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ABSTRACT

I(eywords: China’s Natural Forest Protection Program (NFPP) and Sloping Land Conversion Program (SLCP), intro-
China . duced in 1998 and 1999, respectively, are integral parts of the world’s largest reforestation effort. State-
Esrfgsrte ;t;lt;?; reported forest cover data indicate effective policy implementation through net forest cover expansion
Cross-scale but overlook the scale-dependence of and spatial variation in forest cover change patterns and also lack

reliable data on small-scale and illegal logging. As a result, there is considerable uncertainty over the
spatial distribution of forest cover change and ultimately the policies’ effectiveness at increasing forest
cover. This research uses Landsat Thematic Mapper imagery-derived multitemporal Tasseled Cap vari-
ables and a decision tree classifier to map short- and long-term forest cover change across three
administrative levels in the priority conservation area of Diqing Tibetan Autonomous Prefecture in
Yunnan Province. Results indicate a 73% reduction in the rate of forest cover loss and a more than doubled
rate of forest cover gain from 1990—1999 to 1999—2009 across the prefecture, both of which support a
positive assessment of policy implementation. However, prefectural results are countered by spatially
disparate forest cover gain and loss trends at the county- and township-level in the decade following the
policies’ introductions. Further, more than half of Diging’s townships, mainly those in the prefecture’s
south where tourism has been rapidly developing, saw continued net forest cover loss attributable to
small-scale timber harvesting for tourism-driven construction. This research thus exposes cross-scale
spatially disparate forest cover change indicative of highly differentiated policy implementation effec-
tiveness, and shows the pattern by which regional development has redirected, rather than reduced,
forest cover loss, contrary to the goals of the NFPP and SLCP.

Spatial variability
Natural Forest Protection Program
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Introduction followed by the opening of commercial timber markets in the early

1980’s brought an increased annual rate of commercial harvesting

Introducing the NFPP and SLCP

Deforestation has been the dominant historical land cover
change in China as forests have been cleared en masse for agri-
cultural land use or harvested for fuelwood and timber (He, Ge, Dai,
& Rao, 2008; Menzies, 1992). During the modern era of the People’s
Republic of China (PRC), the Great Leap Forward (1966—1976)
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in some regions to five times that of natural forest regrowth by the
mid-1980’s (Winkler, 2003). However, in the late 1990’s, a dramatic
shift in Chinese forest policy design came in response to a series of
eight floods that swept through the Yangtze River in the summer of
1998 and took between two and four thousand lives and caused
approximately 170 billion RMB (12 billion USD) in damages (Yeh,
2009). With deforestation identified as the primary factor respon-
sible for the flooding, policy design shifted away from the com-
mercial viability of forests and towards sustainable management
(Liu & Tian, 2010; Zhang et al., 2000).

Introduced in August 1998, only days after the floodwaters had
receded, the Natural Forest Protection Program (NFPP) (X $A ¥k {# 3
T#2), alternately translated as the Natural Forest Conservation
Program (NFCP), sought to “protect natural forests, facilitate



178 J. Van Den Hoek et al. / Applied Geography 47 (2014) 177—189

forestation, and build planted forests” (CAS, 2007). The NFPP closed
timber markets in the upper Yangtze by September 1998 (Hillman,
2003), required the four largest logging companies to promptly halt
logging in primary forests (Wang, Innes, Lei, Dai, & Wu, 2007), and
initially banned all logging in the upper Yangtze though this
complete ban was soon relaxed to allow for subsistence use. Similar
restrictions soon spread to 17 provinces and autonomous regions in
the Yangtze River headwaters containing 69% of China’s total nat-
ural forest cover (Mullan, Kontoleon, Swanson, & Zhang, 2009; Yin,
Xu, Li, & Liu, 2005).

The NFPP initially sought to increase national forest cover to 19%
by 2010 (Zhang et al., 2000) and has since been renewed through
2020 with the goal of increasing national forest cover to 25% (SFA,
2011). In addition to the logging ban, the NFPP has funding for
afforestation and reforestation through aerial seeding and manual
planting. Afforestation has been aggressively pursued with wide-
spread tree planting on hillsides and barren lands complemented
by a complete restriction on resource use across 31 million ha of
land that had been afforested or had the potential to support for-
ests. In 1999, the NFPP was joined by the Sloping Land Conversion
Program (SLCP) or “Grain for Green” program (R#ZEMTE) a
program designed to limit soil erosion across 25 provinces by
decreasing agricultural cultivation on steeply sloped lands
(Démurger, Fournier, & Shen, 2005). The goal of the SLCP is to
convert over 14 million ha of agricultural lands to forests, which
include 4.4 million ha of steep (greater than 25°) agricultural lands,
and to afforest over 17 million ha of “wasteland,” lands that are
degraded or out of active land use for other reasons (Liu, Li, Ouyang,
Tam, & Chen, 2008; Yeh, 2009).

Policy implementation evaluations

In only the first two years following the NFPP’s introduction,
national timber harvest levels dropped from 29 million m® to 14
million m? (Zhang et al.,, 2000; Zhao & Shao, 2002) and, by 2009,
China had established itself as the global leader in afforestation
with nearly 6 million ha of afforested land (Wang et al., 2007; Yu
et al,, 2011). The State Forest Administration’s (SFA) National For-
est Resource Inventory (NFRI) data — based on county-level ground
surveys every five years — has been the primary dataset used to
quantify forest cover change. NFRI data show a 3.2% net national
forest cover gain between 1995 and 2000 and a 3.6% net gain be-
tween 2005 and 2010 under expanded policy implementation
(FAO, 2000, 2012). By 2010, Chinese national forest cover had
already reached 22%, surpassing the NFPP’s initial goal of 19% na-
tional forest cover (FAO, 2012; Xu, 2011), and was quickly
approaching the goal of 25% forest cover by 2020.

