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Abstract: Soil type maps at the scale of 1︰1 000 000 are used extensively to provide soil spatial distribution information for soil ero-

sion assessment and watershed management models in China. However, the soil property maps produced through conventional direct 

linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effec-

tive method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1︰1 

000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the 

polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities 

between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the 

existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these repre-

sentative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in 

XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of 

spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict 

the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the 

boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 

1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effec-

tive approach to produce spatial detailed soil property map with higher accuracy for environment simulation models. 
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1  Introduction 

The spatial distribution information of soil property is 
important input data for soil erosion simulation and wa- 
ter resource management (Zhu et al., 1996; Moriasi and 
Starks, 2010; Mukundan et al., 2010; Li et al., 2012). 
However, the published major data sources for soil  

property spatial information are often in the form of soil 
type maps with small map scales, such as 1︰1 000 000 

soil type map in China, and sparse typical samples (Shi 
et al., 2007; Yu et al., 2007). Soil property maps are of-
ten produced by linking the property values of existing 
typical samples to the corresponding polygon of the soil 
type map in China (Zhao et al., 2006; Zhang et al.,  
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2008). This method was referred to as ′conventional 
direct linking method′ in this paper. Constrained by the 
small scale of the soil type maps and the limited typical 
samples, the level of the spatial details and the accuracy 
of obtained soil property map may be very low. On the 
other hand, the size of existing typical samples is often 
small and the accurate coordinates of these samples 
were not recorded in the Published National Soil Attrib-
ute Table, thus based on these limited samples it is im-
possible to produce detailed soil property maps by using 
current digital soil mapping methods (e.g., interpolation 
and regression method). However, current environment 
models (e.g., environmental, hydrological, ecological 
models) are in need of detailed soil property spatial dis-
tribution information (Band and Moore, 1995; Zhu, 
1997; Liu et al., 2005; Chen et al., 2012), the soil prop-
erty maps produced by using the direct linking method 
can not meet the need of these models.  

For producing spatial detailed and higher accuracy 
soil property maps based on the existing small scale soil 
type map, many methods have been proposed in the 
published literatures. Brus et al. (2008) used Bayesian 
Maximum Entropy to predict soil categories in the 
Netherlands by estimating the probabilities of occur-
rence of soil categories, which is based on the 1︰50 
000 soil map as soft information and 8369 soil point 
observations as hard information. The shortcoming of 
this method is that the computational burden is prohibi-
tive when the number of soil categories larger than 10. 
In addition, a large number of existing samples are 
needed to calibrate the probability model. Vitharana et 
al. (2008) improved the 1︰20 000 soil property map in 
Belgium by using regression Kriging based on the rela-
tionship between electrical conductivity and depth of the 
Tertiary clay substratum. The relationship was modeled 
by an exponential curve using 60 calibration points 
within 0.14 km2. This method requires a sample set with 
high density, and the fieldwork is very labor and cost 
intensive. Kempen et al. (2009) build a multinomial 
logistic regression model to quantify the relationship 
between ancillary covariates and soil group. The regres-
sion model was then used to update the 1︰50 000 soil 
groups map over 2680 km2 area in Drenthe Province in 
the Netherlands. Large number of samples including   
16 282 soil profile descriptions from the Dutch soil 
information system (DSIS) and 702 profile observations 
were collected to build the regression model. Yang et al. 
(2010; 2012) developed a method to upgrade the 1︰  

20 000 conventional soil type map in New-Bruswick by 
using the knowledge on soil-environment relationships. 
Such knowledge was extracted by relating the environ-
ment condition combinations to the soil types. Although 
this method does not require additional field work, it can 
not utilize the existing samples which do contain useful 
information. Yu (2012) proposed to use linking method 
to estimate the basic soil property distribution, and then 
the variation inside each polygon of the soil type map 
was interpolated by neighboring soil samples with 
stratification. At last, the soil properties of the transition 
areas between different soil types were re-estimated by a 
weighted average of estimations based on soil samples 
with stratification. This new method is based on the soil 
type map with the scale of 1︰1 000 000 and 1765 field 
samples in Jilin Province. However, it is usually very 
difficult to collect so many field samples for ordinary 
soil map users.  

