Transactions in GIS S

Short Technical Note Transactions in GIS, 2014, 18(6): 950-957

How to Apply the Geospatial Data Abstraction Library
(GDAL) Properly to Parallel Geospatial Raster 1/0?

Cheng-Zhi Qin,* Li-Jun Zhan* and A-Xing Zhu**

*LREIS, IGSNRR, CAS, Beijing
*Department of Geography, University of Wisconsin-Madison

Abstract

Input/output (I/O) of geospatial raster data often becomes the bottleneck of parallel geospatial processing
due to the large data size and diverse formats of raster data. The open-source Geospatial Data Abstrac-
tion Library (GDAL), which has been widely used to access diverse formats of geospatial raster data, has
been applied recently to parallel geospatial raster processing. This article first explores the efficiency and
feasibility of parallel raster I/O using GDAL under three common ways of domain decomposition: row-
wise, column-wise, and block-wise. Experimental results show that parallel raster I/O using GDAL under
column-wise or block-wise domain decomposition is highly inefficient and cannot achieve correct output,
although GDAL performs well under row-wise domain decomposition. The reasons for this problem with
GDAL are then analyzed and a two-phase I/O strategy is proposed, designed to overcome this problem. A
data redistribution module based on the proposed /O strategy is implemented for GDAL using a
message-passing-interface (MPI) programming model. Experimental results show that the data redistribu-
tion module is effective.

1 Introduction

With the rapid growth of affordable parallel devices, parallel geospatial raster processing has
become more widely used in dealing with increasingly massive geospatial raster datasets (e.g.
Guan and Clarke 2010; Qin and Zhan 2012; Maulik and Sarkar 2012). However, two chal-
lenges still generally exist in the input/output (I/O) part of parallel geospatial raster processing.
The first is the massive size of raster data, whose movement between fast main memory and
slow disk storage often becomes the performance bottleneck of parallel geospatial raster pro-
cessing. The second challenge is the diversity of geospatial raster data formats. Although there
are presently at least several dozen often-used raster file formats, existing parallel geospatial
raster-processing programs often support only a very few file formats, which limits their prac-
tical applicability.

Some studies have proposed to address the challenge of massive raster data by providing a
parallel API to access a single file storing massive raster data in a specific format (e.g. Hierar-
chical Data Format v5 [HDFS5], Parallel Network Common Data Format [PnetCDF], and Par-
allel Input-Output System [PIOS]) (Shook and Wang 2011). These studies have mainly focused
on I/O performance while paying little attention to the challenge of diverse geospatial raster
data formats.

The Geospatial Data Abstraction Library (GDAL, http://www.gdal.org/, current version
number 1.9.2) (Warmerdam 2008), which is an open-source tool providing a single abstract

Address for correspondence: Cheng-Zhi Qin, State Key Laboratory of Resources and Environmental Information System, Institute of Geo-
graphical Sciences and Natural Resources Research, CAS, Beijing 100101, China. E-mail: qincz@lreis.ac.cn

Acknowledgements: This study was supported by the National High-Tech Research and Development Program of China (No.
2011AA120302), and the Institute of Geographic Sciences and Natural Resources Research, CAS (No. 2011RC203).

© 2013 John Wiley & Sons Ltd doi: 10.1111/tgis.12068

http://www.gdal.org/
mailto:qincz@lreis.ac.cn

Applying GDAL Properly to Parallel Geospatial Raster I/O 951

3. receive data

é} worker
process

2. send
data to
each
process

master
Process 5. receive data 4. send data
6. write
A X
1. read | meta | value | I see | |
A] ra(;‘tle}?%tle
[meta| value | [=] | rastar Hle

Figure 1 Serial raster I/O mode of applying GDAL to parallel geospatial processing

data model to read and write a variety of geospatial raster data formats, has been widely used
in serial raster-processing applications. Some recent studies (e.g. Wang et al. 2012) have
applied GDAL to parallel geospatial raster processing in a serial I/O mode for assessing raster
data, i.e. a master process takes charge of the entire I/O process between external and internal
memory, and other work processes access the data by communicating with the master process
(Figure 1). However, this approach lacks parallelism and often creates a bottleneck when the
size of the raster file exceeds the memory capacity of a single compute node.

Parallel raster /O mode permits each process to access directly a part of the data stored in
external memory, based on a kind of domain decomposition in which the data domain being
processed is decomposed into subdomains. There are three commonly used, straightforward
ways of domain decomposition: row-, column-, and block-wise. The parallel raster I/O mode
could overcome the single-bottleneck problem in the serial raster /O mode. However, there
are few literatures on using GDAL in parallel I/O mode.