While these trends suggest effective policy implementation, the
value of NFRI data is limited by a host of reasons: the lack of
spatially-explicit and historical inventories (Miao & West, 2004;
Yin, Yin, & Li, 2009; Zhang & Song, 2006), shifts in the formal
definition of “forest” (Ho, 2005; Miao & West, 2004), misleading
reforestation assessments (Liu & Tian, 2010), and unaccounted for
impacts of small-scale, selective or illicit logging (Melick, Yang, &
Xu, 2007b; Xu & Wilkes, 2004). Further, NFRI data disagree with
UNEP/SEPA (United Nations Environment Program/Strategic Envi-
ronmental Policy Assessment) data on the amount of national
forest cover in 2000 by as much as 7.5% of China’s total land area
(Sayer & Sun, 2003) as well as Liu et al. (2005) who measured a
0.52% decrease in national forest cover during the 1990’s while
NFRI data reported a contemporary increase of 1.94% (FAO, 2000).

Moreover, results from multiple case studies (e.g., [ves, 2006; Liu
& Tian, 2010; Trac, Harrell, Hinckley, & Henck, 2007; Xu, Katsigris, &
White, 2002) counter NFRI-backed claims of policy effectiveness
and expose great variability in implementation (Yeh, 2009). Xu, Tao,

and Amacher (2004) found that NFRI-reported gains in forest cover
could not be verified during site visits across 28 provinces. Using
250-m resolution MODIS imagery, Li et al. (2013) measured
regional variability of recent forest cover change in central China,
and found “no significant change in forest cover” in over half of the
studied townships. Collectively, these case studies illustrate cross-
scale variability unseen in NFRI data but exposed through spatial
disaggregation and inter-regional forest cover change comparisons.

Study overview

To measure the scale-dependent, spatiotemporal variability of
forest cover change during NFPP and SLCP implementation, this
research employs classified forest cover change maps based on
Landsat satellite imagery in the priority conservation area of Diqing
Tibetan Autonomous Prefecture, southwest China, in two ways that
address the limitations of previous evaluations conducted at a
single spatiotemporal scale. First, by measuring changes in the
annual rate of forest cover change in Diqing across three adminis-
trative levels (i.e., prefecture, county, and township), this research
exposes spatially differentiated forest cover change patterns
resulting from various processes catalyzed by the policies’ in-
troductions. Second, by adopting two temporal scales (i.e., short-
and long-term), this research examines the varying contributions of
selective logging, industrial logging, and forest regeneration to
forest cover change during policy implementation.

Study area

Because of its hydrologic importance at the Yangtze headwaters,
history of widespread deforestation, and status as a biodiversity
hotspot (Xu & Wilkes, 2004), Diqing Prefecture presents an ideal
case study to evaluate the success of the NFPP and SLCP at pro-
moting forest cover expansion. Diging (Fig. 1) is located in northwest
Yunnan Province just southeast of the Qinghai-Tibetan Plateau,
straddles the north-south running Hengduan Mountains between
1500 and 6700 masl with an average elevation of 3400 masl, and
sees 300—950 mm of annual precipitation, most of which falls be-
tween June and September (Sherman, Mullen, Li, Fang, & Wang,
2007). Diqing is approximately 2.3 million ha in size — slightly
larger than the US state of New Jersey — and includes three counties,
Deqin, Weixi, and Shangri-La, which collectively comprise thirty
townships. Ethnic Tibetans account for 33% of Diqing’s 350,000
residents across 1300 villages, towns, and cities (National Bureau of
Statistics, 2005). Grasslands and pine forests are found at elevations
up to 3000 masl; mixed alpine coniferous (fir, pine, and spruce) and
oak trees constitute the majority of mid-elevation forests between
3000 and 4000 masl on south- and north-facing slopes, respec-
tively; alpine heath and meadows occupy 3800 to 4800 masl; and
alpine ecosystems extend to 6500 masl (Weyerhaeuser, Wilkes, &
Kahrl, 2005; Willson, 2006; Winkler, 1998).

NFRI data report 65% forest cover in 2000, an amount well above
the average of Yunnan Province (33%) or China (13%) (DYED, 2006)
and which rose to 67% by 2005 and 75% by 2011 (Kunming Daily,
2011). There is no comprehensive report on the extent of histori-
cal forest cover change but available data suggest that over 20% of
the prefecture’s conifer forests were commercially harvested in the
two decades prior to the NFPP’s introduction (Xu & Ribot, 2004).
The loss of forest cover to industrial logging was most pronounced
in southern Weixi and Shangri-La counties, supported by existing
roadway infrastructure and less topographic relief and better
market access than the rest of Diqing (Hillman, 2003; Willson,
2006). Over 30% of Diqing's forests have been collectively
managed since the mid-1960’s and remained broadly off-limits to
industrial logging (Qiang, H. Personal communication, July 20,
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Fig. 1. Diqing Tibetan Autonomous Prefecture’s topography, village distribution, and roadway network in northwest Yunnan Province, southwest China.