Therefore, the existing methods investigated in the 
previous studies for updating soil maps heavily rely on a 
large amount of samples (existing samples or new addi-
tional field samples), and the map scales used in most of 
the aforementioned studies are much more detailed 
compared to the scale of soil type map in China (1︰    
1 000 000). On the other hand, because the number of 
existing typical samples in China is often very small and 
the accurate coordinate were not recorded in the Pub-
lished National Soil Attribute Table, these typical sam-
ples can not be used directly for current digital soil 
mapping methods. Therefore, the above existing meth-
ods may be limited to improve Chinese soil property 
maps. This paper proposed an alternative method to 
produce detailed soil property map with higher accuracy 
using 1︰1 000 000 soil type map and sparse existing 
typical samples that were stored in the Published Na-
tional Soil Attribute Table. The new method is based on 
the representative samples which are extracted from 
each polygon on the soil type map, and it is very appro-
priate when the soil map user does not have enough field 
samples to apply existing digital soil mapping methods. 
The case study in southeast of Anhui Province was used 
to illustrate the effectiveness of the proposed method. 

2  Material and Methods 

2.1  Study area 
Xuancheng City (30°33′31″‒31°18′38″N, 118°28′08″‒ 
119°38′40″E) is in the southeast of Anhui Province in 
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China, which includes seven counties and three of them 
are chosen as the study area of this paper, that is, Xuan-
zhou District, Langxi County and Guangde County (Fig. 
1). It is about 5900 km2 with the highest elevation of 
1039 m. This area is in the transition zone from the 
southern mountainous area in Anhui to the Middle and 
Lower Yangtze River Plain. Located in the subtropical 
monsoon climate zone, the area is hot and rainy in 
summer, while it is cold and dry in winter (Zhao et al., 
2007; Sun et al., 2008). Average annual temperature 

varies from 11.6℃ to 15.8℃ and annual precipitation is 

1240–1780 mm. The parent materials are mainly com-
posed of mild clay-silt-gravel (34%) formed during 
Quaternary system and sandstone (15%). The landform 
is characterized by hill and plain, with some mountains 
in the south. The characteristic vegetation types are ev-
ergreen coniferous forest and deciduous broad-leaved 
forest, most of which are secondary forest or hu-
man-made forest. The major land use type is farmland 
with rice as the stable crop. The whole study area ex-
perienced severe human activities. The main soil types 
are red soil and paddy soil, accounting for 46.5% and 
39.7%, respectively. 

2.2  Data and processing 
The data for mapping soil organic matter (SOM) include 

the 1︰1 000 000 soil type map in the study area and 

106 typical samples in Anhui Province. The typical 
samples are stored in the Published National Soil At-
tribute Table. Each typical sample contains 13 kinds of 
soil properties, including soil type, location (province), 
depth (cm), gravel (%), coarse sand (%), fine sand (%), 
silt (%), clay (%), soil organic matter (%), pH, N (%), P 
(%), K (%). There are 18 soil subgroups according to 

the 1︰1 000 000 soil type map in the study area, and 

there are 26 subgroups with the 106 typical samples in 
Anhui Province. As the X and Y coordinates of each 
typical sample were not recorded in the Published Na-
tional Soil Attribute Table, the samples which were lo-
cated in the study area can not be determined. So, all the 
samples in Anhui Province would be used in this paper. 
These are the all public soil data in this study area, 
which were provided by Data Center for Resources and 
Environmental Sciences, Institute of Geographic Sci-
ences and Natural Resources Research, Chinese Acad-
emy of Sciences. 

