
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

A layered approach to parallel computing for spatially distributed
hydrological modeling

Junzhi Liu a,b, A-Xing Zhu a,c,*, Yongbo Liu d, Tongxin Zhu e, Cheng-Zhi Qin a

a State Key Lab of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS,
Beijing 100101, China
bUniversity of Chinese Academy of Sciences, CAS, Beijing 100049, China
cDepartment of Geography, University of WisconsineMadison, Madison, WI 53706, USA
dDepartment of Geography, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
eDepartment of Geography, University of Minnesota-Duluth, Duluth, MN 55812, USA

a r t i c l e i n f o

Article history:
Received 25 April 2013
Received in revised form
1 October 2013
Accepted 3 October 2013
Available online 31 October 2013

Keywords:
Distributed hydrological model
Parallel computing
Domain decomposition
Simulation units Layering
OpenMP

a b s t r a c t

Distributed hydrological simulations over large watersheds usually require an extensive amount of
computation, which necessitates the use of parallel computing. Each type of hydrological model has its
own computational characteristics and therefore needs a distinct parallel-computing strategy. In this
paper, we focus on one type of hydrological model in which both overland flow routing and channel flow
routing are performed sequentially from upstream simulation units to downstream simulation units
(referred to as Fully Sequential Dependent Hydrological Models, or FSDHM). There has been little pub-
lished work on parallel computing for this type of model. In this paper, a layered approach to parallel
computing is proposed. This approach divides simulation units into layers according to flow direction. In
each layer, there are no upstream or downstream relationships among simulation units. Thus, the cal-
culations on simulation units in the same layer are independent and can be conducted in parallel. A grid-
based FSDHM was parallelized with the Open Multi-Processing (OpenMP) library to illustrate the
implementation of the proposed approach. Experiments on the performance of this parallel model were
conducted on a computer with multi-core Central Processing Units (CPUs) using datasets of different
resolutions (30 m, 90 m and 270 m, respectively). The results showed that the parallel performance was
higher for simulations with large datasets than with small datasets and the maximum speedup ratio
reached 12.49 under 24 threads for the 30 m dataset.

Published by Elsevier Ltd.

1. Introduction

Spatially distributed hydrological modeling has been widely
used in hydrological studies and watershed management (Borah
and Bera, 2004). In order to conduct detailed simulations of
hydrological processes, physically based methods and high
spatial and temporal resolutions are required (Hessell, 2005;
Rojas et al., 2008). Nevertheless, such simulations on large wa-
tersheds usually require an extensive amount of computation.
Simulation methods based on serial computation techniques
cannot meet the demands of large-scale watershed simulation
on computing capacity; thus parallel computing is needed
(Vivoni et al., 2011; Liu et al., 2013a). Currently, a growing
number of researches have been conducted on parallel
computing of distributed hydrological models as well as other
environmental and socio-economic models (Apostolopoulos and
Georgakakos, 1997; Bryan, 2013; Li et al., 2011; Qin and Zhan,
2012; Zhao et al., 2012, 2013).

Software availability

Program title: LayeredParallelModel
Description: A parallel Fully Sequential Dependent Hydrological

Model (FSDHM) using a layered approach
Developer: Dr. Junzhi Liu and Prof. A-Xing Zhu
Platform: Microsoft Windows, Linux
Source language: Cþþ
Cost: Free
Availability: Contact the developer

* Corresponding author. Institute of Geographic Sciences and Natural Resources
Research, CAS, State Key Lab of Resources and Environmental Information System,
Beijing 100101, China. Tel.: þ86 13810787680; fax: þ86 10 64889630.

E-mail address: axing@lreis.ac.cn (A-X. Zhu).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

1364-8152/$ e see front matter Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.envsoft.2013.10.005

Environmental Modelling & Software 51 (2014) 221e227



Author's personal copy

Because hydrological simulations are temporally successive,
spatial domain decomposition is usually adopted for parallel
computing of distributed hydrological models (Wang et al.,
2011). Each type of hydrological model has its own computa-
tional characteristics and therefore needs a distinct domain
decomposition strategy. In this paper, we focus on one type of
hydrological model (Fully Sequential Dependent Hydrological
Models, FSDHM) in which both overland flow routing and
channel flow routing are performed sequentially from upstream
simulation units to downstream simulation units. Typical
FSDHM include grid-based models such as TOPKAPI (Ciarapica
and Todini, 2002), LIS-FLOOD (Van Der Knijff et al., 2010), and
flow-tube based models such as TOPOG (Vertessy et al., 1993)
and Thales (Grayson et al., 1992).

