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Terrain attributes such as slope gradient and slope shape, computed from a gridded
digital elevation model (DEM), are important input data for landslide susceptibility
mapping. Errors in DEM can cause uncertainty in terrain attributes and thus influence
landslide susceptibility mapping. Monte Carlo simulations have been used in this article
to compare uncertainties due to DEM error in two representative landslide susceptibil-
ity mapping approaches: a recently developed expert knowledge and fuzzy logic-based
approach to landslide susceptibility mapping (efLandslides), and a logistic regression
approach that is representative of multivariate statistical approaches to landslide sus-
ceptibility mapping. The study area is located in the middle and upper reaches of the
Yangtze River, China, and includes two adjacent areas with similar environmental con-
ditions – one for efLandslides model development (approximately 250 km2) and the
other for model extrapolation (approximately 4600 km2). Sequential Gaussian simula-
tion was used to simulate DEM error fields at 25-m resolution with different magnitudes
and spatial autocorrelation levels. Nine sets of simulations were generated. Each set
included 100 realizations derived from a DEM error field specified by possible combi-
nations of three standard deviation values (1, 7.5, and 15 m) for error magnitude and
three range values (0, 60, and 120 m) for spatial autocorrelation. The overall uncer-
tainties of both efLandslides and the logistic regression approach attributable to each
model-simulated DEM error were evaluated based on a map of standard deviations
of landslide susceptibility realizations. The uncertainty assessment showed that the
overall uncertainty in efLandslides was less sensitive to DEM error than that in the
logistic regression approach and that the overall uncertainties in both efLandslides and
the logistic regression approach for the model-extrapolation area were generally lower
than in the model-development area used in this study. Boxplots were produced by
associating an independent validation set of 205 observed landslides in the model-ex-
trapolation area with the resulting landslide susceptibility realizations. These boxplots
showed that for all simulations, efLandslides produced more reasonable results than
logistic regression.

Keywords: DEM error; landslide susceptibility mapping; error propagation; Monte
Carlo simulation; uncertainty

*Corresponding author. Email: axing@lreis.ac.cn; azhu@wisc.edu. Also affiliated with the Space
Environment Prediction Center, Center for Space Science and Applied Research, Chinese Academy
of Sciences, Beijing, PR China.

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

gr
ap

hi
c 

Sc
ie

nc
es

 &
 N

at
ur

al
 R

es
ou

rc
es

 R
es

ea
rc

h]
 a

t 1
8:

20
 2

6 
M

ar
ch

 2
01

3 



2 C.-Z. Qin et al.

1. Introduction

As a major geological hazard landslides cause numerous human casualties and significant
damage to natural ecosystems and human-built infrastructures (Chung et al. 1995, Dai and
Lee 2002, Lee and Choi 2004, Guzzetti et al. 2005). To mitigate losses and damage from
landslides, many landslide susceptibility studies have been carried out to map locations
prone to landslides (Aleotti and Chowdhury 1999, Guzzetti et al. 1999, Dai et al. 2002,
Ohlmacher and Davis 2003, Brenning 2005). Most approaches to landslide susceptibil-
ity mapping are data-driven approaches that have been developed based on multivariate
statistical models (Dai et al. 2002). However, such models suffer from two critical defi-
ciencies: (1) lack of reliability, stability, and portability (Carrara et al. 1991, van Westen
et al. 1993); and (2) difficulty in representing complex nonlinear relationships between
landslide susceptibility and predisposing factors (Zhu et al., under review).

Zhu et al. (2004), Wang (2008) and Zhu et al. (under review) have developed a new,
expert knowledge and fuzzy logic-based approach to landslide susceptibility mapping
(efLandslides), which combines GIS techniques and fuzzy logic. The basic idea of this
approach is to find out the complex nonlinear relationships between landslide susceptibil-
ity and predisposing factors (e.g. geology, terrain) for a certain study area directly from
local landslide experts. These relationships are then used to evaluate landslide susceptibil-
ity at various locations (or cells in a raster data model) across the study area. Compared
with the statistical functions used in multivariate statistical approaches, the knowledge of
experts formalized in fuzzy logic has been asserted to be more reliable, more portable, and
more generally applicable (Zhu 1999, Zhu et al. 2004, Luger 2005).