There are 55 independent samples which were used 
to validate the accuracy of produced soil organic matter 
maps. The spatial distribution of these validation sam-
ples is regular with 10 km spacing distance, and these 
validation samples were collected in October 2011. Oc-
tober is harvest time for the study area, so the soil prop- 

 

 
 

Fig. 1  Location of study area 
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erty values were less affected by human activities. 

2.3  Methods  
2.3.1  Overall description of proposed soil property 
mapping method 
Soil property values of existing typical samples in the 
Published National Soil Attribute Table are assumed to 
be typical for corresponding soil type, and each polygon 
of soil type map is associated to a soil type. So, it is 
reasonable to assign the soil properties of these typical 
samples to the representative samples of the polygons 
with the same soil type name. If the representative sam-
ples of all the polygons are extracted and soil properties 
are assigned, soil property maps could be produced by 
using some existing digital soil mapping methods, such 
as regression model, Kriging interpolation, Soil-Land 
Inference Model (SoLIM), individual representativeness 
methods, etc. (Goovaerts, 1999; McBratney et al., 2000; 
Qin et al., 2012; Yang et al., 2012; Zhang et al., 2012; 
Liu et al., 2013). The flowchart of this overall method-
ology has been shown as Fig. 2. This method based on 

representative samples can overcome the shortcomings 
of conventional direct linking method, which can not 
only describe the detailed spatial distribution of soil 
property within a soil type polygon but also largely re-
duce the abrupt change of soil property at the bounda-
ries of two adjacent polygons.  

Therefore, the most important question becomes how 
to extract the location of the representative sample of 
each polygon on the soil type map. According to the 
process of producing soil type maps, each polygon of 
soil map is related to a certain landscape unit. The land-
scape unit can be characterized by using a group of en-
vironment covariates (e.g. elevation, slope, curvature, 
vegetation, climate, etc). The representative sample can 
be extracted through analyzing the environment similar-
ity between any two locations within a polygon. Figure 
3 shows how to determine whether a location can repre-
sent another location within a polygon. The soil-forming 
environment condition at location A and location B is 
characterized by their elevation, slope, curvature, etc. If 
the environment condition similarity between A and B is 

 

 
 

Fig. 2  Flowchart of soil property mapping method based on representative samples 
 

 
 

Fig. 3  Scheme of determining whether location A can represent location B. TWI is topographic wetness index  
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larger than a user-specified similarity threshold, the 
soil-forming environment condition of location A is re-
garded to be representative of location B, and the soil 
property of location B can be predicted through the soil 
property of location A. Otherwise, location B can not be 
represented by location A. In such a way, for a given 
location, the area which is represented by the location 
can be calculated within the soil type polygon. Iterate 
this procedure at each location in the soil type polygon, 
the area that each location represents can be determined 
(see 2.3.3 for details). The location that can represent 
the largest area in the polygon will be chosen as the 
representative sample for the polygon. Note that there 
may be several suitable representative locations identi-
fied by this method, because it is possible that the rep-
resenting areas of several candidate representative loca-
tions are same size; but under our assumptions, any one 
of them can be selected. 
2.3.2  Selection of environmental covariates 
In order to quantify the representativeness of a certain 
location, it is important to select appropriate environ-
ment covariates for calculating soil-forming environ-
ment condition similarity between two locations. Co-
variates could be selected according to soil factor equa-
tion ′CLORPT′ (Jenny, 1941), which can be described as 
S = f(Cl, O, R, P, T…). Cl represents climate conditions; 
O is organism; R is topography; P stands for parent ma-
terial; and T is time. McBratney et al. (2003) summa-
rized the specific auxiliary environment covariates used 
in the field of digital soil mapping.  