2010). Instead, collective forests supply villages with livestock
fodder, housing timber, and fuelwood harvested through small-
scale and spatially diffuse selective logging (Liu, 2001;
Richardson, 1990).

At the outset of policy implementation in 1998, Diging was a
poor region within a poor province: the per capita GDP was only
one-third of China’s average and the shuttering of the commercial
timber industry meant that the prefectural government lost 80% of
its annual tax revenue (Hillman, 2003). In response, Diqing lead-
ership established tourism as the centerpiece of local economies
and tax revenue. By 2001, tourism was bringing approximately 68
million RMB in annual revenue to Diqging, 10 million RMB more than
commercial logging had during its mid-1990’s peak (Hillman,
2003). The growth of tourism was buttressed by the removal of
travel restrictions to Diging in 1997, construction of a new regional

a) 1999 false color

Band 5 increase
I Band 5 decrease

airport in central Shangri-La County in 1999, the re-naming of what
had been known as Zhongdian County to Shangri-La County in May
2001 after the fictional Himalayan paradise in the novel, “Lost
Horizon” (Hillman, 2003), expanded roadway coverage, and
increased extraction of timber for construction of hotels and res-
taurants in defiance of NFPP restrictions (Melick, Yang, & Xu, 2007a;
Menzies, 2007; Xu & Melick, 2007; Zackey, 2005).

Methods
Data and analytical design
To gauge changes in forest cover change under policy imple-

mentation, the extent, annual rate, and spatial pattern of forest
cover change were measured with 30 m resolution multispectral

b) 2009 false color

[ forest cover gain
I forest cover loss

Fig. 2. Coverage of Diging Prefecture by Landsat-5 TM scenes 132-40 and 132-41, and three Landsat-derived products: a) 1999 and b) 2009 false color imagery; c) an image of 1999—
2009 ATM Band 5 used in visual interpretation of training data; and d) a classified forest cover change map. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Landsat-5 Thematic Mapper (TM) imagery collected in row/path
132-40 and 132-41 (Fig. 2). The temporal distribution of imagery
(Table 1) is structured in a “change-in-change” approach that
contextualizes forest cover change during policy implementation
with preceding change trajectories. As persistent cloud cover
limited the availability of TM imagery during the NFPP’s introduc-
tion in September 1998, the nearest imagery date with less than
ten-percent cloud or snow cover, October 28, 1999, was instead
used to anchor the imagery’s distribution. Radiometric correction
was not applied to the imagery since the Multitemporal Tasseled
Cap (MTC) indices used in this study and described below have
been shown to perform as well at capturing changes in land cover
with radiometric correction applied as without (Collins &
Woodcock, 1996; Potere, Van Dellen, & Pollack, 2004).

Small-scale selective logging and forest cover expansion pose
challenges to detection with coarse-scale TM imagery. Selective
logging typically has a low magnitude, temporary impact on forest
structure compared to clear-cutting associated with industrial
logging that may lead to degradation or permanent deforestation
(Healey, Yang, Cohen, & Pierce, 2006; Putz, Sist, Fredericksen, &
Dyckstra, 2008). Similarly, forest regeneration is a gradual process
requiring several years before new “forest” can be discriminated
from the spectral characteristics of surrounding vegetation
(Kennedy, Yang, & Cohen, 2010; Masek et al., 2008; Zhang, 2000).
To detect short-term and long-term forest cover loss as well as
long-term forest cover gain, two different temporal scales were
used: three- to six-year study periods to identify short-term forest
cover loss, and nine- to ten-year study periods to assess long-term
forest cover gain, loss, and net change.

Satellite imagery processing and classification

Multitemporal Tasseled Cap indices are the independent vari-
ables used to map the dependent variable of forest cover change
(Fig. 3). Based on the Gramm-Schmidt transformation, MTC indices
are orthogonal (uncorrelated) indices calculated through a linear
combination of imagery bands (Crist & Cicone, 1984; Kauth &
Thomas, 1976). MTC indices are strongly related to physical
changes in forest cover, provide a better indication of vegetative
change than inter-date differences in values of a single Landsat
band (Coppin, Jonckheere, Nackaerts, Muys, & Lambin, 2004;
Rogan, Franklin, & Roberts, 2002), and have been used to accu-
rately map locations of change across a diversity of forests and
change conditions (e.g., Healey, Cohen, Yang, & Krankina, 2005). For
each change pair, MTC indices represent a change in brightness
(AB) (the change in soil brightness or total reflectance based on a
weighted sum of TM bands), change in greenness (AG) (relating the

Table 1
Temporal distribution of Landsat-5 TM imagery.
imagery short-term long-term
date change maps change maps
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Fig. 3. Overview of forest cover change methodology where B, G, and W refer to
Tasseled Cap Brightness, Greenness, and Wetness indices, respectively.

change in green vegetation based on the difference between
weighted visible and near-infrared bands), and change in wetness
(AW) (representing a change in canopy and soil moisture based on
the difference between the sum of weighted visible and near
infrared bands with the sum of weighted mid-infrared bands) as
well as stable brightness (B), greenness (G), and wetness (W), the
latter three of which account for scene variation unrelated to
vegetative change. To aid discrimination of different land covers
with comparable change indices, stable Tasseled Cap indices were
merged with change indices in a six-band change image.