Terrain attributes such as slope gradient and slope shape, which can be computed from
a gridded digital elevation model (DEM), are one of the most important types of input
data for landslide susceptibility mapping. These attributes have uncertainty due to eleva-
tion error, which is inevitable with DEM data (Fisher 1991, Holmes et al. 2000, Fisher and
Tate 2006, Wechsler 2007, Wilson 2012). Therefore, DEM error will affect landslide sus-
ceptibility mapping in both the model-development and model-extrapolation stages. Little
research has been done to date on comparison of the uncertainties due to DEM error in
expert knowledge-based approaches and multivariate statistical approaches to landslide
susceptibility mapping.

This article compares the uncertainties due to DEM error in an expert knowledge-
based approach (such as efLandslides) and a widely used multivariate statistical approach
(the logistic regression approach). Section 2 briefly introduces the efLandslides approach
and the logistic regression approach. The uncertainty assessment method is described in
Section 3. Section 4 presents the experimental design in a study area that consists of
two parts, one for model development and the other for model extrapolation. Section 5
compares the uncertainty assessment results of efLandslides and the logistic regression
approach in both areas. Conclusions are drawn in Section 6.

2. Approaches to landslide susceptibility mapping in this study

2.1. efLandslides: expert knowledge and fuzzy logic-based approach to landslide
susceptibility mapping

efLandslides includes three general steps (Figure 1) (Zhu et al., under review): (1) knowl-
edge extraction from local landslide experts, (2) characterization of predisposing factors,
and (3) fuzzy inference (susceptibility mapping).
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Step 1: Knowledge extraction from domain experts

Step 2: Characterization of predisposing factor layers in GIS

Step 3: Fuzzy inference

Relationship between landslide
susceptibility and predisposing factors

Predisposing factor data layers

Landslide susceptibility map

Predisposing factors

Figure 1. Framework of efLandslides.

2.1.1. Knowledge extraction from local landslide experts

Extracting empirical knowledge from local landslide experts is crucial and should
be conducted by a proficient knowledge engineer following a well-defined knowledge
acquisition process (Zhu 1999). efLandslides needs two types of knowledge obtained from
local landslide experts: (1) knowledge of the predisposing factors affecting landslide sus-
ceptibility, and (2) knowledge of the relationships between these predisposing factors and
landslide susceptibility. Thus the knowledge can be formalized in terms of a set of pre-
disposing factors and a set of fuzzy membership functions describing the relationships
between these predisposing factors and landslide susceptibility (Zhu et al. 2004).

2.1.2. Characterization of predisposing factors

Predisposing factors in efLandslides are those used in the formalized knowledge extracted
from local landslide experts, which can be characterized using standard geographical infor-
mation system (GIS) data-processing techniques or customized programs. Predisposing
factors typically include variables derived through digital terrain analysis (e.g., slope
gradient and slope aspect).

2.1.3. Fuzzy inference of landslide susceptibility

Landslide susceptibility at a given location can be inferred by evaluating individual land-
slide susceptibilities on the basis of predisposing factors or combinations of factors and
then summarizing all these individual values at this location (Zhu et al. 2004). A land-
slide susceptibility classification map can also be derived from the landslide susceptibility
map by using an expert-defined lookup table with landslide susceptibility values and levels
(such as very low, low, high, and very high) (Wang 2008).