The research on parallel computing of distributed hydrological
models has focused primarily on sub-basin based parallel
computing (e.g. Apostolopoulos and Georgakakos, 1997; Li et al.,
2011; Wang et al., 2011; Wu et al., 2013; Yalew et al., 2013). The
sub-basin based parallel computing methods can apply to FSDHM.
However, they cannot utilize the fine-grained parallelizability
within each sub-basin at the basic unit (e.g. grid) level, which can
also be used to improve the parallel-computing performance.
Currently, there is no published research on basic unit based par-
allel computing for FSDHM (Liu et al., 2013b). In this paper, we aim
to develop such a parallel-computing approach for FSDHM utilizing
the parallelizability at basic unit level.

In this approach, most hydrological processes are directly par-
allelized at the basic simulation unit (e.g., grid) level except that the
channel flow routing process is parallelized at reach level. The basic
principle of this approach is to divide simulation units, whether
grids or reaches, into layers. Section 2 presents the principle of the
proposed approach. Section 3 describes the implementation of this
approach, using a grid-based FSDHM as an example. Section 4
discusses the experiments and results. Section 5 concludes and
discusses future research directions.

2. Assumptions of FSDHM

There are several assumptions on the computational charac-
teristics of FSDHM in this paper. These assumptions will affect the
design of parallel strategies and are listed as follows:

(1) A watershed is divided into sub-basins and each sub-basin is
further divided into basic simulation units such as grids.

(2) Each simulation unit is assigned a topography-based flow
direction.

(3) There are no connections between surrounding simulation
units except for the adjacent upstream and downstream
ones.

(4) For flow-routing calculation within a time step, the calcula-
tion of downstream units cannot be started until all its up-
stream units have been processed.

3. The basic principle of a layered approach to parallel
computing

Hydrological processes in FSDHM can be classified into two
types: runoff generation processes and flow routing processes. For
runoff generation, calculations for different simulation units are
independent; therefore parallel computing can be conducted by
simply dividing simulation units into equal parts. For flow routing,
there are sequential dependences among upstream and down-
stream simulation units, so parallel computing cannot be con-
ducted by dividing simulation units directly.

The routing calculation of a simulation unit depends on its up-
stream units, which are defined by flow direction (for example, at
grid level) or drainage network (at reach level). This dependence
restricts the spatial decomposition strategies for routing processes
because downstream simulation units cannot be processed until
the calculation of all their upstream units has been finished. In light
of this restriction, a layered approach was proposed. This approach
first divides simulation units (for example, grids and reaches) into
layers and ensures that there are no upstream or downstream re-
lationships between simulation units in the same layer. Thus, the
calculations of simulation units in the same layer are independent
and can be conducted in parallel. Of course, because the outflow of
upstream units is needed by the corresponding downstream units,
the calculation of units in upstream layers should be conducted
first.

Because the number of basic units (e.g. grid) in a watershed is
usually large, data exchange among upstream and downstream
units would cause a large amount of communication in parallel
computing. To alleviate the communication overhead, the shared-
memory programming model, which has good communication
efficiency (Rauber and Rünger, 2010), was adopted in this paper.

4. Implementation of the layered approach for a grid-based
FSDHM

4.1. Description of a grid-based FSDHM

In this paper, a grid-based FSDHM was parallelized to illustrate
the implementation of the proposed layered parallel-computing
approach. This model integrated several existing methods to
conduct event-based hydrological simulation in semi-arid water-
sheds (see the following paragraphs for details) and was imple-
mented by the authors using the Cþþ programming language.

The hydrological processes simulated in this model include
interception, infiltration, surface depression, overland flow routing
and channel flow routing. Both overland flow routing and channel
flow routing were performed sequentially from upstream to
downstream according to single flow direction defined by the D8
method (O’Callaghan andMark, 1984). Because runoff generation is
dominated by infiltration excess overland flow in semi-arid wa-
tersheds, the interflow and groundwater flow processes were not
simulated.