Training data for each study period were comprised of one
hundred randomly sampled locations from a six-band MTC change
image, labeled through visual interpretation of a TM near-infrared
Band 5 temporal composite as well as high resolution Google
Earth-hosted Quickbird imagery collected between 2002 and 2009.
Training features considered in the direct change classification
include forest, non-forest, and water as well as the image date-
specific features of cloud, snow/ice, and shadow that were abun-
dant across Diging’s mountainous terrain and contributed to inter-
and intra-image variability (Table 2). Features were thematically
merged into three classes used in the forest cover change classifi-
cation: forest cover loss (forest-to-non-forest), forest cover gain
(non-forest-to-forest), and stable non-forest or forest. With these
training data and a six-band change image as input, a Unix-
implemented C4.5 decision tree classifier with pruning and
boosting (Quinlan, 1993) was used to classify forest cover change
for each study period. This decision tree classifier was selected
because of its ease of implementation and ability to map forest
cover change manifest as spectrally non-contiguous clusters like
those associated with selective logging or forest regrowth.
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Table 2

List of visually interpreted training data feature types and thematically merged
feature classes depicted in classified change maps. Note that forest cover gain was
only classified for long-term change maps.

Feature Feature type Feature class
number

1 Unshaded forest to unshaded non-forest Forest cover loss
2 Shaded forest to shaded non-forest

3 Unshaded non-forest to unshaded forest Forest cover gain
4 Shaded non-forest to shaded forest

5 Stable forest (unshaded)

6 Stable forest (shaded)

7 Stable forest (unshaded to shaded)

8 Stable forest (shaded to unshaded)

9 Stable non-forest (unshaded)

10 Stable non-forest (shaded)

11 Stable non-forest (unshaded to shaded)

12 Stable non-forest (shaded to unshaded)

13 Cloud to forest

14 Cloud to non-forest

15 Cloud to snow

16 Forest to cloud

17 Non-forest to cloud Stable non-forest
18 Snow to cloud or forest

19 Stable cloud

20 Snow to forest

21 Snow to non-forest

22 Forest to snow

23 Non-forest to snow

24 Stable snow

25 Stable shadow

26 Shadow to cloud

27 Cloud to shadow

28 Shadow to snow

29 Snow to shadow

30 Stable water

Cross-scale forest cover change

Shifts in forest cover change under policy implementation were
assessed in three ways. First, annual rates of forest cover change
were measured at the broad prefecture-level, the intermediate
county-level, and the fine township-level. At each administrative
level, forest cover change area was normalized by the study period
duration and regional area under consideration, yielding the annual
change rate relative to regional extent (e.g., Puyravaud, 2003).
Annual change rates were compared across spatial scales, and shifts
in trajectories of annual change rates at each administrative level
were evaluated across short- and long-term study periods as a
preliminary assessment of policy implementation effectiveness.

Second, the pattern of forest cover change at the township-level
was quantified using aspatial and spatial indicators of variability
including first-order global and local measures of Moran’s I, widely
used geostatistical indices of spatial autocorrelation (Anselin, 1995;
Tiefelsdorf & Boots, 1997). Global Moran’s I is a single prefecture-
wide value that relates the degree to which annual forest cover
change rates are clustered across Diqing’s townships. Local Moran’s
I, on the other hand, is calculated for each township and represents
the similarity in annual change rate between a given township and
those immediately proximate. Given its township-by-township
calculation, local Moran’s I is more capable of exposing regional
spatial variability that may go undetected with the global indicator.

Third, respective contributions of short- and long-term forest
cover loss during a given long-term study period were discrimi-
nated. Measurements of short- and long-term loss are not inde-
pendent since, for example, a long-term loss event in 2000 and
measured in the 1999—2009 study period also contributes to short-
term loss measured in the 1999—2004 study period; in effect, long-
term loss would be double-counted. With the assumption that

short-term forest cover loss does not directly contribute to long-
term loss, the actual short-term loss that occurred over a long-
term study period was estimated by calculating the difference be-
tween the amount of loss over two consecutive short-term study
periods (e.g., 1990—1996 and 1996—1999) from that which
occurred during the contemporary long-term study period (e.g.,
1990—1999). The difference in the amount of actual short-term loss
from 1990—1999 to 1999—2009 relative to the 1990—1999 actual
short-term loss was then assessed as an indicator of changes in
selective and small-scale logging under policy implementation.

Accuracy assessment

Validation data to assess forest cover change classification ac-
curacy were collected through a class-stratified random sample of
one hundred locations in each of the six classified change maps;
these data were sampled independently from training data to limit
the bias that may be introduced by spatially dependent training
sites (Pal & Mather, 2003). Confusion matrices and producer’s (PA),
user’s (UA), and overall accuracies (OA) were calculated using an
area-adjusted calculation with class weights inversely proportional
to class areal extent (Card, 1982). The area-adjusted calculation
reduces the potential for bias associated with different proportions
of training data size and actual land cover class extent and mitigates
the influence of the large but analytically irrelevant stable non-
forest or forest sites.

Results
Accuracy of derived change maps

The average area-adjusted UA of short- and long-term loss was
83% and 83.5%, respectively, and 81.5% for long-term gain (Table 3).
For both short- and long-term change maps, the presence of
training and validation data at a class’ spectral or a feature’s spatial
boundary as well as the abundance of snow/ice would have intro-
duced more error; for example, the lower accuracies of 1999—2004
and 2004—2009 change map were likely influenced by the greater
snow/ice and cloud coverage in 2004 as evidenced by snow/ice
making up one third of misclassified forest cover loss pixels.
Though no standard exists for forest cover change mapping accu-
racy, this study’s accuracies support a confident examination of
forest cover change trends.