Under the assumption that parent material and cli-
mate condition are homogeneous over each soil type 
polygon, the topographic factors are main covariates to 
indicate the variation of the spatial distribution of soil 
property. Slope, profile curvature, planform curvature, 
topographic wetness index (TWI) were selected as co-
variates (Fig. 4). All these covariates were derived from 
DEM with 90 m resolution (http://glcf.umiacs.umd.edu/). 
Slope, planform curvature and profile curvature were 
calculated by 3dMapper software (http://www.Terrain 
Analytics.com). TWI was calculated by using a modi-
fied Multiple Flow Direction (MFD) algorithm (Qin et 
al., 2007). Combining all the values of environmental 
covariates, a ′environment covariates vector′ was used to 
depict the environmental condition at each location (grid) 
(Zhu et al., 1996). 

1 2( , ,..., )m
ij ij ij ije e e e


 (1) 

where ije


 is the environment covariates vector at the 

location (i, j); m is the number of covariates. 
2.3.3  Calculation of representative samples 
In order to select the optimal representative samples, the 
representing area of each location should be calculated 
within a soil type polygon. A traversing algorithm was 
performed to achieve this goal. First of all, the poly-
gon-based soil type map was converted into grid-based 
data with the same spatial resolution as the selected to-
pographic environmental covariates. For a given loca-
tion (i, j), calculate the similarities between this location 
and all the other locations within the polygon (Fig. 5). If 
the similarity between location (i, j) and a location (a, b) 
is larger than a user-defined similarity threshold (e.g., 
0.8), the location (i, j) is regarded to be representative of 
(a, b), which was colored green in Fig. 5. Otherwise, 
location (i, j) can not represent location (a, b), which 
was colored red in Fig. 5. The total of the grids with 
green color is the representing area of the location (i, j). 

Environment condition similarity calculation was 
carried out on two levels, individual environment vari-
able level and location level, which was demonstrated as 
Equation (2).  

,
, , , 1

( ( , )) 
m

a  b v v v
i j i j a bv = 

S  = P E e e
 

 (2) 

where ,
, 
a  b
i jS  represents the similarity between location 

(i, j) and location (a, b) (a = 1, 2, 3, …, n; b = 1, 2, 3, …, 

n); , 
v
i je  is the value of the vth environment covariate on 

location (i, j); ,
v
a  be  is the value of the vth covariate as-

sociate with the location (a, b); m is the number of co-
variates. E is the function for calculating similarity on 
individual environmental variable level. The E function 
is associated with the data type of environment covariate. 
For example, E is usually Boolean function when the 
covariate is nominal or ordinal type (e.g., parent mate-
rial). E function may be Euclidean distance, Mahalano-
bis distance, Gower distance, etc. when the covariate is 
interval or ration type (e.g., temperature, slope) (Shi et 
al., 2004). In this paper, Gower distance was adopted to 
calculate individual covariate similarity. 

P is the function for calculating similarity on location 
level. The relationship between different environment 
covariates should be considered when choosing the form 
of P function. When there is no prior knowledge about 
the relationship, weighted-average approach is a safe  
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Fig. 4  Topographic covariates of slope (a), topographic wetness index (TWI) (b), planform curvature (c) and profile curvature (d) 

 

 
 
Fig. 5  Calculation of representing area of location (i, j). Loca-
tion (i, j) can represent green locations, while can not represent 
red ones 

choice (McBratney et al., 2003). In this paper, the lim-
iting factor approach was adopted to integrate the simi-
larities on individual environment covariate level (Zhu 
et al., 1996). 

Using the similarity calculating method described 
above, the representing area of each location within a 
polygon can be calculated under the condition that the 
similarity threshold is 0.8. In this paper, this similarity 
threshold was determined subjectively by a soil survey 
expert. When the soil-forming environment condition 
similarity between two locations is larger than 0.8 (the 
maximum value of similarity is 1.0), one location could 
be considered to be representative of another. The loca-
tion which can represent the largest area was chosen as 
the representative sample for the polygon. Traversing all 
the polygons of the soil type map, the representative 
sample set for all soil polygons was obtained (Fig. 6). 
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Fig. 6  Spatial distribution of representative samples for 1︰1 000 000 soil type map in study area 

