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Summary

Existing predictive soil mapping (PSM) methods often require soil sample data to be sufficient to represent
soil–environment relationships throughout the study area. However, in many parts of the world with only a
limited quantity of soil sample data to represent the study area, this is still an issue for PSM application. This
paper presents a method, named ‘individual predictive soil mapping’ (iPSM), which can make use of limited soil
sample data for PSM. With the assumption that similar environmental conditions have similar soils, iPSM uses
the soil–environment relationship at each individual soil sample location to predict soil properties at unvisited
locations and estimate prediction uncertainty. Specifically, the environmental similarities of an unvisited location
to a set of soil sample locations are used in a weighted average method to integrate the soil–environment
relationships at sample locations for prediction and uncertainty estimation. As a case study, iPSM was applied
to map soil organic matter (SOM) content (%) in the topsoil layer using two sets of soil samples. Compared
with multiple linear regression (MLR), iPSM produced a more accurate SOM map (root mean squared error
(RMSE) 1.43, mean absolute error (MAE) 1.16) than MLR (RMSE 8.54, MAE 7.34) the ability of the sample
set to represent the study area is limited and achieved a comparable accuracy (RMSE 1.10, MAE 0.69) with
MLR (RMSE 1.01, MAE 0.73) when the sample set could represent the study area better. In addition, the
prediction uncertainty estimated by iPSM was positively related to prediction residuals in both scenarios. This
study demonstrates that iPSM is an effective alternative when existing soil samples are limited in their ability
to represent the study area and the prediction uncertainty in iPSM can be used as an indicator of its prediction
accuracy.

Introduction

Soil sample data are often used for calibrating or constructing
a predictive soil mapping (PSM) model (McBratney et al., 2003;
Scull et al., 2003; Zhu et al., 2010). Generally, it is required that the
sample data should be sufficient to represent the soil–environment
relationships throughout a study area for reliable model calibration
or construction (Ramsey & Hewitt, 2005). From probability theory
and geostatistical analysis, sufficient soil sample data usually need
to be collected through a well-defined field sampling design, which
typically aims to allocate soil samples in geographical space and/or
environmental covariate space (feature space) in such a way that
the designed sample set is representative of the area (Webster &
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Oliver, 1990; van Groenigen & Stein, 1998; de Gruijter et al.,
2006; Minasny & McBratney, 2006; Zhu et al., 2008). The fuzzy
logic-based techniques (Zhu, 1999, 2001; Qi & Zhu, 2003) also
require that the knowledge or the soil sample set needs to be
representative of the area for reliable construction of the fuzzy
membership function.

In practice, however, it can be difficult to collect a set of soil
samples that is sufficiently representative of the study area. Because
of the costs of field sampling and laboratory analysis, the number
of soil sample points actually collected can be limited. In addition,
positioning errors can result in the mismatch between the actual
and the design locations, and the limited expertise of soil surveyors
can also cause bias in the collected samples (Johnson et al., 2012).
Those constraints can easily lead to the collected soil sample
set not being representative of the soil-environment relationships
throughout the study area.
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Figure 1 The flowchart of the individual predictive soil mapping (iPSM) method.

The problem of limited soil sample data, which are not adequate
to represent soil–environment relationships in a study area, presents
challenges for existing PSM methods. One problem is that is the
data are not sufficient for developing a reliable soil–environment
model with existing PSM methods (such as regression and kriging).
As a consequence, the estimation of prediction uncertainty using
existing methods, such as the error variance in kriging method,
may not be valid.

This paper presents a PSM method, called ‘individual predictive
soil mapping’ (iPSM), which is capable of using limited soil
sample data for predictive soil mapping and quantifying prediction
uncertainty. The next section of this paper presents the method-
ologies of iPSM in detail. Then we apply iPSM in a case study for
mapping the content of soil organic matter (SOM, %) in the topsoil
layer and quantifying prediction uncertainty and compare this with
multiple linear regression (MLR). We use two soil sample datasets:
one has limitations in representing the study area and the other can
represent it better.

Methods

Basic idea and overall design

Soil samples, however limited their ability to represent soil–
environment relationships in a study area, still contain valuable
information for PSM. For example, each individual soil sample
point reflects the in situ relationship of soil to the environmental
‘niche’ that it is in. By assuming that locations with similar envi-
ronmental conditions have similar soil properties (Hudson, 1992;
Mallavan et al., 2010), similar values of the targeted soil property
can be expected at locations with similar environmental conditions.
Therefore, each soil sample point can individually serve as a
surrogate representing the locations with similar environmental
conditions, and thus can be used to predict the soil conditions for
these locations.