2.2. Logistic regression approach to landslide susceptibility mapping

Logistic regression belongs to the family of generalized linear models (Dobson 1990).
It uses a linear combination of predictor factors (independent variables) to determine the
probability of occurrence of an event (a dependent variable that has only two states). As one
of the widely used multivariate statistical approaches to landslide susceptibility mapping
(Atkinson and Massari 1998, Dai and Lee 2002, Ohlmacher and Davis 2003, Ayalew
and Yamagishi 2005, Brenning 2005, Lee 2005, Bai et al. 2010), the logistic regression
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4 C.-Z. Qin et al.

approach to landslide susceptibility mapping explains the relationships between landslide
susceptibility (L) and a set of predisposing factors using the best fitting logistic regression
model (Atkinson and Massari 1998):

logit (L) = β0 +
n∑

i=1

βiEi,

where Ei is the ith input predisposing factor, βi is the coefficient of Ei estimated from
training data using the maximum-likelihood method, and logit (·) is the logistic link
function:

logit (L) = log

[
L

1 − L

]
.

Thus L can be rewritten as

L = 1

1 + e−Y
, where Y = β0 +

n∑
i=1

βiEi.

3. Method of uncertainty assessment

3.1. Basic idea

The Monte Carlo method (also known as stochastic simulation) has been widely used to
analyze the propagation of uncertainty in a model when its functions are too complex for
analytical approaches (Heuvelink 1998, Zhu 2005, Lindsay 2006). Based on the concept
of realizations (Hammersley and Handscomb 1979), the method simulates a set of input
realizations based on covariance among the inputs and the uncertainty associated with
each input. For each input realization, the result for the model of interest is computed.
The resulting realizations form a distribution. Parameters such as the mean and standard
deviation (SD) of the distribution can be estimated from these realizations and can be used
to assess both the expected results of the model and the uncertainty associated with the
inputs (Heuvelink 1998, Zhu 2005).

The Monte Carlo method is a viable method for this study. The proposed application of
the Monte Carlo method is shown in Figure 2. A DEM error field is first generated based
on a user-defined DEM error model. Then a DEM realization is generated by adding the
DEM error field to the original DEM. The realization of terrain attributes derived from
the DEM realization can be used as input to each of the tested mapping approaches to
produce a realization of landslide susceptibility. This process is repeated for a user-defined
number of iterations to accomplish a so-called ‘simulation’ for assessing uncertainty in the
mapping approach under test. This makes it possible for us to compare uncertainties due
to DEM error in efLandslides and in logistic regression.

In the workflow of the Monte Carlo method, two key decisions must be made before
application: (1) how to simulate the DEM error field, and (2) which evaluation aspects to
apply to the resulting landslide susceptibility realizations.
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DEM error model
(Magnitude & autocorrelation)

DEM error simulating

Terrain attribute computing

Evaluation method to assess uncertainty associated with the result

Error field
realizations

Slope
realizations

Slope shape
realizations

Aspect
realizations

Landslide susceptibility
realizations

Landslide susceptibility
realizations

Other data
(Geology, ...)

DEM realizations

DEM

. . .

efLandslides Logistic regression

Figure 2. Workflow of Monte Carlo method for assessing uncertainties due to DEM error in
efLandslides and logistic regression.

3.2. Sequential Gaussian simulation of the DEM error field

In this study, sequential Gaussian simulation (Goovaerts 1997) was used to simulate the
DEM error field. This is a commonly used stochastic simulation method for generat-
ing DEM error fields with different magnitudes and degrees of spatial autocorrelation
for assessing uncertainty due to DEM error in specific application models (e.g., Holmes
et al. 2000, Temme et al. 2009). Based on the second-order stationarity assumption, each
variable in the sequential Gaussian simulation is simulated sequentially according to a nor-
mal conditional cumulative distribution function, which is fully characterized by a simple
kriging system. The conditioning data used in the kriging system consist of the original
data and all previously simulated data within a neighborhood of the location being simu-
lated. If the number of original data points is nonzero, the sequential Gaussian simulation
is used as a conditional simulation (e.g., Holmes et al. 2000); otherwise, it is used as a
nonconditional simulation (Goovaerts 1997). In this study, the sequential Gaussian sim-
ulation has been used as a nonconditional simulation because the objective is to assess
the uncertainty in landslide mapping that occurs due to DEM error, not to characterize
DEM quality. The magnitude and spatial autocorrelation of the stochastic field simulated
by sequential Gaussian simulation are controlled by the SD and range, respectively, of the
semi-variogram model.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

gr
ap

hi
c 

Sc
ie

nc
es

 &
 N

at
ur

al
 R

es
ou

rc
es

 R
es

ea
rc

h]
 a

t 1
8:

20
 2

6 
M

ar
ch

 2
01

3 



6 C.-Z. Qin et al.

3.3. Evaluation aspects

Uncertainty due to DEM error in the mapping approaches under test was quantitatively
assessed based on the realizations of the landslide susceptibility map. A map of mean
landslide susceptibility values was derived as the expected landslide susceptibility result
under the simulated DEM error model. The SD of the susceptibility in each cell was cal-
culated to assess the uncertainty due to DEM error in the tested mapping approaches. The
larger the SD, the greater is the uncertainty. From the map of simulated SD values, the
mean SD can be calculated to assess the overall uncertainty of the landslide susceptibility
predictions due to the simulated DEM error model:

Mean (SD) =
∑

i

∑
j

SDi,j

count (cell)

where SDi,j is the SD of cell (i, j). Generally, the larger the mean SD, the greater is the
overall uncertainty.

A boxplot is produced by associating an independent validation set of observed land-
slides in the study area with the realizations of the landslide susceptibility classification
map from each simulation. This boxplot can be used to assess the uncertainty of the land-
slide occurrence density within each landslide susceptibility level derived by the mapping
approaches under test.

4. Experimental design

4.1. Study area

The middle and upper reaches of the Yangtze River, China, where this study was con-
ducted, are high landslide risk areas (Wu et al. 2001, Liu et al. 2004, Bai et al. 2010). The
study area was divided into two parts with similar environmental conditions, separated by
approximately 10 km. One part (the Kaixian County area) was used to develop the models
for the mapping approaches, and the other (the Three Gorges area) was used for model
extrapolation (Figure 3).

4.1.1. Model-development area in Kaixian County

The model-development area is located in Kaixian County of Chongqing Municipality.
This area is approximately 250 km2 in size and has generally high relief (Figure 4a). The
average slope gradient is approximately 18◦ (Table 1). A DEM with a 25-m grid size was

N

Legend

Yangtze river

Model development area

Model extrapolation area

Elevation (m)
2642

–28
0 10 20

km

Figure 3. Location of the study area.
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N

Elevation

1070 m

147 m

(a)

(b)

0 2.5 5 10
km

J1-2z
J1z
J2s
J2x
J2xs
J3 p
J3s
Q

Figure 4. Map of the model-development area (Kaixian County): (a) topography; (b) lithology.

generated from a 1:10,000 scale topographic map, which was created in the 1960s (Wang
2008). The lithology in this area is of three major types: the lower to middle Jurassic sys-
tem (including J2s, J2xs, J2x, J1-2z, and J1z), which is composed mainly of sandstone,
siltstone, mudstone, and shale; the upper Jurassic system (including J3s and J3p), which
is made up mainly of sandstone and siltstone; and the Quaternary system (Q), which is
composed primarily of recent deposits in river valleys (Figure 4b).
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8 C.-Z. Qin et al.

Table 1. General statistics of the topography of the study area.

Elevation (m) Slope gradient (◦)

Min Max Mean SD Mean SD

Model-development area 147 1070 387.5 204.2 18.4 13.2
Model-extrapolation area 77 1961 686.9 362.9 23.3 12.2

4.1.2. Model-extrapolation area in the Three Gorges

The model-extrapolation area is located in the Three Gorges along the Yangtze River, in
part of Chongqing Municipality (Figure 3, Table 1). This area is approximately 4600 km2.
The DEM was created from 1:50,000 scale topographic maps which were made in the
1960s (Wang 2008). The DEM grid size was also 25 m (Figure 5a).

