
Computers & Geosciences 78 (2015) 110–122
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

n Corr
Nanjing
Fax: þ8

E-m
tangguo
journal homepage: www.elsevier.com/locate/cageo
Regional-scale calculation of the LS factor using parallel processing

Kai Liu a,b,c, Guoan Tang a,b,c,n, Ling Jiang d, A-Xing Zhu c,e, Jianyi Yang a,b,c, Xiaodong Song f

a Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023, China
b State Key Laboratory Cultivation Base of Geographical Environment Evolution, Jiangsu Province, Nanjing 210023, China
c Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
d Anhui Center for Collaborative Innovation in Geographical Information Integration and Application, Chuzhou University, Chuzhou 239000, China
e Department of Geography, University of Wisconsin-Madison, Madison, USA
f State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
a r t i c l e i n f o

Article history:
Received 22 August 2014
Received in revised form
20 December 2014
Accepted 2 February 2015
Available online 11 February 2015

Keywords:
LS factor
Parallel computing
Soil erosion model
Regional scale
Digital terrain model
x.doi.org/10.1016/j.cageo.2015.02.001
04/& 2015 Elsevier Ltd. All rights reserved.

esponding author at: Key Laboratory of Virtu
Normal University, Ministry of Educatio

6 25 85891347.
ail addresses: liukaigis@gmail.com (K. Liu),
an@njnu.edu.cn (G. Tang).
a b s t r a c t

With the increase of data resolution and the increasing application of USLE over large areas, the existing
serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a
parallel processing model based on message passing interface (MPI) is presented for the calculation of
the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model
contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope
length and the LS factor. According to the existence of data dependence, the algorithms are divided into
local algorithms and global algorithms. Parallel strategy are designed according to the algorithm char-
acters including the decomposition method for maintaining the integrity of the results, optimized
workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer–
communication–computation strategy for improving the communication efficiency. Experiments on a
multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a
regional scale with a massive dataset.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Among the factors in the Universal Soil Loss Equation (USLE)
(Wischmeier and Smith, 1978) and the revised USLE (RUSLE)
(Renard et al., 1997), the extraction of the LS factor, which reflects
the influence of terrain on soil erosion, is a key issue in the ap-
plications of these models (Kinnell, 2010). The LS factor contains
two parts: the slope length factor (L) and the slope factor (S). It is
widely believed that slope length is the more problematic part.
The development of GIS allows for automatic extraction of slope
length from high resolution DEMs, thus an inefficient manual
process is avoided. In general, there are three kinds of extraction
methods: unit stream power methods (Moore and Burch, 1986;
Mitasova, 1996), contributing area methods (Moore and Wilson,
1992; Desmet and Govers, 1996) and grid-based methods (Hickey,
1994, 2000). In recent years, researches have primarily adopted
grid-based methods, which overcome the limitation of the former
al Geographic Environment,
n, Nanjing 210023, China.
two methods in predicting soil deposition on topographically
driven zones (Winchell et al., 2008).

In the grid-based method proposed by Hickey et al. (1994), slope
length is calculated from the high points along the direction with
maximum downhill slope angle at the same time that converging
flows and deposition areas are taken into consideration. Based on the
work of Van Remortel et al. (2001, 2004), Zhang et al. (2013) proposed
a definition of distributed watershed erosion slope length (DWESL)
with the following two improvements: (1) for the runoff node, the
slope length equals to the total lengths of all the surrounding cells
flowing into it, instead of just considering the longest value; and
(2) the slope length calculation must stop at a channel. The experi-
ments showed that the results got by DWESL method were more si-
milar to the manual method than those by existing algorithms.