The overall design of iPSM contains three major steps (Figure 1):
(i) the characterization of environmental conditions at each location,
(ii) the assessment of environmental similarities at every unvisited
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location and every soil sample location and (iii) the estimation of
the value of the targeted soil property and the quantification of
prediction uncertainty at each location.

Characterization of environmental conditions

Environmental conditions associated with soil at each location need
to be quantitatively characterized. It is important to use the environ-
mental variables (the environmental covariates) that are effective
in indicating the spatial variation of a targeted soil property in a
given study area. According to the state equation of soil formation
(Jenny, 1941), there are five environmental state factors (climate,
parent material, topography, biology and time) that need to be con-
sidered. Each environmental state factor can be characterized by
using various environmental variables (or covariates) (McBratney
et al., 2003). The selection of an appropriate environmental covari-
ate depends on its (i) ability to indicate the spatial variation of a
targeted soil property and (ii) availability regarding data sources.
Commonly used environmental covariates include annual averaged
temperature, annual averaged precipitation, parent materials, eleva-
tion, slope aspect, slope gradient, profile and planform curvatures,
topographic wetness index, distance to streams, land use and cover
and vegetation index (McBratney et al., 2003; Florinsky, 2011).
The advances in earth observation technologies and spatial analy-
sis methods have also provided many new candidate environmental
covariates (Mendonça-Santos et al., 2006; Kienast-Brown & Boet-
tinger, 2007; Nield et al., 2007; Zhu et al., 2010; Liu et al., 2012).
Usually, multiple environmental covariates are needed to character-
ize the environmental conditions related to the targeted soil prop-
erties. At a given location an environmental vector is formed to
characterize the environmental conditions:

e =
(
e1, e2, … , em

)
, (1)

where m is the number of environmental covariates used.

Assessment of environmental similarity

From the environmental vector, the environmental similarity
between an unvisited location i (i= 1, 2, 3, … ,k; k is the number
of locations to be predicted, typically grid cells) and a soil sample
point j (j= 1,2,3,… , n; n is the number of available soil sample
points) needs to be determined at the scale(s) of the environmental
covariate and soil sample (Shi et al., 2004):

Si,j = P
(
E
(
e1i, e1j

)
,E

(
e2i, e2j

)
, … ,E

(
evi, evj

)
, … ,E

(
emi, emj

))
,

(2)
where Si,j represents the environmental similarity between unvisited
location i and sample location j, evi and evj are the values of the
vth environmental covariate at the two locations, and E(•) and
P(•) are functions for calculating environmental similarity at the
environmental covariate scale and soil sample scale, which are
explained next.

Function E(•) is for calculating environmental similarity at the
environmental covariate scale. Given an environmental covariate,
E(•) describes how the environmental similarity between an unvis-
ited location and a sample location changes when the value of the
environmental covariate at the unvisited location deviates from the
value at the sample location. For iPSM, we define E(•) depend-
ing on the measurement scale (Stevens, 1946) of the environmental
covariate:

E
(
evi, evj

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ev is nominal∕ordinal and evi ≠ evj

1 ev is nominal∕ordinal and evi = evj

exp

⎛⎜⎜⎜⎝−
(evi−evj)2

2

(
SDev×

SDev
SDevj

)2

⎞⎟⎟⎟⎠ v is interval∕ratio

,

(3)
in which SDev

is the standard deviation of the vth environmental
covariate in the study area, and SDevj

is the square root of the mean
deviation of the values of the vth environmental covariate at all
unvisited locations (i= 1, 2, … , k) from that at sample location
j (i.e. evj):

SDevj
=

√√√√√√ k∑
i=1

(
evi − evj

)2

k
. (4)

According to Equation (3), if the covariate has been recorded on
a nominal or ordinal scale, such as parent material type, a stepped
E(•) will be used (Figure 2a). This E(•) produces a value of 1 when
the value of the covariate at an unvisited location is the same as that
at a sample location and 0 otherwise. For environmental covariates
measure on interval or ratio scales such as precipitation or elevation
a Gaussian-shaped E(•) is designed to determine the similarity
(Figure 2b). The width of the Gaussian-shaped curve, which is
controlled by the standard deviation of the vth environmental
covariate (SDev

), is further adjusted by SDevj
(Equation (4)). This

adjustment leads to a Gaussian-shaped curve that is spread over
the range of the vth environmental covariate when the value at the
soil sample location j is similar to many other prediction locations
(therefore, smaller SDevj

) and vice versa. The aim of adjusting the
width of the curve is to differentiate soil sample points that represent
a common soil-environment relationship in the study area from soil
sample points that represent a rare soil-environment relationship in
the study area.