The Three Gorges were formed by severe incision of massive limestone mountains of
lower Paleozoic and Mesozoic age along narrow fault zones in response to Quaternary
uplift (Liu et al. 2004). There are two major types of lithology in this area: (1) the

N

Elevation

1961 m

77 m

1961 m

77 m

(a)

(b)

(c)

0 12.5 25 50
km

D+C
E2+3
J1-2z
J1z
J2s
J2xs
J3p
J3s
P1
P2

T1d
T2b
T2j
T3xj

s

Landslide

Elevation

Figure 5. Map of the model-extrapolation area (Three Gorges area): (a) topography; (b) lithology;
(c) location map of observed landslides.
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Jurassic system (including J2s, J3p, J3s, J1z, J2xs, and J2x), consisting mainly of mud-
stone, sandstone, siltstone, shale, and coal; and (2) the Triassic system (including T2b,
T1j, T3xj, and T1d), which is composed mainly of limestone, shale, claystone, dolomite,
gypsum, sandstone, siltstone, and coal (Figure 5b).

In this area, 205 landslide occurrences compiled by Wang (2008) (Figure 5c) were used
as the validation set to produce a boxplot for assessing the uncertainty of the landslide
occurrence density within each landslide susceptibility level. The spatial distribution of
observed landslides shows a linear pattern along the Yangtze River (see also Figure 3).

4.2. Modeling of expert knowledge-based landslide susceptibility mapping

4.2.1. Choosing and characterizing the predisposing factors

Based on the work reported in Zhu et al. (2004), Wang (2008) and Zhu et al. (under review),
seven essential predisposing factors were chosen for efLandslides in the study area – three
geologic attributes (lithology, stratum dip, and stratum strike) and four terrain attributes
(slope gradient, slope aspect, slope height, and slope shape). Slope height (or the relative
relief of a hill slope) was defined as the elevation difference between the highest elevation
(at a divide or a local peak) and the lowest elevation (in a channel or pit) along a downslope
profile of a hill slope (Giles and Franklin 1998, MacMillan et al. 2000). Slope shapes were
classified into six general types by the local expert: (1) flat area; (2) concave hill slope;
(3) upper concave, lower convex hill slope; (4) straight hill slope; (5) convex hill slope;
and (6) upper convex, lower concave hill slope. Characterizations of these predisposing
factors in the study area are summarized in Table 2.

4.2.2. Representing the relationship between landslide susceptibility and predisposing
factors

Zhu et al. (2004, 2006) classified the lower to middle Jurassic system lithology type
(including J2s, J2xs, J2x, J1-2z, and J1z) as the most susceptible type to landslides;
the upper Jurassic system (including J3s and J3p) as a moderately susceptible type; and
the Quaternary system (Q) as the least susceptible to landslide occurrence. Furthermore,
knowledge from landslide experts on the relationships among the predisposing factors for

Table 2. Characterization of predisposing factors in the study area.

Predisposing factors Characterization

Geology Lithology The geological data were created by digitizing and rasterizing a
1:200,000 geological map in the study area.

Stratum dip Stratum dip was generated using inverse distance weighted
(IDW) interpolation.

Stratum strike Stratum strike was generated using nearest-neighbor
interpolation.

Terrain Slope gradient Slope gradient and slope aspect were derived using Wood’s
(1996) algorithms with a neighborhood size of 200 m.

Slope aspect Slope height and slope shape were characterized by tracing the
flow direction from ridge to valley (Giles and Franklin 1998,
MacMillan et al. 2000, Wang 2008, Matsuura and Aniya
2012).

Slope height
Slope shape
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10 C.-Z. Qin et al.

this study area was encoded into four combinations of predisposing factors (Zhu et al.
2004, 2006): (1) the difference between the slope gradient and the stratum gradient,
(2) slope gradient and lithology, (3) slope height and lithology, and (4) slope shape and
lithology.

A landslide susceptibility value (in the range [0,1]) based on each individual combi-
nation of predisposing factors in the model-development area can be computed using the
equations proposed in Zhu et al. (2006). The specifics of the equations are not included in
this article and interested readers are referred to Zhu et al. (2006, under review) for details.

The landslide susceptibility maps for all individual predisposing factor combinations
were then aggregated into a map of overall landslide susceptibility (with range [0, 4]).
From each overall landslide susceptibility map a landslide susceptibility classification map
can be derived by assigning the value ranges [0, 1), [1, 2), [2, 3), and [3, 4] to landslide
susceptibility classes of very low, low, high, and very high, respectively.