The infiltration process was simulated by a quadratic approxi-
mation of the Green-Ampt method (Li et al., 1975). The interception
and depression processes were simulated using methods in the
Wetspa model (Liu and De Smedt, 2005). The fill-and-spill mech-
anism was used for the interception process, and the maximum
interception storage was calculated using a statistical equation
containing leaf area index, vegetal species, and date (Liu and De
Smedt, 2004). For the depression process, depression and over-
land flow were allowed to occur simultaneously even if excess
rainfall was less than the depression storage, and the depression
storage was estimated by an empirical equation suggested by
Linsley et al. (1975).

For the overland flow routing and channel flow routing pro-
cesses, a one-dimensional kinematic wave model was used in
combination with the Manning’s equation (Chow et al., 1988),
which was also used by the LIS-FLOOD model (Van Der Knijff et al.,
2010). The equation for surface-water depth is

vh
vt

þ 1
n

ffiffiffiffiffi
S0

p v
�
h5=3

�

vx
¼ i� f (1)

where h is the depth of water on the surface (m); t is the time (s); n
is the Manning coefficient; S0 is the bed slope(m/m); x is the length

J. Liu et al. / Environmental Modelling & Software 51 (2014) 221e227222



Author's personal copy

of the slope (m); i is the rainfall intensity (m/s); f is the infiltration
rate (m/s). This equation was solved by a combination of the 4-
point implicit finite difference and Newton’s iteration method.

4.2. Method for layering simulation units

The first step of the proposed parallel-computing approach was
to divide the simulation units into layers withinwhich the units are
independent of each other. In this paper, we used a flow topology to
divide simulation units into layers. The single flow direction (D8)
method (O’Callaghan and Mark, 1984) was used to define the flow
topology. The outlet unit is labeled as layer 1 and the units draining
directly to units in layer 1 is defined as layer 2. The units draining
directly to units in layer n is defined as layer nþ1 and so on and so
forth until the most upstream units are reached (Wang et al., 2004).
Fig. 1 and Fig. 2 illustrate the layering results for grids and reaches,
respectively. Because routing calculation should be conducted from
upstream to downstream, layers with a larger number will be
processed first during routing calculation. The pseudo code of the
layering algorithm is shown in Appendix A.1. In this algorithm, the
outlet unit was first processed and then its upstream units were
processed recursively from downstream to upstream.

It is worth noting that if grid-to-grid channel flow routing is
adopted, the layering information at reach level (Fig. 2-b) is implicit
in the layering result at grid level (Fig. 1-b), so layering of reaches
for the specific model described in Section 4.1 is not indispensable.
But the proposed approach in this paper is oriented to FSDHM in
general, including those models in which the basic units for chan-
nel flow routing are reaches rather than grids. Therefore, the rea-
ches are layered separately in this paper.

4.3. Data structure

Two-dimensional arrays are usually used to store watershed
raster data such as slope and flow direction in traditional grid-
based distributed hydrological models. However, because the
shape of a watershed is usually not a regular rectangle, there are
many no-data grids outside the watershed boundary. This causes
several drawbacks. First, the no-data values wastememory. Second,
the model must check whether a grid contains a no-data value
before calculation, and this wastes computing time. Third and the
most important, the no-data grids are prone to cause load imbal-
ance due to their irregular spatial distribution.

To overcome the drawbacks of two-dimensional arrays, we
employed a one-dimensional array data structure to manage the
watershed raster data. First, the two-dimensional arraywas directly
unfolded to a one-dimensional array by row. Then the no-data grids
were erased from the one-dimensional array to get a compact array
(Fig. 3). To ensure consistency of raster data in the same watershed,
a mask raster was used in the conversion from two-dimensional to
one-dimensional array. Because the spatial location and relation-
ship information were lost in the one-dimensional data structure,
several lookup tables were used to store the location information
(row and column numbers) and flow relationship information.

4.4. Programming implementation

The Cþþ programming language and the OpenMP application
programming interface (API) were used to implement the study’s
parallel computing approach. OpenMP is the de facto standard for
shared-memory parallel programming (Mattson et al., 2004). It is
based on the fork/join programming model and the OpenMP
compiler directives embedded in the programming language
source code are used to achieve parallel computing.