This article first explores the efficiency and flexibility of using GDAL in parallel raster I/O
mode under the three common ways of domain decomposition. Experimentation shows that
parallel raster I/O using GDAL cannot work well under two among the three ways of domain
decomposition. Then a solution to this problem is proposed.

2 Using GDAL in Parallel Raster /O Mode

When using GDAL in parallel raster /O mode (Figure 2), the master process first uses GDAL
to extract the metadata (e.g. spatial extent, projection) from a raster file and creates a corre-
sponding empty output file. Then, following a specific domain decomposition approach, the
master process sends the spatial extent information of each subdomain to the corresponding
work process. Based on the subdomain information received, each process uses GDAL to open
the shared input raster file and to read the subdomain data using the RasterIO() function in
GDAL. After computation, each process uses GDAL to open the shared output raster file to
write the results using the RasterIO() function. This parallel raster /O mode could avoid
certain problems in serial I/O mode, such as the single-bottleneck problem and the overhead
for data distribution between the master process and the work processes.

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2014, 18(6)

952 C-Z Qin, L-) Zhan and A-X Zhu

£

[=R=2
ggv
EC4%
=
SER

20
o=
EbB

4. receive data
worker
process

(_GDAL (_GDAL (_GDAL)

master
process

5. read 6. write

§| data ata
—

| meta l value l

1. read
metadata

|

Input

raster file
2. creatq
file v Y Y y
%/_/%/_/
output =
msrell')ﬁle[meta | value I l e I |

Figure 2 Parallel raster I/O mode of using GDAL for parallel geospatial processing

3 Problem in Parallel Raster I/O Using GDAL

In this section, the problem in parallel raster I/O using GDAL will be revealed by an
experiment.

3.1 Experimental Design

Based on the message passing interface (MPI) programming model, the parallel raster I/O
mode of using GDAL (called GDAL_PIO) was implemented. An experiment was designed to
evaluate the efficiency and flexibility of GDAL_PIO. In this experiment, there is actually no
computation, only read and write operations on the raster file, because this study concerns
only I/O issues.

GDAL_PIO was tested on an IBM SMP cluster with 140 server nodes (including 6 I/O
server nodes and 134 compute nodes). Each server node consists of two Intel Xeon (E5650
2.0 GHz) six-core CPUs and 24 GB DDRIII memory. The test raster data have a dimension of
23,300 x 27,825 cells. The data are stored as a file in GeoTiff format on I/O server nodes and
shared between compute nodes through the General Parallel File System (GPFS).

Efficiency is evaluated by measuring the runtime to read and write data from/to a raster
file with a specific format using GDAL_PIO (called I/O time). The time to create the output
file is not counted in I/O time. Flexibility is evaluated by determining whether GDAL_PIO
can work well under different domain decomposition approaches (i.e. row-, column-, and
block-wise).

3.2 Experimental Results

The experimental results show that GDAL_PIO with row-wise domain decomposition is effi-
cient (Figure 3). The /O time using GDAL_PIO decreases when the number of processes
increases from one to eight. The I/O time for GDAL_PIO with eight processes is about half
that with one process. The I/O time for GDAL_PIO with 16 processes is longer than with
eight processes, but is still shorter than with four processes.

However, using GDAL_PIO with column- or block-wise decomposition is highly ineffi-
cient, that is, almost 5-15 times slower than using GDAL_PIO with row-wise decomposition

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2014, 18(6)

Applying GDAL Properly to Parallel Geospatial Raster I/O 953

8 Wywrite Oread
@
3z
g°
=y

2 !

0

1 2 4 8 16

Number of processes

Figure 3 Runtimes for read and write operations of GDAL_PIO using row-wise decomposition
when the number of processes varies from 1 to 16 (only one process per compute node)

160

‘élll]

5 80 -
0 |

row(16*1) column(1*16) block(4*4)
Way of domain decomposition

W GDAL PIO ©GDAL RDPIO (@)

Figure 4 Performance of GDAL_PIO and GDAL_RDPIO (an implementation of the new parallel
raster /O strategy using GDAL proposed in this article, described later) executed on a cluster with a
test raster file in GeoTiff format: (a) /0 times using GDAL_PIO and GDAL_RDPIO under three ways
of domain decomposition (16 processes created on 16 compute nodes); and (b) example of incor-
rect results from GDAL_PIO with block-wise decomposition (black areas are blocks where results
were missed)

(Figure 4a). Moreover, GDAL_PIO with column- or block-wise decomposition produced
incorrect results in which some areas with values were output as having no data (the black
holes in Figure 4b). The results for GDAL_PIO with row-wise decomposition were correct.
Therefore, the experimental results show that GDAL_PIO lacks flexibility.

