. Over most of the area,
D-inf underestimated the SCA when FD8 overestimated the SCA.

It should be noted that the terrains simulated by the proposed artificial surfaces are
smooth slope surfaces, as with other artificial surfaces. Thus, the evaluation of the flow
direction algorithms is mainly focused on their performance for slope surfaces (including
flow-initiation positions, such as ridges), not their performance in channels. We believe
this is appropriate because of two aspects. First, the main difference between the SCA
computed by different flow direction algorithms is along ridges and side slopes, and not
in the more convergent terrain (such as channels) (Erskine et al. 2006). Second, accurate
spatial distributions of SCA or other SCA-based topographic attributes for hill slopes are
important in a number of terrain-related applications, especially at fine scales (Hengl and
Reuter 2009). Thus, evaluation of the performance of flow direction algorithms on hill
slopes is appropriate with the artificial surfaces. It should also be noted that the evaluation
result with artificial surfaces is scale specific because of not only the spatial extents of the
simulated slope surfaces, but also the resolution(s) of the artificial DEMs.

It is also possible that the proposed artificial surfaces could be used to evaluate the
performances of algorithms computing the SCA-based topographic attributes (such as
topographic wetness index and stream power index). Clearly, more work is needed to
confirm the utility of these artificial surfaces in this context.
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