 
2.3.4  Linking soil property value of existing typical 
samples to representative samples 
In the soil attribute database there are 106 existing typi-
cal samples with 28 soil subgroups in Anhui Province. 
As the X and Y coordinates were not recorded in the 
property table, the samples which were located in the 
study area can not be determined. So, all these typical 
samples rather than only the samples located in the 
study area were used to link the soil properties of typical 
samples to the representative samples with the same soil 
type. However, the soil property table in China is not 

complete. In fact, according to the 1︰1 000 000 soil 

type map, there are 18 soil subgroups but only 10 soil 
subgroups of them exist in the Anhui Province soil 
property table. Thus, the following three criterions were 
adopted to resolve this problem: 1) If the soil subgroup 
in this study area exists in the soil property table of An-
hui Province, link the average value of the soil proper-
ties of the typical samples to the representative samples 
with the same soil subgroup. 2) If the soil subgroup in 
this study area does not exist in the soil property table of  

Anhui Province, but typical samples with the same soil 
group exist in the soil property table of Anhui Province, 
then link the average value of the soil properties of the 
typical samples to the representative samples with the 
same soil group. 3) If neither the soil subgroup nor the 
soil group in this study area exist in the soil property 
table of Anhui Province, but typical samples with the 
same soil subgroup exist in the soil property table of 
adjacent provinces, link the average value of the soil 
properties of the typical samples in the adjacent prov-
inces to the representative samples with the same soil 
subgroup. According to these three criterions, all the re-
presentative samples are assigned the typical soil prop-
erties value of the corresponding soil subgroup or group. 

3  Results and Evaluation 

3.1  Mapping spatial distribution of soil organic 
matter  
Based on these representative samples extracted from 
each polygon in the soil type map, the spatial distribu-
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tion of Soil organic matter (SOM) could be mapped by 
using existing digital soil mapping method (such as re-
gression model, Kriging interpolation model, individual 
representativeness method, etc.). In this paper, the indi-
vidual representative method (Liu′s method) was se-
lected to produce SOM map (Liu et al., 2013). The basic 
theory for Liu′s method is the soil factor equation of 
Dokuchaeiv and the soil-land model described by Hud-
son (1992), and this method can make full use of auxil-
iary soil formative environment factors to improve the 
accuracy of soil map. Besides topographic covariates 
(slope, planform curvature, profile curvature and TWI), 
climate and parent materials condition also affect the 
soil developing over a large area. In this process of pre-
dicting soil organic matter over the whole study area, 
climate data (average annual precipitation and average 
annual temperature) and parent material data (geology 
type data) was added to the previous four topographic 
covariates. The climate data with 1 km resolution were 
provided by Laboratory of Ecosystem Network Obser-
vation and Modeling, Institute of Geographic Sciences 
and Natural Resources Research, Chinese Academy of 

Sciences (CAS). Geology Map at the scale of 1︰500 

000 was used to describe the characteristics of parent 
materials, which was provided by the Institute of Soil 
Science, CAS. Based on the characteristics of rock, the 
27 geology types were re-classed into eight ones. Obvi-
ously, the resolution of the climate and parent material 
data is coarser than that of the topographic covariates. 
However, in the field the variation of the climate and 
parent material condition is also much smaller than the 

variation of topographic condition. On the other hand, 
the climate and parent material condition affects the 
formation and development of soil at large scale, and at 
small scale the topographic condition is the main factor. 
So, the climate and parent material data were resampled 
into 90 m resolution in this paper. 

For comparing the proposed soil property mapping 
method based on representative samples with conven-
tional direct linking method, the spatial distribution map 
of soil organic matter was also produced by using con-
ventional direct linking method. Figure 7 shows the spa-
tial distribution maps of soil organic matter in the study 
area in Xuancheng City by using conventional direct 
linking method (Fig. 7a) and the proposed new method 
based on representative samples (Fig. 7b).  