Inter-regional comparison of short-term forest cover loss

Considering short-term forest cover loss trajectories, Diqing’s
annual loss peaked at 0.9% in 1996—1999 (Fig. 4); this rate declined
by 37% in 1999—2004 following the NFPP’s introduction and

Table 3

Area-adjusted producer’s (PA), user’s (UA), and overall accuracy (OA) for classified
change maps. Note that forest cover gain was only classified for long-term change
maps.

Study period Area-adjusted accuracies

Forest cover Forest cover Stable non-forest OA %

loss % gain % or forest %

PA UA PA UA PA UA
19901996 99.98 85.00 -— - 9.10 99.00 85.21
1996—1999 99.97 86.00 -— - 15.10 99.00 86.32
1999—-2004 99.97 80.00 -— — 11.57 99.00 80.49
2004—-2009 99.97 81.00 - - 3.92 97.00 81.13

1990—-1999 91.50 84.00 9943 81.00 17.05 93.00 82.05
1999-2009 99.81 83.00 99.83 82.00 16.96 96.00 82.96
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subsequently plummeted to approximately 0.2% in 2004—2009.
Deqin and Shangri-La counties nearly paralleled the prefecture-
level loss trajectory with steadily declining loss rates from 1996—
1999 through 1999—2004 and 2004—2009 but Weixi County’s loss
rate remained relatively stable into 1999—2004, only dropping by
7%. Indeed, Weixi maintained nearly twice the prefecture’s overall
rate of forest cover loss during the first five years of policy imple-
mentation, indicating a spatially disparate lag in policy imple-
mentation effectiveness when compared to the other two counties.
This lag in the reduction of Weixi’s loss rate is not unexpected as
Weixi led the prefecture in short-term forest cover loss prior to the
NFPP in great part due to widespread industrial logging throughout
the 1990’s (H. Qiang, personal communication, July 20, 2010).

At the township-level, the peak rate of forest cover loss occurred
in 1996—1999 for 25 of Diqing’s 30 townships with the remaining
five townships measuring a peak loss in 1999—2004. As at the
prefecture- and county-level, there was a great decline in the
average township-level rate of forest cover loss in 2004—2009
(74%) but such declines were not consistent across Diqing’s town-
ships as the coefficient of variation (CV) of forest cover loss rate also
saw its highest value (0.83) in 2004—2009. This suggests that even
though the typical township saw reduced rates of forest cover loss,
there was a greater relative diversity in the township-level rate of
loss during policy implementation. Changes in the spatial distri-
bution of forest cover loss are most apparent in the relative
intensification of loss in the southernmost townships of Shangri-La
and Weixi counties during 1999—2004 (Fig. 5a), changes which
went undetected at prefecture-and county-level measurements. A
regionalized, increased concentration of loss with a concomitant
reduction elsewhere like this is commonly known as “leakage” and
discussed below.

Spatial variability of short-term loss

Global Moran’s I trajectories show increased spatial autocorre-
lation (i.e., less spatial variability) of forest cover loss in 1999—2004
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Fig. 4. Trajectories of annual short-term forest cover loss.

and moderate spatial autocorrelation in 2004—2009 (Table 4). Local
Moran'’s I values, on the other hand, expose an overall lack of spatial
homogeneity of township-level forest cover loss (Fig. 6a). In each
study period, over two-thirds of Diging townships expressed sta-
tistically insignificant spatial autocorrelation of forest cover loss
indicating a highly variable pattern of loss prior to and during
policy implementation. Of townships showing significant spatial
autocorrelation, “low” forest cover loss townships were found
across Deqin county in the 1990’s, expected given the relative
absence of industrial logging in Deqin, while Weixi County — the
hotspot of pre-NFPP industrial logging — was host to spatially
autocorrelated “high” loss townships through 1999—2004. In
2004—-2009, however, significantly autocorrelated “high” loss
townships were redistributed to Shangri-La County — the current
tourism hotspot — offering another indication of forest cover loss
leakage during policy implementation.

Intra-regional comparison between short- and long-term forest
cover change

Compared to short-term loss trajectories, the reduction in long-
term loss presents a much more favorable view of policy imple-
mentation. Diging showed a 73% reduction in forest cover loss and a
more than doubled rate of forest cover gain between 1990—1999
and 1999-2009, yielding a net loss of 0.18% during the first ten
years of policy implementation (Fig. 7). This net change, while still a
loss, is an impressive improvement on the 2.21% net loss in the
decade prior to the policies’ introductions. Though the three
counties had nearly equalized rates of short-term loss in 2004—
2009, long-term county-level loss rates were much more variable
in 1999—2009 as Weixi's loss rate was nearly triple that of Deqin. At
the township-level, 87% saw a decreased rate of long-term loss in
1999—-2009 yet only 40% realized a net gain. As with short-term
loss, the spatial redistribution of long-term township-level forest
cover change is obvious: forest cover loss was further concentrated
in the prefecture’s south and forest cover gain migrated north
(Fig. 5b). In fact, of the 21 townships in Weixi and Shangri-La, only
five reached a net forest cover gain in 1999—2009.