In many studies, USLE/RUSLE has been employed for the
quantitative assessment of soil erosion at large watersheds or even
on a regional scale (Yang et al., 2003; Fu et al., 2005). At the same
time, the development of acquisition method for spatial data
means that the geospatial dataset size is increasing at an ex-
ponential rate (Cheng et al., 2013) and high resolution DEM data
for large regions are becoming more available. As a result, the
computational time increases significantly and to the level be-
coming a bottleneck for applying these models over large areas
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(Jiang et al., 2013). It is limited by computer storage and calcula-
tion ability that traditional serial processing cannot meet user
demand due to the long response time. Currently, two methods
are adopted for LS factor calculation on regional scale. One method
employs a set of prediction rules to generate LS factor based on a
number of attributers which control the landform types such as
materials, climate and regional geomorphology (Lu et al., 2003).
Another extracts the topographic index based on low resolution
DEMs, and then gets available values via a scale transformation
(Cheng et al., 2009). However, both methods could only be re-
garded as an expedient measure, the fast and accurate calculation
of LS factor on regional scale is yet to be developed.

Developments in computer technology have improved com-
putation ability by using parallel processing. Recently, parallel
technology has been widely used in digital terrain analysis, such as
parallel drainage extraction (Gong and Xie, 2009; Qin and Zhan,
2012), parallel visibility analysis (Kidner et al., 1997; Wang et al.,
2015), and parallel hydrological analysis (Tesfa et al., 2011; Wu
et al., 2013; Liu et al., 2013). In order to make the parallel pro-
gramming become easy, some raster-based programming libraries
are proposed such as Parallel Raster Processing Programming Li-
brary (pRPL) (Guan and Clarke, 2010) and Parallel Raster-based
Geocomputation Operators (PaRGO) (Qin et al., 2014). Among the
existing literatures, Message Passing Interface (MPI) is widely used
to parallelize algorithms for its adaptable to various parallel
computing environments and the rich programming interfaces
(Cheng et al., 2013). Compared with the serial algorithms, the MPI
parallel algorithms can achieve a huge improvement in processing
time (Jiang et al., 2013). There is, however, little published research
on the LS factor calculation using parallel computing.

The aim of this paper is to propose a parallel approach that can
be applied on a regional scale calculation of the LS factor. The
structure of this paper is as follows. Section 2 details each algo-
rithm for the LS factor calculation. Section 3 introduces the parallel
approach. According to the algorithm characters, two parallel
strategies have been designed for both local algorithms and global
algorithms. Section 4 discusses the effectiveness of the parallel
algorithms, and finally, the concluding remarks are given in Sec-
tion 5.
2. Serial LS factor calculation algorithm

2.1. Overview of the LS factor algorithms

The LS factor can be obtained according to the following ex-
pressions (McCool et al., 1989; Liu et al., 2000):
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where l is the slope length, m is a variable length-slope ex-
ponent, β is the ratio between rill erosion and interrill erosion,
θ is the angle of the slope, S is the slope factor and L is the slope
length factor.

In the calculation of LS factor, the slope algorithm is relatively
simple, while the slope length algorithm is more complicated. In
this paper, the DWESL method proposed by Zhang et al. (2013) is
used and its formula is as follows:
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where k is the code of the surrounding cells at coordinates (x, y),
and λx,y is the slope length of each cell.

According to Eq. (6), for the cells where convergent flow occurs,
the slope length of the center cell should equal to the sum value of
the slope length of the surrounding cells that flow into it, which
shows the particularity between DWESL and the other grid-based
approaches. As shown in Fig. 1, point A is the convergent point of
flow AC and BC. The slope length of A takes the sum value of
projection length A′B′ and A′C′ instead of using the longest length.
In addition, two cutoff factors are considered in DWESL. One is
slope cutoff factor, such as Point D, where slope becomes gentle
and deposition happens. In this case, the calculation of slope
length should be restarted. The other one is the channel network
cutoff factor. At Point F, where channel network occurs, the slope
length should be set to a constant, generally zero.
2.2. Algorithm flow

The algorithm flow is based on the definition above and con-
tains the six steps shown in Fig. 2. The input DEM data need to be
preprocessed before the calculation in order to fill surface de-
pressions and remove flat areas. In this paper, the preprocessed
processing has been implemented using TauDEM software (Wallis
et al., 2009).
2.3. Flow accumulation calculation