Function P(•) is used to integrate environmental similarities for
covariates with those for soil samples. The form of P(•) should
take into consideration the relative importance of multiple types of
environmental covariates in influencing the value of the targeted soil
property. The choices of P(•) include weighted average methods,
which require the relative weights for every environmental covariate
(McBratney et al., 2003), decision trees, which allow a hierarchy
configuration of the relative importance (Mallavan et al., 2010), and
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Figure 2 The E function used for estimating
environmental similarity at the environmental
covariate scale: (a) when the environmental
covariate is nominal or ordinal; (b) when the envi-
ronmental covariate is interval or ratio.

a minimum operator based on the Liebig’s law of the minimum (van
der Ploeg et al., 1999). In our paper, a minimum operator was used:
the smallest value among all environmental covariate similarities
was used as the environmental similarity at the soil sample level
(Zhu et al., 1997; Shi et al., 2004).

The outputs from the assessment of environmental similarity to all
existing soil sample points were organized into a similarity vector
at each unvisited location i:

Si =
(
Si,1, Si,2, … , Si,n

)
, (5)

in which Siis the vector containing environmental similarities
between unvisited location i and the n soil samples.

Quantification of prediction uncertainty and estimation of soil
property value

Prediction uncertainty at each location is inversely related to its
environmental similarities to the existing soil samples. The rationale
for this is that if the similarities in environmental conditions
between the unvisited location and the sample points used are poor,
then the existing sample points cannot be used to represent that
location. Thus, the use of these samples to predict the soil conditions
at that location would lead to much uncertainty. Therefore, the
uncertainty measurement in iPSM is basically a measurement of
how reliable it is to use existing soil sample points to represent a
given unvisited location for prediction. It is given as the following
equation:

Uncertaintyi = 1 − max
(
Si,1, Si,2, … , Si,n

)
. (6)

Equation (6) indicates that prediction uncertainty is expected to be
large at unvisited location i when none of the n soil sample points
is environmentally similar to this location.

It is necessary to examine whether an unvisited location can be
predicted by existing soil samples with an acceptable uncertainty. A
user-defined uncertainty threshold is set for this purpose. For a loca-
tion whose prediction uncertainty is greater than this uncertainty

threshold, the value of a targeted soil property at the location is set
to ‘NoData’ to indicate that prediction at this location using existing
soil samples cannot be made with an acceptable range of uncer-
tainty. The choice of uncertainty threshold depends on the user’s
tolerance regarding the reliability of using existing soil samples to
represent the unvisited location. A strict uncertainty threshold such
as a small value means that the user is required to use the existing
soil samples to predict only the unvisited locations with very similar
environmental conditions.

For a location whose prediction uncertainty does not exceed the
threshold, the value of the target property at this location is predicted
from the soil samples whose environmental similarity exceeds the
value of one less the uncertainty threshold. In other words, only
those soil samples that are similar enough to the unvisited location
are used to compute the value of the targeted property at that site.
The estimation of the value of the targeted soil property is calculated
with a weighted average method (Zhu et al., 1997):

Vi =
∑n′

j=1 Si,j × Vj∑n′

j=1 Si,j

, (7)

in which n′ is the number of the selected soil samples whose
environmental similarity to the unvisited location i exceeds one
minus the uncertainty threshold, Si,j is the environmental similarity
of the unvisited location i to the soil sample location j, and Vj is the
value of the targeted soil property of soil sample at location j.

Case study

Study area and datasets

To test the effectiveness, iPSM was used for predicting soil organic
matter (SOM) content (%) in the topsoil layer of an area of
approximately 60 km2. The study area is located in Heshan Farm,
Nenjiang County, Heilongjiang Province of China (Figure 3).
The annual temperature ranges from −38 to 36∘C, the ≥10∘C
accumulated temperature over one year is about 2000–2300∘C,
and the average annual precipitation is 500–600 mm. Most soils
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Figure 3 The location of the study area.

in the area were formed on deposits of silt loam loess, with the
exception of the valley, where the underlying parent material is
fluvial deposits. Elevation within the area ranges from 270 to 360 m
and the slope gradient is generally less than 4∘. The study area has
been cultivated as cropland for over 40 years, with soybean and
wheat as the main agricultural products. Because there is a thick
top-layer of soil with a naturally large organic matter content it
requires little organic fertilizer to maintain productivity.