For the runoff generation processes, including interception,
infiltration, and surface storage processes, a pragma statement was
used to parallelize the for loop of the one-dimensional array that
stored watershed raster data. This divided the watershed data into
domains of equal size and dispatched the computing tasks of each
domain to different threads. The Cþþ pseudo code of this parallel
algorithm can be found in Appendix A.2.

Fig. 1. Division of grids according to (a) flow direction into (b) layers (Arrows in the figure represent flow directions; A total of 7 grid layers are divided in this example).

Fig. 2. Division of reaches according to (a) drainage network into (b) layers (Arrows in
the figure represent flow directions; A total of 4 reach layer are divided in this
example).

J. Liu et al. / Environmental Modelling & Software 51 (2014) 221e227 223



Author's personal copy

For the routing processes, including overland flow routing and
channel flow routing, firstly simulation unit layering was con-
ducted using the algorithm as described in Section 4.2 in the pre-
processing phase. Then a two-level nested loop, the outer one for
different layers and the inner one for units within each layer, was
used for the calculation, and a pragma statement was used to par-
allelize the inner for loop. The Cþþ pseudo code of this parallel
algorithm can be found in Appendix A.3. It should be noted that the
number of units within a layer may be small in some cases, espe-
cially for the reaches (as shown in Fig. 2). If the number of units
within a layer is smaller than the number of threads, some threads
will be idle during parallel computing.

5. Case studies

5.1. Experimental design

5.1.1. Study area and dataset
The Qingshuihe watershed, located in the Hebei province of

China, was selected as the study area (Fig. 4). The watershed area is
about 2300 km2 and the elevation ranges from 781 to 2164m. It has
a sub-arid climate characterized by an average annual precipitation
of 480 mm, 80% of which occurs between June and September in
the form of intense storms.

Three datasets of different spatial resolutions (30 m, 90 m and
270 m) were used to test the performance of the proposed paral-
lelization method (Table 1). All experiments were performed using
a 24-h storm with 50-year recurrence interval at 1-min time step.
Because the primary object of this study was to test the parallel
efficiency, default input parameters extracted from DEM, landuse
map, and soil map, and obtained from literature values were used
in these simulations. Only the discharge at the outlet of the
watershed was outputted.

5.1.2. Experiment environment
A computer server with 2 CPUs was used as the hardware

platform. The CPU type was Intel � Xeon E5645 2.4G; each CPU had
6 cores (12 logical cores). A Windows 2008 Server Operating Sys-
tem and a VCþþ 2010 compiler were used. The OpenMP library was
version 2.0.

To test parallel performance, the thread number ranged from 2
to 24, using a varying number of cores. Each experiment was
repeated three times to get an average execution time. The
computing time of each process was also recorded. The execution

Fig. 3. Watershed raster data represented by (a) two-dimensional array unfolded to
(b) compact one-dimensional array with flow relationship information stored in (c)
lookup tables. The numbers in this figure represent grid index in (b).

Fig. 4. Location map of the study area.

J. Liu et al. / Environmental Modelling & Software 51 (2014) 221e227224



Author's personal copy

time here refers to the time from the beginning to the end of the
simulation, including data input/output (I/O) time, while the
computing time of each process excludes I/O time.

5.1.3. Evaluation index
The speedup ratio and parallel efficiency were used to measure

the performance of the proposed method. The speedup ratio is
defined as the ratio between the serial computing time and the
parallel computing time (Rauber and Rünger, 2010) and the equa-
tion is as follows:

S ¼ Ts
Tp

(2)

where S is the speedup ratio; Ts is the serial execution/computing
time; Tp is the parallel execution/computing time. The parallel ef-
ficiency is defined as the ratio between the speedup ratio and the
number of threads (Rauber and Rünger, 2010) and the equation is as
follows:

E ¼ S
N

(3)

where E is the parallel efficiency; N is the number of threads.