Among the calculation workflow above, the algorithms for flow
accumulation and slope length calculations are more complex due
to their accumulation process. It is obvious that the flow accu-
mulation calculation for each cell depends on its upstream cells. In
other word, to calculate the flow accumulation, the number of all
cells that drain into it directly or indirectly should be figured up
(Wallis et al., 2009). In the process, all cells are actually composed
of two kinds of cells: (1) source cell, located in the peak or ridge or
around the edge of DEM dataset with no cell drain into; and
(2) normal cell, which does not belong to source cells (Fig. 3a). The
serial algorithm for flow accumulation is as follows:

Step 1: Each cell calculates the number of neighbor cells which
flow into it. If the number equals to n, then cell is assigned to –n; if
the number equals to 0, then the cell value is assigned to zero and
it should be pushed onto the stack.

Step 2: Each cell in the stack should be popped off in turn, if its
next cell n in flow direction is less than �1, the value of cell n
pluses one and waits for the next calculation. If its next cell n in
flow direction equals to �1, which means the computational
condition is achieved, cell n is assigned to the sum value of
neighbor cells. Iterating the calculation for each cell from cell n
until the next cell does not equal to �1.

Step 3: As soon as the stack is getting empty, which means all
the cells have been assigned to its flow accumulation value, then
the computation task can be completed.



Fig. 1. Schematic representation of distributed watershed erosion slope length.
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2.4. Slope length calculation

Slope length calculation is the key step in LS factor extraction. As
required in DWESL, flow direction is the necessary condition in the
calculation, while slope cutoff and channel cutoff must be taken into
consideration as well. In the process, all cells can be classified into four
types: (1) source cell, whose definition is the same as in the flow
accumulation described above; (2) slope cutoff cell, where the sedi-
ment is deposited. It is identified by the change ratio in slope angle
between one cell and the next along the flow direction. If the change
ratio is greater than the cutoff factor, the next cell is regarded as the
slope cutoff cell and the slope length from this direction cannot be
accumulated; (3) channel cutoff cell, where the cell is a part of a
channel and the slope length value should be set as a constant, which
is generally zero; and (4) normal cell, which does not belong to source
cell, slope cutoff cell or channel cutoff cell (Fig. 3b).

The calculation process contains three steps:
Step 1: Cell identification. An array T is created for identifying

the cell type. If the cell m is channel cutoff cell, T(m) is assigned to
1 and its slope length value is 0. If the cell m belongs to source cell,
it is pushed onto the stack, and T(m) is assigned to 1. For the other
cells, if the number of the neighbor cells flowing inside is n, T(m) is
assigned to –n.
Fig. 2. Workflow for LS facto
Step 2: Non-accumulation slope length calculation. Non-accu-
mulation slope length, only considering the length of the cell itself,
has the following regulation:
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Step 3: Accumulation slope length calculation. The calculation
strategy for slope length is similar to that for flow accumulation.
Each cell in the stack should be popped off in turn, if the next cell n
in the direction of flow does not equal -1, the value of cell n in-
creases by one and waits for the next calculation. If the next cell n
along flow path equals -1, then cell n is assigned to the sum slope
r calculation from DEM.
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Fig. 3. Two flow-direction matrixes to illustrate cell types in flow accumulation
algorithm and slope length algorithm. (a) Blue cells which are located in the border
and yellow cells with no cell draining into are regarded as source cells, and the rest
white cells are normal cells. (b) Blue cells and yellow cells are source cells. As-
suming that the green cells B1 and C9 satisfy the conditions of slope cutoff ac-
cording to the slope matrix, and then they are regarded slope cutoff cells; Assuming
that the red cell satisfies the conditions of channel cutoff according to channel
matrix, it is regarded as channel cutoff cell. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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length of neighbor cells draining into it. In the calculation, the
slope length cannot be accumulated at slope cutoff cell. The same
calculation is iterated from cell n until the next cell does not equal
-1. The calculation process is repeated until the stack becomes
empty.
3. Parallel computations