To discriminate between short- and long-term forest cover loss,
changes in actual short-term loss were compared across spatial
scales (Table 5). Actual prefecture-level short-term loss in 1999—
2009 increased by 23.7% relative to 1990—1999, indicating the
expansion of small-scale (i.e., selective) harvesting despite the
logging ban. At the county-level, Deqin showed a comparable rise
of 46.3% while Weixi increased by 59.5% and Shangri-La saw a slight
reduction of 9.0% in short-term harvesting. Though average
township-level values of actual short-term loss were comparable
with prefecture- and county-level values, the average increase
during policy implementation was over 75%, a stark example of
how small-scale harvesting increased in the 2000’s despite the
general reduction in township-level forest cover loss.

As would be expected with the closure of Diqing’s commercial
timber markets, long-term township-level forest cover loss was
less spatially variable after the NFPP’s introduction. Indeed, global
Moran'’s I values (Table 4) suggest that long-term loss was more
spatially variable in 1990—1999 than short-term loss during any
study period, reflecting the more regionalized impacts of industrial
logging and spatially diffuse impacts of selective logging. Local
Moran’s I values indicate a complete lack of significant spatial
autocorrelation of township-level net change during policy
implementation (Fig. 6b). Shangri-La’s internal spatial variability of
forest cover change as well as the very few townships in Weixi
County showing significant spatial autocorrelation of loss or gain in
1999—-2009 echo short-term assessments of high spatial variability
of change during policy implementation.
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Fig. 5. Township-level forest cover change rates during a) short-term and b) long-term study periods.
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Table 4
First-order global Moran’s I values for township-level forest cover change; values
equal to one indicate pure spatial autocorrelation.

Study period Global Moran’s I (pseudo p-value < = 0.004)

Total net forest
cover change %

Annual forest
cover gain %

Annual forest
cover loss %

1990—1996 0.527 - —

1996—1999 0.462 - —

1999—2004 0.618 - -

2004—2009 0.510 - -

1990—1999 0.381 0.685 0.285

1999-2009 0.545 0.330 0311
Discussion

Policy-relevant evaluation of forest cover change

Diging made important strides towards balancing forest cover
loss and gain under the NFPP and SLCP, most notably by reducing
the rate of forest cover loss by 37% in the first five years of policy
implementation and doubling the annual rate of forest cover gain
between 1990—1999 and 1999—2009. Though indicative of suc-
cessful policy implementation at the prefecture-level, these results
differ from the annual change rates calculated by Brandt et al.
(2012) who found nearly stable loss between the decades before
and during policy implementation. This study’s results also
disagree with NFRI data that claim net forest cover gains of 2% and
8% across Diqing in 2000—2005 and 2005—2011, respectively
(DYED, 2006; Kunming Daily, 2011). While a direct comparison
cannot be drawn between this study and NFRI data, it nonetheless
remains difficult to see how Diging could have mustered successive
net gains in 2000—2005 and 2005—2011 when this study measured
2 0.18% net loss in 1999—2009. This disparity results in part from the
lack of accounting in NFRI data for small-scale logging as evidenced
by the NFRI-reported zero cubic meters of timber extracted in 1999
(Bull & Nilsson, 2004; Melick et al., 2007b) as well as an over-
estimation of forest regeneration (Liu & Tian, 2010; Zhang & Song,
2006).

Any assessment of policy implementation effectiveness based
on shifting trajectories of annual change rates should be tempered
by indications of spatiotemporal variability of forest cover change.
While the typical township saw reduced loss rates under policy
implementation, only 13 of 30 townships realized a net gain in
1999—-2009 during which time actual short-term loss increased by
nearly 24%. Meanwhile, forest cover gain retreated to northern
Deqin and Shangri-La townships, producing a spatially divergent
pattern of net forest cover change rather different than that seen in
1990—1999. As a result, Diging’s forest cover change reflects a split
personality: the historically less-deforested northern townships
yielded gains in forest cover that led the prefecture as a whole
towards a net gain in 1999—2009 but the re-concentration of loss in
Diqing’s southern townships ensured a net loss. These results
expose the non-stationarity of forest cover change and the redis-
tribution of forest cover loss during policy implementation, find-
ings supported by reports of forest cover loss leakage at the village-
level (e.g., Ives, 2006; Xu & Melick, 2007; Yeh, 2009).

Drivers of forest cover change patterns

Just as patterns of forest cover change are scale-dependent (e.g.,
Overmars, de Koning, & Veldkamp, 2003), so too are drivers of such
change. At the prefecture-level, exogenous social factors, such as
state environmental policy, are expected to influence patterns of
land change whereas village or community socio-economic drivers,

institutional factors, and household decision-making processes are
typically the most relevant at the local-scale (Rindfuss et al., 2002;
Walsh & Welsh, 2003). In the case of the NFPP and SLCP, forest cover
patterns result from a host of indirect drivers catalyzed by the
policies’ introductions, the most prominent of these being spatially
disparate tourism development, changes in access to forest re-
sources through expanded road coverage, and spatially variable
responses to changing livelihood opportunities following the
commercial logging ban. These mechanisms produce locally
differentiated and sometimes contradictory incentives for forest
resource use, yielding diverse patterns of forest cover change that
could not be anticipated by policy designers nor readily explained
by policy implementation alone.