5.2. Results and discussion

5.2.1. Overall performance
Fig. 5 presents the execution time, speedup ratios and parallel

efficiencies for the parallel simulations using different numbers of
threads for the three datasets. As expected, the execution time
decreased and the speedup ratios increased with the number of
threads for all the experiments. The speedup ratio reached 12.49
under 24 threads for the 30m dataset. When the number of threads
was small, this method had very good parallel efficiencies. For
example, in our experiments, the parallel efficiencies ranged from
0.89 to 0.97 for 2 threads and from 0.81 to 0.91 for 4 threads,

confirming that this method is very effective when used in current
mainstream multi-core CPUs. As the number of threads increased,
the parallel efficiencies gradually decreased. This was becausemore
computational resources were directed to scheduling rather than to
actual computing when the number of threads increased.

We also found that data volume had a direct influence on par-
allelization performance. The larger the dataset was, the higher the
speedup was for a given number of threads. This was because the
time spent on actual calculation increased with data volume, which
made the rate of scheduling overhead decrease and led to better
parallelization performance.

5.2.2. Performance by type of hydrological process
Parallelization strategies varied for different types of hydrolog-

ical processes, as described in Section 3. The performance of
different types of hydrological processes for the 90 m dataset is
shown in Fig. 6. The runoff generation processes (i.e. interception,
depression, and infiltration), which are displayed as a whole in
Fig. 6, performed well, with parallel efficiencies all above 0.6. The
performance of the routing processes (i.e. overland flow routing
and channel flow routing) was poorer than that of the runoff
generation processes.

This result is consistent with the parallelizability of each type of
process. The calculations of runoff generation on each simulation
unit were independent, so they had good parallelizability. A simple
decomposition method was used for their parallelization and, as
would be expected, this straightforward parallelization method
achieved good performance.

For the overland flow routing process, the parallelization per-
formance was not as good as that of the runoff generation pro-
cesses. This can be attributed to the increase of scheduling
overhead. Within a time step, a two-level nested loop was used for
the overland flow routing process and parallel-computing was
conducted in the inner loop. So the number of thread scheduling
(e.g. thread synchronization) for the overland flow routing process
was the number of the outer loop (i.e. the number of layers), which
is 971 for the 90 m resolution dataset in this paper. In contrast, the

Table 1
Three datasets with different spatial resolutions.

Experiment Resolution (m) Number of grids Number of layers for
overland flow routing

Number of
sub-basins

Number of layers for
channel flow routing

1 270 29,850 308 115 21
2 90 268,860 971 115 21
3 30 2,381,602 2875 115 21

Fig. 5. The (a) execution time, (b) speedup ratios and (c) parallel efficiencies using different numbers of threads for the three datasets (30 m, 90 m and 270 m resolutions). Execution
time refers to the time from the beginning to the end of the simulation (including I/O time).

J. Liu et al. / Environmental Modelling & Software 51 (2014) 221e227 225



Author's personal copy

number of thread scheduling for a runoff generation process was
only once. Therefore, the scheduling overhead of the overland flow
routing process was much heavier than that of the runoff genera-
tion processes.

For the channel flow routing process, the parallel-computing
performance was poor. This is partly due to the scheduling over-
head as described above. Another reason is that the number of
reaches within each routing layer was relatively small, so in many
cases the number of threads was larger than the number of reaches
within a layer and some threads were idle during parallel
computing. In addition, the different amount of calculation among
reaches, which was caused by different numbers of reach-grids,
also led to load unbalance and low performance.

6. Conclusions

This paper proposed a layered approach to parallel computing
for one type of distributed hydrological model (FSDHM). The
approach divides the simulation units into layers according to flow
direction and ensures that there are no upstream or downstream
relationships between simulation units in the same layer. Thus, the
calculations on simulation units in the same layer are independent
and can be conducted in parallel.

A grid-based FSDHM was parallelized with the OpenMP library
to illustrate the implementation of the proposed approach. Its
performance was tested in relation to the number of threads and
data volume. Overall, this approach provided efficient computa-
tional performance. The parallel speedups increased with both the
number of threads and data volume. The runoff generation pro-
cesses had better parallel performance than the routing processes.