3.1. Approach to parallelization

In the LS factor calculation process, all the algorithms can be
divided into two types, local algorithms and global algorithms,
based on the existence of data dependency during the computa-
tion process. In local algorithm, the calculation for each cell is
independent, which means the calculation results rely only on the
input data and can be completed after traversing the input data
once. The local algorithm can be further divided into two types:
(1) point computation, such as the algorithm for drainage-network
definition and factor calculation, which has no relevance with
other grids; (2) regional computation, such as the algorithm for
slope and flow direction, in which the computation process needs
a limited region (Xie, 2012). Regional computation depends on the
center cells and its neighbor cells and different algorithm employs
different scope transition, the Moore neighborhood (Cheng et al.,
2012) are used for both slope algorithm and flow direction algo-
rithm in LS factor calculation. Compared with the local algorithms,
the processing of global algorithm is not independent, which
means the calculation of most cells may rely on the calculation
results of other cells.

The existing researches prove that local algorithms have better
parallelism and communication strategy should be designed for
the parallelization of global algorithms to accommodate the in-
fluence of data dependency. The parallel strategies in this paper
are designed according to the algorithmic characters discussed
above, including the decomposition method to maintain the in-
tegrity of the results, optimized workflow to reduce the time taken
for exporting the unnecessary intermediate results and the com-
munication strategy to improve the communication efficiency.
3.2. Decomposition method

Data partitioning is a key problem in parallel computing, and
requires particular attention (Gong and Xie, 2009; Song et al.,
2013). The existing partition strategies can be divided into two
types: regular strategy and irregular strategy. Regular decom-
position is widely used for its simplicity and high efficiency, while
irregular strategy is more concerned with maintaining the in-
tegrity of the terrain in the process.

In this paper, a striped partitioning approach which is a regular
strategy proposed by Wallis et al. (2009) is used. The DEM data are
divided horizontally into parts of equal size and mapped to size
processes, with any portion of the grid that is remaining is at-
tached to the last divided portion. Each portion contains three
elements: (1) data region: the data for computing in each process.
According to the partitioning approach, row number of each pro-
cess is

⎧⎨⎩Prows
Total Rows/size rank size 1

Total Rows/size Total Rows % size rank size 1 (8)
=

≠ −
+ = −

where Total Rows denotes the total row numbers of global dataset,
size is the rank number, rank is the identification of each process
(rank¼1, 2,…., size).

(2) Anchor point: the starting point for reading data from a grid
file and through which the result of each process can be written to
the result file, and the coordinate of anchor point is
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=
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where col and row denote the column number and row number of
the anchor point respectively.

(3) Buffer area: a row of cells as overlapping area from adjacent
process, above and below it. Through buffers, each process has
access to an adjacent subdomain with litter commutation. Fig. 4
illustrates the striped partitioning strategy.
3.3. Optimized design of the workflow

To achieve the final LS factor, the workflow mentioned in Sec-
tion 2.2 contains six parts which is too complex for the parallel
algorithms, especially considering the time taken for the I/O disk.
The method for solving this problem is to reduce intermediate
results by merging the algorithms. In this paper, the optimized
design of the workflow considering two factors. One is whether
the calculation results will be used for more than one algorithm or
not. For example, the flow-direction matrix which is the input
dataset for both flow accumulation and slope length, therefore
flow direction is not suitable for merging with other algorithms.
Another factor depends on the algorithm characters. It is obvious
that point computation can be easily merged with other algo-
rithms for its independent calculation of each cells. In this paper,
flow accumulation and drainage definition can be merged; Slope
length and factor calculation can be merged as well. After opti-
mization, the workflow includes only four algorithms, namely flow
direction, stream (combination of flow accumulation and drainage
definition), slope and LS factor (combination of slope length and
factor calculation).



Fig. 4. Illustration of striped partitioning strategy.
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3.4. Buffer–communication–computation strategy

In the parallel process of global algorithms, the computation is
implemented in two steps: internal and external computation. In
the internal computation step, if the cell and its dependent cells,
labeled upstream cells in this paper, are all in the same sub-
domain, the computation can be completed within this step. After
internal computation, some more cells can get their values.
However, the cell and its dependent cells can also be divided into
different subdomains according to the partitioning strategy, in
which an external computation step is carried out to exchange the
processing results from adjacent processes. The illustration of data
dependency is shown in Fig. 5. According to flow direction in
Fig. 5a, the blue cells in Fig. 5b are the source cells which can
achieve their values directly without considering other cells. After
internal computation, the computation result is shown in Fig. 5c in
which the white cells which have the data dependency on other
process should wait for the external computation.