Given the characteristics of the environmental conditions and
the soil-environment relationships in this area (Yang et al., 2007;
Zhu et al., 2008), topographic and vegetation covariates are the
most effective indicators of the spatial variation of the SOM con-
tent (%) in the topsoil layer. Six topographic covariates (elevation
(m), slope gradient (%), contour curvature, profile curvature, rel-
ative slope position and topographic wetness index (TWI)) and
Normalized Difference Vegetation Index (NDVI) were used to
characterize the environmental conditions. A 10-m resolution dig-
ital elevation model (DEM) was created from the 1:10 000 topo-
graphic map of the area using the TOPOGRID and TINLATTICE
in Arc/Info (Yang et al., 2007). Slope gradient, contour curvature
and profile curvature were derived from this DEM with 3DMap-
per (www.terrainanalytics.com). The TWI was calculated with the
method of Beven & Kirkby (1979). Because of the gentle terrain
relief and the wide floodplain in this area, a multiple-flow strategy
(Qin et al., 2012) was used to estimate the upslope drainage area
in the computation of TWI. The relative position index was calcu-
lated with the algorithm proposed by Qin et al. (2009) and NDVI
was calculated with a Landsat ETM+ image of the area obtained
on 25 September 2000, which was downloaded from the website of
the Global Land Cover Facility (GLCF) served by the University of
Maryland (http://glcfapp.glcf.umd.edu:8080/esdi/).

To examine the effectiveness of iPSM when the existing soil sam-
ple set is limited in its ability to represent soil–environment rela-
tionships throughout the study area (referred to as limited sample
scenario hereafter), 10 soil samples collected along a transect line
across two slopes at the side of the valleys were used (Figure 4).
The locations of those samples were subjectively determined by
soil surveyors to reveal the variation of soil properties on slopes
only (Zhu et al., 2008): ridge areas and wide valley areas were not
sampled. This provides a good case study to evaluate the effective-
ness of iPSM when the available soil sample data are limited and
existing PSM methods may not be applicable.

(a) (b)

Figure 4 The location of 10 soil samples exist-
ing in the study area: (a) a planar view; (b) a
3D view revealing the distribution of the points
along the transect line.
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Figure 5 The spatial distribution of the 22 sample points that can represent
the study area better, and the spatial distribution of the 44 validation points.

To test whether improving the ability of soil samples to represent
the study area can improve the performance of iPSM, and to
compare it with existing PSM methods, we applied it to another
situation (referred to as the improved sample scenario), which
contains 22 sample points collected by using the sampling method
proposed by Zhu et al. (see Zhu et al., 2008, for full details). In brief,
the sampling method was designed to sample the locations where
the soils are typical of the soil categories in study area, and therefore
can better represent the soil–environment relationship throughout
the study area. The spatial distribution of the 22 soil sample points
is shown in Figure 5.

The validation sample set consisting of 44 sample points was
independently collected on a 1100× 740 m2 grid (Figure 5). The
statistics on the environmental conditions at the 10 soil sample
points, the 22 sample points and the 44 validation points are shown
in Table 1. Figure 6 uses elevation as an example to show the
coverage of the three sample sets in the environmental feature space.
It can be observed that the coverage of the environmental feature
space by the 10 sample points deviated from that of the study
area, while the coverage of the environmental feature space by the
22 sample points and the 44 validation sample points generally
matched that of the study area.

Validation using the independent validation sample set

Two indices, the root mean squared error (RMSE) and mean abso-
lute error (MAE), were used to evaluate prediction accuracy. As
part of this examination, the effectiveness of quantified predic-
tion uncertainty for indicating prediction accuracy was assessed.

Specifically, the prediction uncertainty quantified at each validation
point was plotted against the corresponding absolute value of the
prediction residual. A positive relationship is expected if the quan-
tified prediction uncertainty is indicative of prediction accuracy.

Comparison with multiple linear regression (MLR) under
the limited sample scenario

The iPSM was compared with a multiple linear regression (MLR)
method under the limited sample scenario. The MLR was used
because with only 10 sample points it is difficult to use a more
sophisticated approach such as kriging. In Figure 7, the spatial
configuration of the regression residuals of those 10 points was
examined but no spatial autocorrelation was found. In addition,
before constructing the MLR model, a principal component analysis
(PCA) was performed with the standardized values of the seven
environmental covariates in the study area to avoid the impact of
multi-collinearity on the covariates (Table 2).

A forward stepwise regression was applied to fit the MLR model
and using the principal components in sequence. The first three
principal components (PC1, PC2 and PC3) captured 91.5% of
the variance in the seven environmental covariates and thus were
selected to construct the MLR model (Equation (8)):

SOM= 5.12+ 0.24×PC1+ 0.23×PC2− 0.33×PC3,
(
R2 = 0.91

)
,

(8)
where SOM is the soil organic matter content (%) in the topsoil
layer, and PC1, PC2 and PC3 are the first three principal compo-
nents. The summary of the estimation of the coefficients of the MLR
model is shown in Table 3.