Tourism development

Environmental and cultural tourism are often seen as a means to
incentivize local, effective management of environmental resources
while supporting sustainable livelihoods (Balmford et al., 2009; Li &
Han, 2000). Tourism development is widely considered to be a
massive success in Diging, so much so that Diging is considered a
“model” of tourism development for other regions in China to
follow (Hillman, 2010). However, the results of this research as well
as Peng, Liu, Shen, Han, and Pan (2011) and Zackey (2007) suggest
that tourism has actually promoted inter- and intra-township
variability of forest cover loss for two key reasons. First, tourism
development has been centered on the town of Shangri-La in
western Shangri-La County — a principal indirect driver of forest
cover loss leakage in 1999—2009 — with little development to
speak of in northwest Diging’s mountainous communities where
road access is poor and there is a lack of surplus labor for tourism
employment. Indeed, only 37% of Diging’s households earned over
half their income from tourism and 23% earned no income from
tourism at all (Yang, Hens, Ou, & De Wulf, 2009). The economic
impact of tourism development at the household level can thus
hardly be said to be consistent across the prefecture, nor can its
impact on forest cover.

Second, villages with tourism income tend to build larger
houses that require more wood (Zackey, 2005) and outsource
timber or fuelwood harvesting to nearby, poorer communities who
harvest their own collective forests and transport timber into
wealthier villages (Peng et al., 2011; Van Den Hoek, 2012). These
mechanisms yield an intra-regional leakage of forest cover loss not
readily detectable in maps of forest cover change and which goes
unreported in studies that do not consider inter-village timber
harvesting relationships (e.g., Brandt et al., 2012). Without initia-
tives that build sustainable harvesting systems to meet the
increased need for timber in developing tourism centers, such
leakage and regional exploitation of forests is likely to remain the
norm.

Expanded road construction and forest access

It is a testament to the relative remoteness of Diqing’s forests
that they persisted through the upheaval of the Great Leap Forward,
Cultural Revolution, and the intensification of industrial logging
operations through the 1980’s (Menzies, 1992; Richardson, 1990).
This is especially true in Degin County where the lack of road access
and difficult terrain constrained the potential for industrial logging
and supported greater forest cover gain rates compared to Weixi or
Shangri-La. The recent expansion of the roadway network has
shifted the “forest frontier” by permitting newfound access to
remote, primary forests (Melick et al., 2007b; Zhang, 2000) and has
contributed to inter-village variability in forest resource use, as
villages with better access are able to harvest more frequently
while villages with higher transportation costs harvest more
intensely on a given trip or over a larger extent (Trac et al., 2007).
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Fig. 7. Net forest cover change trajectories before and during NFPP and SLCP
implementation.

The change in the pattern of forest cover loss already caused by
increased road coverage may also improve the potential for local
tourism development that, in turn, would reconfigure patterns of
forest cover loss as described above (Li et al., 2013). However, while
village-level research points to forest access as a driver of forest
cover loss, this relationship may not persist at broader scales as
Brandt et al. (2012) found that road density is not a significant
predictor of township-level forest cover loss during policy
implementation.

Changing livelihoods and land tenure

Diqing’s governments have promoted tourism as a livelihood
alternative to commercial logging but in areas lacking viable al-
ternatives, many households have chosen to continue commer-
cially harvesting timber (Melick et al., 2007a; Xu & Ribot, 2004),
spurred on by a near doubling of the price of timber early into
policy implementation (Mullan et al., 2009; Zackey, 2005). The
continuation of pre-NFPP livelihoods was most pronounced in
Weixi County which only saw a slight reduction in annual loss rates
from 1996—1999 to 1999—2004 as communities with livelihoods
traditionally tethered to local forests continued to harvest timber
for sale (Hobley, 2005; Zackey, 2007). While some communities
sustained their commercial, albeit illicit, logging practices, the lack
of forest-derived income plunged others into deeper poverty
(Démurger et al., 2005; Xu & Ribot, 2004).

The NFPP-imposed shift from commercial logging also contrib-
uted to tenure insecurity, identified as a principal factor leading to
forest mismanagement and over-harvesting in the world’s forests
(Paneque-Galvez et al., 2013; Robinson, Holland, & Naughton-
Treves, 2013). In Diging, the apparent “seizure” of collective for-
ests under the NFPP’s logging ban was seen by some communities
as only the most recent change in a long history of alternating forest
use rights (Yin et al., 2005). Resentment towards the NFPP and

Table 5

villagers’ feelings of economic inequality or marginalization over-
shadowed the illegality of continued commercial logging and at
times led to an intensification of forest harvesting (Xu & Ribot,
2004; Zackey, 2007). Such resistance to policy implementation is
not uncommon in rural forests customarily-managed but held to
state-defined conditions of access and use (Genin, Aumeeruddy-
Thomas, Balent, & Nasi, 2013).

Broader implications of forest policy implementation

In their design and implementation, the NFPP and SLCP have,
first, overlooked the diversity of spatially variable and scale-
dependent social and environmental conditions (Xu, 2011), and,
second, aggravated the potential for local forest management by
forcing a mismatch between policy restrictions, pre-existing soci-
oecological relationships, and potential livelihoods that vary within
and between spatiotemporal scales (Fremier et al,, 2013). With
negligible input and feedback from local communities, neither the
NFPP nor the SLCP have mechanisms in place that address the
political, economic, and social factors that drive local-level forest
cover change and which propagate to broader spatial scales (Cao,
Wang, Song, Chen, & Feng, 2010; Miao & West, 2004). Without
addressing the complicated mosaic of changing livelihoods, eco-
nomic opportunities, and changes in forest cover change discussed
above, NFPP and SLCP implementation will continue to promote
spatially disparate forest cover change contrary to the policy’s
goals.