3.3 The Reason for the Problem in Parallel Raster I/O Using GDAL

This poor efficiency of GDAL_PIO with column- and block-wise decomposition is attribut-
able to the fact that the processes are accessing several non-contiguous sections of a shared
raster file. From the viewpoint of the user, a raster data file is a two-dimensional array. There-
fore, when GDAL_PIO is executed with column- or block-wise decomposition, each process
calls the RasterIO() function in GDAL only once to access data, similar to the situation with
row-wise decomposition (Figure 5a). However, the raster data saved in disk are actually
re-organized row-by-row as a contiguous linear stream of values which starts from the upper
left corner cell in the raster array and ends with the lower right corner cell (Figure 5b). As a
result, each process must access several non-contiguous sections of the file when GDAL_PIO

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2014, 18(6)

954 C-Z Qin, L-J Zhan and A-X Zhu

User view Actual file Actual file
Raster 12(3 |4 1 2 3|4(5 6|7 8 Big Raster Data ...
data 516 78 % g ~ | /7
o X \ " A lot of 1/0 request
o \ /o /O . / e red
I,f(: e G o i
GDAL | RasterlO RasterlO RasterIO RasterIO RasterlO
1 f 5 f 3
Process (PO) P1 (PO P1 (PO)
)) (©

Figure 5 Analysis of the reason for the poor efficiency of GDAL_PIO with column-wise and block-
wise decomposition: (a) /0 requests from only two processes using GDAL to access a 2 x 4 raster
array with column-wise decomposition (from the viewpoint of the user); (b) the actual I/O requests
in case a); and (c) a large number of small I/O requests by each process with column-wise decompo-
sition of a large raster data array in reality

process (Po) (P1

l write l

diskfile 1 2 3 4

(a)

T L}
(PO | P1
L create |
I
L e (T ey I
Sl 2 i
HEEN " :EN n
Block0 1 Block0 4, ¢ Block0O { i Block0
2. initialize 2. initialize
disk file
(b)

]
H
H
H
i
i
i
H
H
H

Block(

—— — . — — ———— ——— —— — — o —— ——
wrh‘
disk file in timel 12 -

disk file in time2

the final disk file - 34 (©

Figure 6 Analysis of the reason for the incorrect results produced by GDAL_PIO with column- and
block-wise decomposition (black cell means no data): (a) two processes are writing to respective
subdomains of a raster file with column-wise decomposition (the size of the GDAL cache block is
1 x 4, i.e. one row of the raster); (b) each process prepares data in the cache block; and (c) each
process writes the cache block in memory to the same region of the shared disk file

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2014, 18(6)

Applying GDAL Properly to Parallel Geospatial Raster I/O 955

is executed with column- or block-wise decomposition. This situation means that each call to
the RasterIO() function will involve multiple /O requests. For a large raster array, the large
number of small I/O requests generated from column- or block-wise decomposition will con-
siderably augment the I/O time (Figure 5c¢).

Incorrect results from GDAL_PIO with column- and block-wise decomposition are
attributable to the caching mechanism in GDAL. GDAL maintains in memory the cache
blocks fetched from the raster file and ensures that a second attempt to access the same
block will be served from the cache instead of from the file. Such a caching mechanism
makes the cache block to be the smallest size of each 1/O request. The width of the cache
block in GDAL is often equal to the raster width. In this situation, incorrect results will
arise when different processes try to write the cache block to the same region of a shared
raster file.

Consider a simple case in which two processes are writing to two subdomains of a
raster file with column-wise decomposition (Figure 6a). In this case, the width and height of
the GDAL cache block are four and one, respectively. Process PO first creates a cache block
in memory (black cell means no data), initializes it from the disk file, and then sends the
output value to the cache block (Figure 6b). Meanwhile, process P1 performs the same tasks
as PO (Figure 6b). After the output value has been sent to the cache block, each process
writes the cache block in memory to the same region of the raster file on disk. As shown in
Figure 6c, the file is first written by process PO at time 1 and later is rewritten by process P1
at time 2. Therefore the final results file contains cells without data (Figure 6¢), as shown by
the experiment described earlier (Figure 4b). In fact, the results file will always contain some

cells with no data unless the processes write the cache block serially to the same region of
the file.

4 Improvement Based on a Two-Phase I/O Strategy

This section introduces a “two-phase 1/0” strategy which is a suitable solution for the prob-
lems in GDAL_PIO with column-wise and block-wise decomposition. The two-phase /0O
strategy was first proposed by Rosario et al. (1993) and was implemented in MPI I/O for a
much more efficient use of the I/O subsystem (Thakur et al. 1999). The basic idea of this strat-
egy is to redistribute data among the processes by combining a large number of small I/O
requests into a small number of large continuous I/O requests.