For the model-extrapolation area, the knowledge of the relationships between land-
slide susceptibility and predisposing factors was transferred directly from the model-
development area, with a slight adjustment because of the different lithology in the two
areas (Wang 2008). In the model-extrapolation area, lithology types D + C, J3s, S, T2b,
and T3xj are the most susceptible types to landslides; lithology types J1z, J2s, J3p, and T2j
are moderately susceptible types; and lithology types E2 + 3, J1 – 2z, J2xs, P1, P2, and
T1d are the least susceptible types (Zhu et al. 2004, Wang 2008, Zhu et al. under review).

4.3. Modeling of logistic regression model for landslide susceptibility mapping

The logistic regression model for the Kaixian study area using 21 locations where land-
slides have occurred since 1978 (as positive evidence), which were compiled by Wang
(2008), and 21 randomly selected locations without landslide occurrences (as negative evi-
dence) (Wang 2008). The predisposing factors used for the logistic regression model were
the same as those used in efLandslides. The best fitting logistic regression model was

L = 1

1 + e−(3.745×Lithology + 0.497 × GradientDifference − 25.484 × SlopeGradient + 0.012 × SlopeHeight − 10.555)
,

where GradientDifference is the difference between the slope gradient and the stratum
gradient.

4.4. Simulations of DEM error fields

Sequential Gaussian simulation was carried out using the GSLIB software (Deutsch and
Journel 1998). The parameter-settings of DEM error fields in this study were based on the
spatial characterizations of DEM error with similar data sources and terrain features in
other DEM error-related studies (e.g. Oksanen and Sarjakoski 2005, Temme et al. 2009).
To simulate DEM error fields of different magnitudes in the uncertainty assessment, three
error magnitudes were used in the sequential Gaussian simulation by setting the error SD
(SDerr) to 1, 7.5, and 15 m. These are considered optimistic, moderate, and pessimistic
estimates, respectively, of DEM error magnitude. Three range parameter values (range = 0,
60, and 120 m) were also used in the sequential Gaussian simulation to simulate DEM
error fields within a range from totally random or low spatial autocorrelation through high
spatial autocorrelation when the spherical model was used to fit the semi-variogram and the
nugget was set to zero. Thus, nine simulations (3 error magnitudes × 3 range values) were
performed in both the model-development and the model-extrapolation areas. For each
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simulation the number of realizations was set to 100 because of the limited computing
resources available for this study.

5. Results and discussion

5.1. Model-development area

Figure 6a shows the mean value of the SD map derived from the landslide suscepti-
bility realizations from both efLandslides and logistic regression for each simulation in
the model-development area. Uncertainty trends changing in opposite directions were
observed under simulations with different DEM error magnitudes. For the simulations with
the lowest DEM error magnitude (SDerr = 1 m), the overall uncertainties in both efLand-
slides and logistic regression are very close and slightly decrease with increasing spatial
autocorrelation in the simulated DEM error field. By contrast, for simulations with greater
DEM error magnitude (SDerr = 7.5 and 15 m), the overall uncertainties in both the efLand-
slides and logistic regression models increase with increasing spatial autocorrelation in the
simulated DEM error field, although the overall uncertainty in efLandslides is clearly lower
than in logistic regression.

The opposite changing uncertainty trends in efLandslides or logistic regression under
simulations with different DEM error magnitudes may be attributed to the different char-
acteristics of the terrain factor algorithms used. As shown in Table 2, the slope gradient
and aspect were calculated using Wood’s (1996) surface-fitting algorithm by specifying a
larger neighborhood size (200 m). For a specific simulated DEM error magnitude, when
the spatial autocorrelation of the simulated DEM error field increases from totally random
(range = 0 m) to a higher level (e.g. range = 60 or 120 m), the fitted surface from the large
neighborhood used for calculating slope gradient and aspect tends to be different from that
fitted from the original DEM data. This means that the uncertainty in calculating slope gra-
dient and aspect increases, as is apparent in the mean value of the SD map derived from the
slope gradient realizations for each simulation in the model-development area (Figure 7a).