In this approach, most hydrological processes are directly par-
allelized at the basic simulation unit (e.g., grid) level, except that
the channel flow routing process is parallelized at the reach level.
Because of the significant amount of communication at such a fine
level, this approach used the shared-memory programming model,
which depends on shared-memory hardware. The hardware envi-
ronment is usually the limiting factor of this approach. In contrast,
sub-basin based parallel computing, with a low communication
overhead, can use a more scalable cluster computing environment,
but suffers from the limited parallelizability at the sub-basin level
(Wang et al., 2012). For these reasons, these two approaches are
complementary to each other. A two-level parallel computing
strategy could be developed for the multi-core cluster computing
environment, in which parallel computing at the sub-basin level is
performed among different computing nodes using the message-
passing programming model and parallel computing at the basic
simulation unit level is performed within each computing node

using the shared-memory programming model. In addition, the
parallelizability at the time domain can also be utilized in the
future. For example, the temporal-spatial discretization parallel-
computing method newly developed by Wang et al. (2013),
which utilized sub-basin based parallelizability at both the time
and spatial domain, can be integrated with the approach proposed
in this paper to further improve parallel-computing scalability.

Acknowledgments

This study was funded by the National High-Tech Research and
Development Program of China (No. 2011AA120305) and the Na-
tional Natural Science Foundation of China (No. 41023010). This
study was also partly funded by the Program of International S&T
Cooperation, MOST of China (No. 2010DFB24140). The support
received by A-Xing Zhu through the Vilas Associate Award, the
Hammel Faculty Fellow, and the Manasse Chair Professorship from
the University of Wisconsin-Madison is greatly appreciated.

Appendix A. Pseudo code of major algorithms

A.1. Pseudo code of the algorithm for layering simulation units

Fig. 6. The (a) speedup ratios and (b) parallel efficiencies of each type of hydrological process for the 90 m resolution dataset.

function Layering (curID, layerNum)

// curID is the ID of current unit

// layerNum is the current layer number

// layers is a 2D array containing the layering result

add curID to layers[layerNum]

for upID in upstream units of curID do

if (upID is inside watershed)

LayeringFromOutlet (upID, layerNum+1)

end if

end for

end function

// invoke the layering algorithm from outlet

// outletID is the index of the outlet unit

Layering(outletID, 1)

J. Liu et al. / Environmental Modelling & Software 51 (2014) 221e227226



Author's personal copy

A.2. Cþþ pseudo code of the parallel algorithm for runoff
generation processes

A.3. Cþþ pseudo code of the parallel algorithm for routing
processes

References

Apostolopoulos, T.K., Georgakakos, K.P., 1997. Parallel computation for streamflow
prediction with distributed hydrologic models. J. Hydrol. 197 (1e4), 1e24.

Borah, D.K., Bera, M., 2004. Watershed-scale hydrologic and nonpoint-source
pollution models: review of applications. Trans. ASAE 47 (3), 789e803.

Bryan, B.A., 2013. High-performance computing tools for the integrated assess-
ment and modelling of social-ecological systems. Environ. Model. Softw. 39,
295e303.

Chow, V., Maidment, D., Mays, L., 1988. Applied Hydrology. McGraw-Hill, New York.
Ciarapica, L., Todini, E., 2002. TOPKAPI: a model for the representation of the

rainfall-runoff process at different scales. Hydrol. Process. 16 (2), 207e229.
Grayson, R.B., Moore, I.D., Mcmahon, T.A., 1992. Physically based hydrologic

modeling .1. A terrain-based model for investigative purposes. Water Resour.
Res. 28 (10), 2639e2658.

Hessell, R., 2005. Effects of grid cell size and time step length on simulation results
of the Limburg soil erosion model (LISEM). Hydrol. Process. 19 (15), 3037e3049.

Li, R.M., Simons, D.B., Stevens, M.A., 1975. Nonlinear kinematic wave approximation
for water routing. Water Resour. Res. 11 (2), 245e252.

Li, T.J., Wang, G.Q., Chen, J., Wang, H., 2011. Dynamic parallelization of hydrological
model simulations. Environ. Model. Softw. 26 (12), 1736e1746.

Linsley, R.K., Kohler, M.A., Paulhus, J.L.H., 1975. Hydrology for Engineers. McGraw-
HIll, New York.

Liu, J.Z., Zhu, A.X., Qin, C.Z., 2013a. Estimation of theoretical maximum speedup
ratio for parallel computing of grid-based distributed hydrological models.
Comput. Geosci. 60, 58e62.