Based on the two-phase /O strategy, a data redistribution module for GDAL was
designed. This module provides two features. The first is to reduce the number of I/O requests
by combining small I/O requests into large continuous I/O requests through inter-process com-
munication. This should be efficient because I/O operations are often more time-consuming
than inter-process communication. The second feature is to avoid possible conflict among pro-
cesses which might be trying to write the cache block to the same region of the shared raster
file.

Figure 7 shows an example of a write operation involving two processes and using such a
data redistribution module. The two processes first exchange their local individual I/O requests
to form new I/O requests. Then according to the new I/O request, inter-process communica-
tion is used to redistribute the data so that each process has one contiguous chunk of data.
This means that the data for each process are available to be written to the disk file with only
one I/O request. Moreover, because these two processes write their respective cache blocks to
different regions of the shared raster file, there is no conflict.

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2014, 18(6)

956 C-Z Qin, L-} Zhan and A-X Zhu

-

L disk fie 1]2[3]4|5][6[7]8 :

: ¢ . |

e | o 7 3.0 .
- T |

: RasterIO RasterlO | |
—_——_——— —_1— —————————————— [Sp———
____________________ s, oo |

: 1 23 4 5 6 78]

s 1 I3 Tedistribute | -
re_t[:;:llul: tlun| internal f._P“,.M____E‘E‘i‘____} Pl I
| memory | e |

| 1 1. exchange]

I v | VO requests | v]

| 1|2 86| “=—rmmrsssss 4 7 81

| |

Figure 7 Using GDAL with a data redistribution module based on the two-phase I/O strategy

5 Experiment and Results

MPI was used to implement the proposed data redistribution module based on the two-phase
I/O strategy for using GDAL in parallel raster /O mode (called GDAL_RDPIO, short for
“ReDistribution Parallel I/0”). The test data and test environment are the same as for the
earlier experiment (see Section 3.1).

The experimental results show that GDAL_RDPIO was about four times faster than
GDAL_PIO when column- or block-wise decomposition was used (Figure 4a). With row-wise
decomposition, GDAL_RDPIO and GDAL_PIO achieved almost the same /O times. The
results from GDAL_RDPIO with each of the three data decompositions are correct.
GDAL_RDPIO shows satisfactory efficiency and feasibility.

6 Conclusions

This article first explores the parallel raster /O mode of using GDAL to access geospatial
raster data. Experimental results show that parallel raster I/O using GDAL under column- or
block-wise domain decomposition is highly inefficient and cannot achieve correct output. After
analysis of the reason for the problems with parallel raster I/O using GDAL, a two-phase I/O
strategy was used to design a data redistribution module for GDAL to fix these problems. MPI
was used to implement this data redistribution module for GDAL. Experimental results show
that the proposed data redistribution module provides an efficient solution to effective applica-
tion of GDAL to parallel geospatial raster I/O.

References

Guan Q and Clarke K C 2010 A general-purpose parallel raster processing programming library test application
using a geographic cellular automata model. International Journal of Geographical Information Science
24: 695-722

Maulik U and Sarkar A 2012 Efficient parallel algorithm for pixel classification in remote sensing imagery.
Geoinformatica 16: 391-407

Qin C-Z and Zhan L-J 2012 Parallelizing flow-accumulation calculations on graphics processing units: From
iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm. Computers and
Geosciences 43: 7-16

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2014, 18(6)

Applying GDAL Properly to Parallel Geospatial Raster /O 957

Rosario J M, Bordawekar R, and Choudhary A 1993 Improved parallel I/O via a two-phase run-time access
strategy. ACM SIGARCH Computer Architecture News 21(5): 31-8

Shook E and Wang S-W 2011 A parallel input-output system for resolving spatial data challenges: an agent-
based model case study. In: Proceedings of the Second ACM SIGSPATIAL International Workshop on
High Performance and Distributed Geographic Information Systems, Chicago, lllinois: 18-25

Thakur R, Gropp W, and Lusk E 1999 On implementing MPI-IO portably and with high performance. In Pro-
ceedings of the Sixth Workshop on 1/O in Parallel and Distributed Systems, Atlanta, Georgia: 23-32

Warmerdam F 2008 The geospatial data abstraction library. In Hall B and Leahy M G (eds) Open Source
Approaches in Spatial Data Handling. Berlin, Springer: 87-104

Wang X, Li Z, and Gao S 2012 Parallel remote sensing image processing: taking image classification as an
example. In Li Z, Li X, Liu Y, and Cai Z (eds) Proceedings of the Sixth International Symposium on Intel-
ligence Computation and Applications, Wuhan, China, 27-28 October, 2012. Berlin, Springer-Verlag:
159-69

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2014, 18(6)