However, the uncertainty in calculating slope shape and height has a different trend
than the uncertainty in calculating slope gradient and aspect. Because slope shape and
height were calculated by tracing the flow direction from ridge to valley (MacMillan et al.
2000, Wang 2008), the impact of DEM error on the calculation of slope shape and height
would not increase with spatial autocorrelation of simulated DEM error. The mean value
of the SD map derived from the slope height realizations for each simulation in the model-
development area shows that the uncertainty in calculating slope height remains stable
or decreases with increasing spatial autocorrelation of simulated DEM error (Figure 7b).
The larger the simulated DEM error magnitude, the faster the uncertainty in calculating
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Figure 6. Mean SD derived from the landslide susceptibility realizations of each simulation
using both efLandslides and logistic regression: (a) the model-development area; (b) the model-
extrapolation area.
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development area: (a) slope gradient; (b) slope height.

slope height decreases with increasing spatial autocorrelation of simulated DEM error
(Figure 7b).

Therefore, the authors suppose that when the high-accuracy DEM (SDerr = 1 m) was
simulated for efLandslides and for logistic regression, the uncertainty associated with slope
shape and height contributed more to the overall uncertainty than did the characteriza-
tion of slope gradient and aspect. This resulted in an overall uncertainty decrease with
increasing spatial autocorrelation in the simulated DEM error field. By contrast, when
a lower-accuracy DEM (SDerr = 7.5 or 15 m) was used for efLandslides or for logistic
regression, the uncertainty associated with slope gradient and aspect contributed more to
the overall uncertainty than did the characterization of slope shape and height. This resulted
in an overall uncertainty increase with increasing spatial autocorrelation of the simulated
DEM error field.

Figure 6a also shows that for each tested range the overall uncertainty in efLandslides
first increased and then remained stable with further increases in simulated DEM error
magnitude. By contrast, the overall uncertainty in logistic regression increased mono-
tonically with the simulated DEM error magnitude. The change in overall uncertainty in
efLandslides was much less than the change in overall uncertainty in logistic regression,
which means that the overall uncertainty in efLandslides is less sensitive to DEM error
magnitude than the overall uncertainty in logistic regression. This phenomenon might
be attributed to the data-driven nature of multivariate statistical models, which makes
the performance of logistic regression rely more heavily on DEM data quality than does
efLandslides (Wang 2008, Zhu et al. under review).

5.2. Model-extrapolation area

Figure 6b shows mean SD values derived from the landslide susceptibility realizations of
efLandslides and logistic regression for each simulation in the model-extrapolation area.
Under the simulations with the greatest DEM error magnitude (SDerr = 15 m), the overall
uncertainty in efLandslides is clearly lower than in logistic regression, although the case
with the lowest DEM error magnitude (SDerr = 1 m) shows the opposite situation. This
means that in the model-extrapolation area, the overall uncertainty in efLandslides is less
sensitive to DEM error magnitude than the overall uncertainty in logistic regression.

A comparison between Figure 6a and b shows that the basic trend of mean SD values
from efLandslides and logistic regression simulations in the model-extrapolation area is
similar to that in the model-development area. Furthermore, overall uncertainties in both
efLandslides and logistic regression in the model-extrapolation area are generally lower
than those in the model-development area, which means that both efLandslides and logistic
regression proved to be portable in this study from the perspective of overall uncertainty.
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Figure 8. Boxplots of the landslide occurrence density within each landslide susceptibility level in
the model-extrapolation area: (a) efLandslides; (b) logistic regression (the circular marks in the figure
represent outliers).

Figure 8a and b shows boxplots of the landslide occurrence density within each
landslide susceptibility level for both efLandslides and logistic regression in the
model-extrapolation area. For efLandslides under all simulations, not only landslide
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occurrence density but also the uncertainties in landslide occurrence density increase
with landslide susceptibility level and landslide occurrence density. The only exception
is the case of ‘very high’ landslide susceptibility level from the simulation with the
greatest magnitude of error and a totally random DEM error field, i.e., SDerr = 15 m and
range = 0 m (Figure 8a). It is reasonable for a landslide susceptibility mapping approach
to behave in this way.