Further study shows that, the data dependency between pro-
cesses originates from the border rows of subdomains and the
dependency information for each subdomain can be obtained
through the communications between the border rows of adjacent
processes. If all the cells in border rows have no data dependency
on the adjacent processes, it proves that all the cells in this sub-
domain can obtain their values within internal computation.
However, if some cells in border rows have the data dependency
on the cells in other processes, these cells and their downstream
cells should wait for the data exchange before beginning their
computations. That is to say the statuses of the cells in border rows
determine the status of other cells. If all the cells in the border
rows have finished the calculations, which proves that all the cells
have obtained their values and there is no need to exchange the
information further.

In this paper, the implementation of data communication be-
tween processes is simplified by MPI. To overcome any extra
communication, a buffer–communication–computation strategy,
the core part of the parallelization strategy for global algorithms, is
designed according to the following steps.

Step 1: The calculation is implemented in each process once. The
ability of the cells to complete the calculation depends on whether
or not the cell and its dependent cells are in the same subdomain.

Step 2: Upon completing step 1, if any cell in the boundary (top
or bottom row) has not completed the calculation, each process
updates the buffers by swapping its boundaries with neighboring
processes (Fig. 6a).

Step 3: Each process loops through the buffers. If the cell in the
buffer has achieved its final value and does not have to be visited,
it should be pushed onto the stack and its visited flag is assigned 1.
Each cell in the stack is popped off, which can be regarded as the
source cell. The calculation is repeated from the source cell to
update the unfinished cells (Fig. 6b).

Step 4: If any cell in the top or bottom rows of the subdomain
has not completed the calculation, step 2 and 3 are repeated until
all the cells have achieved their values.

To illustrate the process of the buffer–communication–com-
putation strategy, an example of a slope length algorithm is given



Fig. 6. Illustration of buffer–communication–computation strategy. (a) Buffer areas are updated through communication, (b) buffer areas are used for the computation of the
unfinished cells.

Fig. 5. Illustration of data dependency in computation processing. (a) Flow direction matrix, (b) blue cells are the sources cells, (c) internal computation result in which
white cells are the unfinished cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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with a nine-row flow-direction matrix (see Fig. 3). Because the
process number is three, each process can be assigned a three-row
sub-dataset. After the first-time calculation, some cells have
achieved a slope length value without communication (Fig. 7a).
Each process then searches the unfinished cells from both top and
button rows and the buffers are updated through communication
(Fig. 7b). In each buffer, the cells that have achieved their value
and have not been visited are regarded as the source cells. Each
process updates the unfinished cell's value from the source cells
(Fig. 7c). If unfinished cells still exist after a respective search of
the top and bottom rows, one more buffer communication is
completed (Fig. 7d). Each process then repeats the search of the
source cell from which the recalculation is done (Fig. 7e). The
calculation is not complete until there are no unfinished cells in all
processes (Fig. 7f).

3.5. Programming implementation

The MPI parallel algorithm in this paper was developed in
Cþþ programming language. Fig. 8 shows an integral flowchart of
the parallelization workflow in the extraction of the LS factor and
it is described in the following steps.

Step 1: Each process is initialized with the number of processes
and parameters involving the algorithm.

Step 2: The input dataset is subdivided into subdomains and
the result file is created by process 1.

Step 3: Each process reads data from the input file according to
its anchor point.

Step 4: Subtasks are implemented in each process.
Step 5: If the algorithm is the global type, the buffer–
communication–computation strategy should be used to make
sure that all the cells finish their calculations.

Step 6: Each process writes the computation results to the re-
sult file. As illustrated in Fig. 4, the computation results of each part
are written to the global dataset according to their anchor points.