Comparison with MLR under the improved sample scenario

The iPSM was also compared with MLR under the improved
sample scenario. The first three principal components (PC1, PC2
and PC3) of the seven environmental covariates were used to
construct the MLR model based on their values at the 22 sample
points (Equation (9)):

SOM= 4.61+ 0.02×PC1− 0.01×PC2+ 0.01×PC3,
(
R2 = 0.42

)
.

(9)
The summary of the estimation of the coefficients of the MLR

model is shown in Table 3. The spatial configuration of the
regression residuals at those 22 sample points was also examined,
but only a very weak spatial autocorrelation was found (Figure 8).

Uncertainty threshold in iPSM for fair comparison

The MLR uses all available soil samples to predict the content of
SOM (%) in the topsoil layer at every unvisited location. However,
iPSM only predicts the value of SOM content (%) in the topsoil
layer at the locations that can be represented by existing soil samples
and assigns ‘NoData’ to others. The predictable locations of iPSM
are determined by the uncertainty threshold (see the Methods
Section). In order to avoid ‘NoData’ predictions and to make a fair
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Table 1 Statistics of the standardized values of the seven environmental covariates at the 10 sample points, the 22 sample points and the 44 validation sample
points, as compared with the entire study area

10 sample points 22 sample points 44 validation sample points Study area

Min. Median Mean Max. Min. Median Mean Max. Min. Median Mean Max. Min. Median Mean Max.

Elevation 40.7 54.4 52.0 62.6 5.7 56.6 54.0 94.5 17.8 67.8 64.1 96.2 0.0 54.8 52.8 100.0
Planform curvature −3.3 −1.4 3.3 43.6 −9.2 −0.7 −1.7 2.6 −14.0 −0.2 −0.7 14.7 −50.0 −0.8 −0.8 50.0
Profile curvature −12.4 3.2 3.7 21.4 −6.1 −0.1 0.8 17.1 −16.4 −2.8 −1.0 23.6 −50.0 −0.5 −0.3 50.0
Relative position index 0.0 44.5 44.7 97.7 2.3 40.4 47.4 100.0 1.9 49.8 52.1 96.1 0.0 37.9 42.3 100.0
Slope gradient 16.0 38.3 38.3 51.3 0.0 33.5 29.0 57.9 7.5 37.7 35.3 61.1 0.0 35.8 33.9 100.0
TWI 28.3 31.1 34.2 65.1 26.7 30.1 37.2 95.1 18.0 29.2 30.5 62.1 0.0 30.3 36.4 100.0
NDVI 4.5 9.5 13.2 28.7 6.1 11.5 13.1 26.2 5.6 11.5 12.8 28.2 −50.0 11.5 13.5 39.8

TWI, topographic wetness index; NDVI, Normalized Difference Vegetation Index.
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Figure 6 The kernel density estimation of elevation values at the
10, 22 and 44 sample points for model construction and validation,
compared with the entire study area.
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Figure 7 The experimental semivariogram derived from the residuals of
the regression of soil organic matter (SOM) content in the topsoil layer (%)
using the environmental covariate values at the 10 sample points.

comparison with MLR, the uncertainty threshold in iPSM was set
to 1, which forced iPSM to predict a value of SOM content (%) in
the topsoil layer at every validation location using all the sample

points in each scenario (either 10 or 22 sample points), regardless
of how poorly the location was represented by those points.

Results

Under the limited sample scenario

Figure 9(a,b) shows the predicted SOM maps from iPSM under the
limited sample scenario with the user-defined uncertainty threshold
equal to 1 and 0.6, respectively. The spatial distribution of SOM
content (%) in the topsoil layer (Figure 9a,b) matches our under-
standing of how the terrain and vegetation environment influence
SOM content. Thus on upper-to-middle slopes erosive processes
tend to be the dominant processes that reduce the soil organic
matter content in the topsoil layer; on lower-to-toe slopes which
are often gentle depositional processes tend to be the dominant
processes that usually lead to larger SOM contents in the top-
soil layer. This pattern is obviously disturbed by vegetation con-
ditions: the straight lines with large SOM content (%) correspond
to field roads between farmland fields, where trees and grasses are
growing.