3.2  Spatial details level evaluation of soil organic 
matter map 
In the soil organic matter map produced by using con-
ventional direct linking method (Fig. 7a), the variation 
of soil property only occurs at the common boundaries 
of two adjacent polygons. Such a map generates the 
spatial variation of soil distribution and lack of spatial 
details within each soil type polygon. This polygon- 
based presentation does not accord with the spatial 
variation regular of soil property in the field. 

In the soil organic matter map produced based on 
representative samples (Fig. 7b), the abrupt change at 
the boundaries of two adjacent polygons had been re-
duced largely. This method links the average value of 
typical samples to the corresponding representative 

 

 
 

Fig. 7  Spatial distribution maps of soil organic matter (SOM) produced by conventional direct linking method (a) and representative 
samples method (b) 
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sample with the same soil type name, and then based on 
these representative samples extracted by the proposed 
method in this paper, the spatial distribution map of soil 
organic matter was produced by using digital soil map-
ping method of Liu et al. (2013). The spatial distribution 
of soil organic matter predicted based on representative 
samples is closely related to the distribution of the se-
lected environment covariates, which accords to the 
soil-landscape model. In addition, the spatial variation 
of the soil organic matter is much gradual and there are 
no obvious boundaries of the soil distribution. This case 
study demonstrates the soil mapping method based on 
representative samples is better than conventional direct 
linking method, because the soil property map produced 
based on representative samples is higher quality on the 
spatial details level than that of soil map produced by 
using conventional direct linking method. 

3.3  Accuracy evaluation of soil organic matter 
map 
In order to evaluate the overall accuracy of the soil or-

ganic matter map produced based on representative 
samples, 55 individual samples were collected under 
regular sampling scheme with about 10 km spacing dis-
tance (Fig. 8). These regular samples can capture the 
spatial distribution characteristics of soil organic matter 
very well, which were sampled in October 2011. 

Root Mean Square Error (RMSE) was calculated by 
comparing the observed values of the validation samples 
with the predicted values at these locations. RMSE of 
the soil organic map produced by conventional direct 
linking method is 1.61, while that of the soil organic 
matter map produced based on representative samples is 
1.37. Therefore, the representative samples extracted by 
the method proposed in this paper can be used to pro-
duce soil property maps with higher accuracy.  

4  Discussion 

The most important step of this new soil mapping 
method based on representative samples is to extract the 
representative samples for each soil type polygon. The 

 

 
Fig. 8  Spatial distribution of regular validation samples with equal space about 10 km 
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representative sample of each polygon is defined as the 
location that can represent the largest area within the 
polygon, and the representing area of a representative 
sample is determined by calculating the soil-forming 
environment condition similarities between the repre-
sentative sample and other locations. When the similar-
ity is larger than the user-specified threshold, the repre-
sentative sample is regarded to be representative of an-
other location; otherwise, it can not represent the loca-
tion. So, the smaller the threshold is, the larger the rep-
resenting area of the representative sample is. In this 
paper, the similarity threshold is specified as 0.8 by a 
soil survey expert. In other words, when the similarity is 
larger than 0.8 (the maximum value of similarity is 1.0), 
the soil-forming environment condition on the two loca-
tions is considered to be enough similar and the soil 
property value could be predicted by the value on the 
other location. Because the similarity threshold is speci-
fied by the user, the value of the threshold may affect 
the location of the representative sample. In the future 
research, the sensitivity analysis will be done to test the 
variation of the locations of the representative samples.  

The innovation of this paper is proposing a method to 
extract the representative sample of each polygon on the 
soil type map. Based on these representative samples, 
many existing digital soil mapping methods can be used 
to map soil property, such as regression model, Kriging 
interpolation, SoLIM, individual representativeness 
methods (Liu′s method), etc. In this paper, Liu′s method 
was chosen because it can map soil property using ad 
hoc sample set and can make full use of auxiliary soil 
formative environment factors to improve the accuracy 
of the soil property map. However, The shortcoming of 
Liu′ method is that the soil property map was not a 
complete map. Soil property values were predicted on 
the locations that can be represented by the representa-
tive samples, and ′No-data′ value was assigned to other 
locations that can not be represented by the representa-
tive samples. That is why, there are some white area 
within the study area in the soil organic matter map 
produced based on representative sample (Fig. 7b). The 
soil property values of these white areas were ′No-data′, 
because the similarities between these locations and the 
representative samples were smaller than the user- 
specified similarity threshold. In the future, how to de-
sign additional samples for completing the soil property 
map is a problem worthy of study. 