Liu, J.Z., Zhu, A.X., Qin, C.Z., Chen, L.J., Wu, H., Jiang, J.C., 2013b. Review on parallel
computing of distributed hydrological models. Prog. Geogr. 32 (4), 538e547 (in
Chinese).

Liu, Y.B., De Smedt, F., 2004. WetSpa Extension, Documentation and User Manual.
Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel,
Belgium.

Liu, Y.B., De Smedt, F., 2005. Flood modeling for complex terrain using GIS and
remote sensed information. Water Resour. Manag. 19 (5), 605e624.

Mattson, T., Sanders, B., Massingill, B., 2004. Patterns for Parallel Programming.
Addison-Wesley Professional, Boston.

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital
elevation data. Comput. Vis. Graphics, Image Process. 28 (3), 323e344.

Qin, C.Z., Zhan, L.J., 2012. Parallelizing flow-accumulation calculations on graphics
processing units e from iterative DEM preprocessing algorithm to recursive
multiple-flow-direction algorithm. Comput. Geosciences 43, 7e16.

Rauber, T., Rünger, G., 2010. Parallel Programming: For Multi-core and Cluster
Systems. Springer-Verlag New York Inc, New York.

Rojas, R., Velleux, M., Julien, P.Y., Johnson, B.E., 2008. Grid scale effects on watershed
soil erosion models. J. Hydrol. Eng. 13 (9), 793e802.

Van Der Knijff, J.M., Younis, J., De Roo, A.P.J., 2010. LISFLOOD: a GIS-based distrib-
uted model for river basin scale water balance and flood simulation. Int. J.
Geogr. Inf. Sci. 24 (2), 189e212.

Vertessy, R.A., Hatton, T.J., Oshaughnessy, P.J., Jayasuriya, M.D.A., 1993. Predicting
water yield from a mountain ash forest catchment using a terrain analysis
based catchment model. J. Hydrol. 150 (2e4), 665e700.

Vivoni, E.R., Mascaro, G., Mniszewski, S., Fasel, P., Springer, E.P., Ivanov, V.Y.,
Bras, R.L., 2011. Real-world hydrologic assessment of a fully-distributed hy-
drological model in a parallel computing environment. J. Hydrol. 409 (1e2),
483e496.

Wang, G.S., Xia, J., Niu, C.W., 2004. Flow routing method and its application in
distributed hydrological modeling. Geogr. Res. 23 (2), 175e182 (in Chinese).

Wang, H., Fu, X., Wang, G., Li, T., Gao, J., 2011. A common parallel computing
framework for modeling hydrological processes of river basins. Parallel Comput.
37 (6e7), 302e315.

Wang, H., Zhou, Y., Fu, X., Gao, J., Wang, G., 2012. Maximum speedup ratio curve
(MSC) in parallel computing of the binary-tree-based drainage network. Com-
put. Geosci. 38 (1), 127e135.

Wang, H., Fu, X., Wang, Y., Wang, G., 2013. A High-performance temporal-spatial
discretization method for the parallel computing of river basins. Comput.
Geosci. 58, 62e68.

Wu, Y., Li, T., Sun, L., Chen, J., 2013. Parallelization of a hydrological model using the
message passing interface. Environ. Model. Softw. 43, 124e132.

Yalew, S., van Griensven, A., Ray, N., Kokoszkiewicz, L., Betrie, G.D., 2013. Distributed
computation of large scale SWAT models on the Grid. Environ. Model. Softw. 41,
223e230.

Zhao, G., Bryan, B.A., King, D., Song, X., Yu, Q., 2012. Parallelization and optimization
of spatial analysis for large scale environmental model data assembly. Comput.
Elect. Agric. 89, 94e99.

Zhao, G., Bryan, B.A., King, D., Luo, Z., Wang, E., Bende-Michl, E., Song, X., Yu, Q.,
2013. Large-scale, high-resolution agricultural systems modeling using a hybrid
approach combining grid computing and parallel processing. Environ. Model.
Softw. 41, 98e106.

//nUnits is the total number of units

#pragma omp parallel for

for (int i = 0; i < nUnits; i++)

{

// conduct simulation in the current unit

result[i] = function_call(i);

}

J. Liu et al. / Environmental Modelling & Software 51 (2014) 221e227 227