Figure 9(c) shows the predicted SOM map from MLR under
the limited sample scenario. The SOM content (%) in the topsoil
predicted by MLR generally had a similar spatial distribution
pattern to that from iPSM. The upper-to-middle steep slopes were
associated with relatively small values while the lower-to-toe gentle
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Table 2 The principal component analysis (PCA) of the standardized values of the seven environmental covariates

Loadings

Eigen-value Cumulative % Elevation Planform curvature Profile curvature Relative position Slope TWI NDVI

PC1 1414.59 66.63 −0.55 0.06 0.09 −0.75 −0.05 0.33 0.07
PC2 376.27 84.35 −0.13 −0.02 −0.02 0.39 −0.70 0.58 0.05
PC3 156.96 91.74 0.81 0.17 0.04 −0.47 −0.24 0.21 0.00
PC4 61.95 94.66 −0.05 −0.06 0.84 −0.02 −0.36 −0.41 0.02
PC5 52.17 97.12 0.08 0.26 0.52 0.24 0.54 0.54 0.13
PC6 37.56 98.89 0.06 −0.23 −0.06 −0.02 0.00 −0.06 0.97
PC7 23.63 100.00 0.13 −0.92 0.12 −0.07 0.15 0.24 −0.20

TWI, topographic wetness index; NDVI, Normalized Difference Vegetation Index.

Table 3 The estimation of the coefficients of the multiple linear regression
(MLR) model under the two sample scenarios

Estimation

Limited sample scenario
Intercept 5.12
PC1 0.24
PC2 0.23
PC3 −0.33

Improved sample scenario
Intercept 4.61
PC1 0.02
PC2 −0.01
PC3 0.01

PC: Principal Component.

slopes were associated with relatively large values. However, some
spatial details, such as the sharp changes across the field roads,
are not present on the map. In addition, the predicted values of
SOM content from MLR ranged from −18.5 to 37.9%, which is
beyond the value range of the 10 soil samples. This is because of
the limitation of the 10 soil samples, which are not representative
of the entire study area. The unrealistic extrapolation of the linear
model at the location that cannot be represented by existing samples
leads to unrealistic prediction results.

The prediction accuracies of iPSM and MLR evaluated by the 44
validation sample points are compared in Table 4. Those of iPSM
with an uncertainty threshold equal to 1 produced better prediction
accuracy (1.43 for RMSE and 1.16 for MAE) than those from
MLR (8.54 for RMSE and 7.34 for MAE). In addition, when the
uncertainty threshold of iPSM was decreased to 0.6, 12 of the 44
validation sample points were predicted and the prediction accuracy
of iPSM was increased to 1.06 for RMSE and 0.91 for MAE. The
smaller uncertainty threshold improved the prediction accuracy of
iPSM but left a greater area as ‘NoData’. The absolute prediction
error at each validation location from iPSM was also compared with
that from iPSM (Figure 10). At each individual validation location,
iPSM produced better prediction accuracy.

Figure 9(d) shows the quantified prediction uncertainty from
iPSM under the limited sample scenario. Because the 10 soil
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Figure 8 The Gaussian semivariogram (nugget= 0, range= 1000,
sill= 0.5) based on the residuals of the regression of soil organic matter
(SOM) content in the topsoil layer (%) using the environmental covariate
values at the 22 sample points.

samples were mainly located on side slopes (Figure 4) and represent
those areas well, prediction uncertainty is generally small in those
areas. In contrast, large prediction uncertainty values are assigned
to ridges and valleys. In addition, because no sample points were
located on the field roads, the prediction uncertainty for the roads is
also relatively large.

The values of prediction uncertainty estimated from iPSM are
plotted against the absolute prediction residuals at the validation
sample locations in Figure 11 (with uncertainty threshold= 1).
Overall, there is a positive correlation between the PSM and its
prediction residuals (Pearson’s r = 0.54, df = 42). This indicates
that the increases in the quantified prediction uncertainty are
positively correlated with the increases in prediction residuals
produced by iPSM. It further suggests that the quantified prediction
uncertainty can be a good indicator of the prediction accuracy
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Figure 9 The predicted maps of soil organic matter (SOM) content in the topsoil layer (%) using the 10 sample points: (a) from individual predictive soil
mapping (iPSM) with the uncertainty threshold equal to 1; (b) from iPSM with the uncertainty threshold equal to 0.6; (c) from the multiple linear regression
(MLR) method; (d) the quantified prediction uncertainty from iPSM.

of iPSM because smaller prediction uncertainty corresponds with
smaller prediction residuals at unvisited location.

Under the improved sample scenario

Figure 12(a,b) shows the predicted SOM maps from iPSM under
the improved sample scenario (with the user-defined uncertainty
threshold equal to 1 and 0.6, respectively). Figure 12(c) shows the
predicted SOM maps with MLR.