The traversing algorithm was used to calculate the 
representing area of each location within a polygon in 
this paper, which was quite time consuming. For this 
study area with 5900 km2, it takes about three weeks to 
extract the representative samples. Other optimal algo-
rithms (such as simulated annealing algorithm, genetic 
algorithm) or parallel calculation method might be 
adopted to reduce time for computing in the future re-
search.  

For using this new soil property mapping method 
based on representative samples, appropriate environ-
ment covariates should be selected to characterize the 
soil-forming environment condition. This is because 
whether or not a location can represent another location 
is judged by the environment condition similarity be-
tween the two locations. Besides, the soil property val-
ues of the unvisited locations were also calculated based 
on the property values of representative samples 
weighted by the similarities of the unvisited location to 
the representative sample set. In this paper, meteoro-
logical (average annual precipitation and average annual 
temperature), parent material (geology type data), and 
topographic data (slope, curvature and TWI) were se-
lected as covariates to characterize the soil-forming en-
vironment condition. In the future, some other covari-
ates, such as land use, NDVI, LAI, should be used to 
describe the vegetation condition which also affects the 
process of soil formation and development. 

5  Conclusions 

Soil type maps at the scale of 1︰1 000 000 are used 

extensively to provide soil property spatial distribution 
information for soil erosion assessment and watershed 
management models in China. Soil property maps for 
such purposes are currently produced through linking 
the property values of typical samples to the polygons 
on the soil type map according to the same soil type 
name. Constrained by the small scale of the soil type 

maps at the scale of 1︰1 000 000 and the limited exist-

ing sparse typical samples in the Published National Soil 
Attribute Table, the soil property maps produced 
through conventional direct linking method usually suf-
fer low accuracy as well as the lack of spatial details.  

Without additional field work, this study presented an 
effective method to produce soil property map at a 
higher level of spatial details and accuracy. The data 
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source for this new method is also the soil type map at 

small scale of 1︰1 000 000 and sparse existing typical 

samples. Unlike the conventional direct linking method, 
this alternative soil property mapping method first ex-
tracted the representative sample for each polygon on 
the soil type map. Then, link the property values of 
typical samples to the representative samples. The size 
of the representative samples is much larger than the 
size of the existing typical samples. Thus, based on 
these representative samples and auxiliary soil-forma-
tion environment factors, spatial detailed soil property 
map with higher accuracy could be produced.  

Constrained by the polygon-based soil type map, the 
conventional direct linking method gives no information 
on spatial structure of soil property distribution within a 
polygon, and the variation of soil property only occurs 
at the common boundaries of two adjacent polygons. 
The new proposed method can overcome the above 
shortcomings, which can not only depict the detailed 
spatial distribution of soil property within a soil type 
polygon but also largely reduce the abrupt change of soil 
property at the boundaries of two adjacent polygons. 
The improvements on these two aspects make soil prop-
erty spatial distribution on the map accord with the spa-
tial variation of soil property in the field. In the study 
area, the RMSE of the soil organic matter map produced 
by conventional direct linking method is 1.61, and it is 
1.37 for the soil organic matter map produced based on 
representative samples. This case study demonstrated 
that the representative samples extracted from each 
polygon on soil type map could be used to produce spa-
tial detailed soil property map with higher accuracy.  

Therefore, the soil property mapping method based 
on representative samples is an effective approach to 
produce soil property map for environment simulation 
models at a higher level of spatial details and accuracy. 
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