China’s forests have socioecological importance that eclipses
their industrial commercial value or mere areal coverage and are
critical to sustaining rural livelihoods, the extraction of diverse
products, and preserving communities’ territorial integrity (Brown,
Durst, & Enters, 2001; Genin et al., 2013). Of primary concern is that
forest cover expansion has not come through natural regeneration
but rather through monocultural afforestation and reforestation
with Yunnan pine and non-native species during NFPP and SLCP
implementation as well as following industrial logging in the
1990’s (Mansourian, 2005; Zhang & Song, 2006). Monocultural
forests restrict the habitat for the many kinds of flora and fauna in
this biodiverse region and limit the potential yield of timber, fuel-
wood, and non-timber forest products (NTFPs) like commercially
profitable mushrooms (Robinson et al., 2013). Moreover, several
scholars (e.g., Brandt et al., 2012; Melick et al., 2007b; Salick et al.,
2007; Xu & Wilkes, 2004) have found that most of the forest cover
lost during policy implementation has come at the cost of Diqing’s
old growth forest and regions of higher biodiversity. Unfortunately,
these trends are not unique to Diqing, as Xu (2011) described how
primary and secondary forests are commonly cut for commercial
sale, only to be replaced by monocultural stands planted by
households seeking SLCP compensation.

The impacts of NFPP implementation extend well beyond
China’s borders by influencing global climate change and the in-
ternational timber trade (Bonan, 2008; Wang et al., 2007; Xu, Qi, &
Gong, 2000). Even though the bulk of China’s young forests are

Change in amount of actual short-term forest cover loss under policy implementation. Relative change between 1990—1999 and 1999—2009 is calculated as the difference
between each study period’s actual short-term loss values normalized by 1990—1999 values.

1990—-1999 1999—-2009 Relative change in
909619699 9099  Actualshortterm  99-04+ 0409 9909  Actual shortterm  Scrudl short-term loss
loss loss

Diqing Prefecture 4.30% 3.04% 1.26% 3.58% 2.02% 1.56% 23.71%

Deqin County 2.93% 2.16% 0.77% 2.32% 1.19% 1.13% 46.25%

Weixi County 5.75% 3.92% 1.83% 6.01% 3.08% 2.93% 59.46%

Shangri-La County 4.67% 3.33% 1.34% 3.38% 2.17% 1.21% —8.96%

Township average 4.68% 3.31% 1.37% 4.32% 2.29% 2.03% 75.71%
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plantations, they nonetheless offer exceptional carbon sequestra-
tion potential and are particularly valuable in mitigating the im-
pacts of climate change (Pan et al.,, 2011; Xu & Li, 2010). Of China’s
forests planted under the NFPP between 1998 and 2004, over half
of the sequestered carbon was found in upper Yangtze River Basin
forests, including those of Diging (Liu et al., 2008). These impressive
domestic results should be assessed in the broader context of China
becoming the world’s largest timber importer (Laurance, 2008; Liu
& Raven, 2010). Just as inter-township leakage was measured in
Diqing, so too is leakage manifest at the national-level.

Study limitations

This study is limited for a host of reasons. The lack of Landsat
imagery coverage of eastern Diging Prefecture may have skewed
measurements of relative area and spatial variability of forest cover
change; a denser temporal distribution of imagery would have
aided in detecting shifts in forest cover change pattern immediately
before and following policy introduction; and, despite the spatial
variability of change, this study did not assess the spatial non-
stationarity of error or the spatial variation of classification accu-
racy (e.g., Comber, Fisher, Brunsdon, & Khmag, 2012). Moreover,
this study did not attempt to determine whether forest cover loss
resulted from fuelwood or timber harvest or dieback due to insect
infestation or fire (e.g., Willson, 2006), whether a harvest was
carried out for commercial or subsistence reasons, or quantify the
impact of forest cover change on Diqing’s ecosystem service pro-
visioning (Fremier et al., 2013; Xu, 2011). Finally, the respective
impacts of the NFPP and SLCP and the potential interactions be-
tween policy implementations (e.g., Liu et al, 2008) cannot be
discriminated in this study, nor can forest cover changes temporally
coincident with state forest policy implementation be definitively
ascribed to policy implementation.

Conclusions

This study shows the value of adopting a cross spatiotemporal
scale approach in evaluating forest policy implementation effec-
tiveness. By having multiple perspectives with which to measure
forest cover change, the spatial variability of forest cover change
during policy implementation, the persistence of illicit commercial
logging and small-scale harvesting, and the spatial redistribution of
forest cover change were illuminated. This cross-scale complexity
supports a robust interpretation of policy implementation effec-
tiveness and aids in understanding the indirect impacts of tourism
development on regional forest cover change patterns. Though
tourism is often heralded as the solution to rural development
challenges in China’s southwest, this research shows the unin-
tended consequences that may result from inconsistent participa-
tion at the township-level, consequences which merely redirect,
not necessarily reduce, forest use pressures, and that are contrary
to the goals of policy implementation. Looking ahead, local insti-
tutional capacity for sustainable forest harvesting must be
improved in parallel with tourism development lest Diging’s forests
dwindle as tourism revenue rises.
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