According to the 44 validation sample points, the prediction
accuracy of iPSM with the uncertainty threshold equal to 1 was
1.10 for RMSE and 0.69 for MAE. When the uncertainty threshold
was set to 0.6, 38 of the 44 validation sample points were predicted

and the prediction accuracy was 0.69 for RMSE and 0.51 for MAE.
When compared with the results in the limited sample scenario,
the improvement in the soil sample set improved the prediction
accuracy. The prediction accuracy of MLR was 1.01 for RMSE and
0.73 for MAE in this scenario (Table 4). The results suggest that
iPSM produced comparable prediction accuracy to that of MLR.

Figure 12(d) shows the quantified prediction uncertainty from
iPSM. The values of prediction uncertainty estimated from iPSM
under this scenario are plotted against the absolute prediction
residuals at the 44 validation locations in Figure 13 (with the
uncertainty threshold equal to 1). Another positive relationship
between the PSM uncertainty and its prediction residuals (Pearson’s
r = 0.63, df = 42) was found.
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Table 4 The comparison of the prediction accuracies of individual predic-
tive soil mapping (iPSM) and multiple linear regresssion (MLR) based on
the 44 validation sample points in the two scenarios

MAE RMSE ME

Limited sample scenario
iPSM 1.16 1.43 −0.83
MLR 7.34 8.54 4.51

Improved sample scenario
iPSM 0.69 1.10 0.02
MLR 0.73 1.01 0.02

MAE, mean absolute error; RMSE, root mean squared error; ME, mean
error.
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Figure 10 The comparison of prediction residuals from individual predic-
tive soil mapping (iPSM) and multiple linear regression (MLR) at the 44
validation sample points when the uncertainty threshold equals 0.6.
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Figure 11 The relationship between prediction uncertainty and absolute
value of prediction residual produced by iPSM using the 10 soil sample
points (with the uncertainty threshold equal to 1).

Discussion

Choosing an uncertainty threshold

The value of the uncertainty threshold controls the areas that can
be predicted with existing soil samples. The areas with a large
prediction uncertainty cannot be represented with existing soil
samples and the soil conditions over these areas are not predicted
in iPSM according to a user-defined uncertainty threshold. This

strategy helps to avoid unrealistic extrapolation and makes iPSM
use the existing soil samples more appropriately.

As the uncertainty threshold takes smaller values, the area where
iPSM can make a prediction shrinks (Figures 9, 12). A small value
of uncertainty threshold leads to a strict criterion to determine
whether an unvisited location can be represented and thus can be
predicted from existing soil sample points. For example, under the
limited sample scenario with the uncertainty threshold set to 0.6
(Figure 9b), only the locations where the environmental similarities
to the existing soil samples were larger than 0.4 (1− 0.6) could be
predicted. Those locations were mainly on the side slopes, which are
the landforms well represented by the 10 soil samples. In contrast, a
large value of uncertainty threshold leads to a poor criterion, which
means that more areas can be represented and thus predicted by the
existing soil samples (Figure 9a).

The value of the uncertainty threshold also influences the predic-
tion accuracy. The overall accuracies of the predicted SOM maps
from iPSM by using different values of uncertainty thresholds were
evaluated by the 44 validation samples. Figure 14 shows that RMSE
and MAE increased as the uncertainty threshold increased under
the two scenarios. The number next to each point is the number of
validation samples that were predicted when using the correspond-
ing uncertainty threshold. The iPSM method thus has the advantage
of controlling the quality of the prediction through its uncertainty
threshold; when choosing a value for the uncertainty threshold a
trade-off needs to be made between prediction accuracy and the
areas that can be predicted using the existing soil samples.

Selection of environmental covariates

When selecting the environmental covariates, the ultimate goal is to
describe the environmental conditions associated with the targeted
soil property as accurately as possible and all components of Jenny’s
equation (Jenny, 1941) need to be considered. However, one also
needs to consider the effectiveness of environmental covariates
in indicating the spatial variation of soil, and the availability of
data sources for calculation (Zhu et al., 2001). In our study only
the environmental covariates describing topographic and vegetation
conditions were used. One reason is that the study area was
relatively small and climate conditions and parent materials are
generally similar over the area; another reason is that it is relatively
easy to obtain data characterizing terrain and vegetation conditions.
With a more complex study area, more types of environmental
covariates should be involved.