By contrast, logistic regression showed different performance. As shown in Figure 8b,
for logistic regression under all simulations the uncertainties in landslide occurrence den-
sity within ‘low’ and ‘high’ landslide susceptibility levels are higher than those within
‘very low’ and ‘very high’ landslide susceptibility levels. Within ‘low’ and ‘high’ landslide
susceptibility levels under all simulations, the uncertainties in the landslide occurrence
density from logistic regression are higher than those from efLandslides. Within ‘very high’
landslide susceptibility levels under all simulations, the opposite situation occurs, that is,
the uncertainties in the landslide occurrence density from logistic regression are much
lower than those from efLandslides. However, this situation is accompanied by an unrea-
sonable result from logistic regression, in which the mean landslide occurrence density
within ‘very high’ landslide susceptibility level is lower than those within other landslide
susceptibility levels.

The difference between the uncertainties in landslide occurrence density from efLand-
slides and logistic regression may be attributed to the different areas of landslide
susceptibility level predicted by these two approaches to landslide susceptibility mapping.
As shown in Figure 9, the uncertainties in the areas of landslide susceptibility level pre-
dicted by both efLandslides and logistic regression are very low under all simulations.
However, there is clear difference between the predicted areas of landslide susceptibility
level by efLandslides and by logistic regression. For efLandslides under all simulations,
the minimum predicted areas of landslide susceptibility level are always the cases of ‘very
high’ landslide susceptibility level (Figure 9a). Therefore, it is reasonable for efLandslides
that the uncertainties in landslide occurrence density attain their highest values for the cases
of ‘very high’ landslide susceptibility level (see Figure 8a). For logistic regression under
all simulations, the predicted areas of ‘low’ and ‘high’ landslide susceptibility levels are
always much smaller than those of ‘very low’ and ‘very high’ landslide susceptibility lev-
els (Figure 9b). Therefore, it is understandable that for logistic regression, the uncertainties
in landslide occurrence density within ‘low’ and ‘high’ landslide susceptibility levels are
always higher than those within ‘very low’ and ‘very high’ landslide susceptibility levels,
as shown in Figure 8b.

6. Conclusions

The main conclusions from this study using a nonconditional stochastic simulation method
include the following.

(1) In the model-development area, at greater DEM error magnitude (SDerr = 7.5 and
15 m), the overall uncertainty in efLandslides was clearly lower than in logistic
regression. Moreover, the overall uncertainties in both efLandslides and logistic
regression increased with increase in spatial autocorrelation of the simulated DEM
error field. By contrast, under the simulations with the lowest DEM error mag-
nitude (SDerr = 1 m), the overall uncertainties in both efLandslides and logistic
regression were very similar and were found to decrease slightly with increasing
spatial autocorrelation in the simulated DEM error field.
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Figure 9. Boxplots of the area of each landslide susceptibility level predicted by efLandslides and
logistic regression in the model-extrapolation area: (a) efLandslides; (b) logistic regression.

(2) Also in the model-development area, the change in the overall uncertainty in
efLandslides with different DEM error magnitudes was much less than the change
in the overall uncertainty in logistic regression under these circumstances. This
means that the overall uncertainty in efLandslides is less sensitive to DEM error
magnitude than the overall uncertainty in logistic regression.

(3) In the model-extrapolation area, the overall uncertainty in efLandslides was less
sensitive to DEM error magnitude than the overall uncertainty in logistic regres-
sion. For efLandslides, the uncertainty in landslide occurrence density increases
with landslide susceptibility level and landslide occurrence density. The uncertain-
ties in the predicted areas of landslide susceptibility level by both efLandslides
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and logistic regression are very low under all simulations. The performance of
efLandslides was more reasonable than that of logistic regression in this part of the
study.
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