Measurement of environmental similarities

The measurement of environmental similarity is a crucial step in
iPSM. Currently a Boolean operator is used for nominal and ordinal
covariates and a Gaussian-shaped function (Equation (3)) is used
for interval and ratio covariates. Certainly other similarity/distance
measurements defined in the environmental feature space, such as
taxonomic distance (Minasny & McBratney, 2007), Gower simi-
larity coefficient (Gower, 1971), Euclidian distance or Manhattan
distance, can also be used. The choice of the method used for
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Figure 12 The predicted maps of soil organic matter (SOM) content in the topsoil layer (%) using the 22 sample points: (a) from individual predictive soil
mapping (iPSM) with the uncertainty threshold equal to 1; (b) from iPSM with the uncertainty threshold equal to 0.6; (c) from the multiple linear regression
(MLR) method; (d) the quantified prediction uncertainty from iPSM.

measuring environmental similarity depends on (i) the measure-
ment form (nominal, ordinal, interval and ratio) of environment
covariates and (ii) how environmental similarity changes as the
value of the environmental covariate at an unvisited location
deviates from the value at the soil sample point.

For the integration of environmental similarities we used a mini-
mum operator following Zhu & Band (1994) and Shi et al. (2004).
The theoretical basis of using a minimum operator is Liebig’s law
of the minimum (van der Ploeg et al., 1999), which assumes that
the factor (such as a particular nutrient, water or sunlight) in short-
est supply will limit the growth and development of an organism
or a community. When applied to the integration of an appropriate,
although conservative, choice similarities of multiple environment

covariates, it is choice when the relative importance among
multiple environmental covariates is not clear. By assuming that the
least similar soil-forming factor determines the environmental sim-
ilarity between two locations, it requires no additional information
about the relative importance among multiple factors. Nevertheless,
more research is needed to find a more reasonable way to integrate
the impact of multiple environmental covariates on soil formation.

Application of iPSM over large areas

The limitation of soil sample data is more obvious over large areas,
such as those at regional and global scales. This pilot study applied
iPSM in a relatively small area to first explore the possibility of
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Figure 13 The relationship between prediction uncertainty and absolute
value of prediction residual produced by individual predictive soil mapping
(iPSM) using the 22 sample points (with the uncertainty threshold equal
to 1).
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Figure 14 Prediction accuracies of the soil organic matter (SOM) content
in the topsoil layer (%) from individual predictive soil mapping (iPSM) with
different values of the uncertainty threshold: (a) from the 10 sample points;
(b) from the 22 sample points.

using iPSM as an alternative method when available soil sample
data are not sufficient to construct a PSM model using existing
methods. Given its performance in this case study, iPSM shows
promise in large areas when existing soil sample data are limited.
The method has several advantages that could guide its suitability.
First, it does not require that soil samples collectively represent the
study area and thus can be applied to areas where some strata used
in regression relationships are under-sampled (as in the case study).
This is often the case if only legacy soil samples are available or if

field work is too expensive or difficult to collect fully representative
samples. Second, iPSM explicitly differentiates between prediction
locations that are well represented by available soil samples and
those locations that are not by assigning ‘NoData’ to those areas.
In addition, when considering the positive correlation between
prediction uncertainty and prediction residual from iPSM, the
prediction uncertainty can be used not only to evaluate prediction
accuracy at each location, but also to guide the efficient allocation
of additional sampling resources to improve the accuracy of the
predicted soil map.

Added value to the existing work on PSM with limited data

How to use limited data for predictive soil mapping has been
one of the key research topics in this field (Hartemink et al.,
2008). Mallavan et al. (2010) suggested that the so-called Homosoil
method for quantitative extrapolation of soil information from a
reference area and the region of interest could be used. The basic
assumption is that the same SCORPAN spatial soil prediction
functions can be applied in the regions with similar soil-forming
factors. Our paper is based on a similar assumption but focusses
more on using each individual soil sample point for prediction. It
demonstrates the possibility of using individual soil sample points
to only predict unvisited locations that can be well represented.
The method is designed to relax the requirements regarding the
sufficiency of soil sample data. It is suitable for the scenario
where there are not sufficient soil sample data for constructing or
calibrating the PSM model using existing PSM methods.

Conclusions

This paper presents an alternative predictive soil mapping method,
iPSM, which is suitable for using a limited quantity of soil sample
data to predict soil property and quantify prediction uncertainty at
unvisited locations. The case study suggests that the method can
be used as an effective alternative to existing PSM methods when
the available soil sample data have a limited ability to represent
the study area. In addition, iPSM also takes into consideration the
prediction uncertainty caused by the use of limited sample data.
The positive relationship between prediction uncertainty estimated
by iPSM and its prediction residuals implies that the uncertainty
can not only serve as an effective indicator of prediction accuracy
at every location, but also can be used to effectively allocate
additional sampling resources. With the aid of the prediction
uncertainty, the sampling resources can be used wisely by sampling
the under-represented areas with greater priority.
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