Step 7: Each process frees memory and the task is completed.
For the local algorithms, the implementation of parallelization

contains three parts: reading input data, performing the calcula-
tion task and writing result data. For the parallelization of global
algorithms, the communication operations should be considered.
The Cþþ pseudo code of the parallelization strategy for local and
global algorithms can be found in Appendices A.1 and A.2, their
total time spent are given as follows:

T t t tmax max max (10)local i n read i n cpt i n write[1, ] [1, ] [1, ]p p p= + +∈ ∈ ∈

where tread and twrite denotes the time-taken for reading and
writing data respectively, tcpt is the time overhead to execute the
calculation task.

According to the optimized workflow, all the algorithms should
be implemented as the following sequence: slope, flow direction,
stream, and the final LS factor. Each process executes the next step
simultaneously when all the processes have finished the prior
step. The total time spent for the workflow of LS factor calculation
contains four parts which can be estimated as follows:

T T T T T (11)slope flowdir stream LSfactor= + + +

where Tslope, Tflowdir, Tstream, TLSfactor denotes the time for the cal-
culation of slope, flow direction, stream and the final LS factor
calculation.



Fig. 7. Illustration of buffer–communication–computation strategy using flow-direction matrix in Fig. 3 and slope length algorithm is taken for example. (a) Calculation
results after independent processing (gray rows mean the buffers, the cells with underlines in process 1 and process 3 are the slope cutoff cells, the cell with an asterisk in
process 2 is the channel cutoff cell). (b) Searching unfinished cells in top and bottom rows and updating the buffers. (c) Calculation results after updating unfinished cells
from buffers. (d) Searching unfinished cells in top and bottom rows and updating the buffers. (e) Updating unfinished cells from source cells in buffers. (f) Searching
unfinished cell in top and bottom rows (all cells of data regions have achieved their slope length values at the moment).
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Fig. 8. Parallelization workflow.

Fig. 9. The Loess pla
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4. Experiments and results

4.1. Experimental basis

In order to evaluate its accuracy and effectiveness, the parallel
algorithm were conducted on an 80-core cluster composed of 10
diskless nodes that were connected through an Ethernet network
with Gigabit (1000 Mbit/s) speed. Each node had dual quad-core
Intel(R) Xeon(R) E5620 processors (2.40 GHz, 16 GB RAM) under a
Linux operating system.

The Loess Plateau of China, with a total area of 640,000 km2, is
world-renowned for its unique loess landform and severe soil
erosion. The USLE/RUSLE model is usually applied to model the
soil erosion in this area. However, the massive data volume due to
the size of the area presents a computational challenge to tradi-
tional serial algorithms. In this paper, two different datasets cov-
ering the entire loess plateau were employed as the test data
(Fig. 9). The 90- m resolution dataset with dimensions of
11472�17087 (748 MB) is regarded as the smaller one and the
larger one is at 30-m resolution with dimensions of 34417�51261
(6.57 GB).

4.2. Experimental results

To judge the accuracy of the parallel algorithm, serial algorithm
for LS factor calculation was implemented with the same dataset.
There is no difference of the calculation results between the serial
algorithm and the parallel computing approach, which proves the
availability by using the parallel processing. Fig. 10 shows the
calculation results by using the proposed parallel computing ap-
proach in this paper with a 30-m resolution dataset. Fig. 10a is a
map of the LS factor for the entire loess plateau and shows its
spatial distribution at a regional scale. Fig. 10b, c and d are the
calculation results from three small watersheds. It confirms that
the calculation results can not only be applied for some regional
studies, but also maintain their utility at a small watershed scale.

Since the main purpose of the study is to improve computation
efficiency, more attention is paid here to evaluate its parallel ef-
ficiency. Fig. 11 shows the run time taken to complete each steps of
teau study area.



Fig. 10. Map of calculation results.
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the LS factor calculation using both serial algorithm and the par-
allel MPI algorithm. Between 1 and 16 processes, the execution
time of both the 90-m dataset and 30-m dataset are significantly
reduced, which are shown in Fig. 11a and b, respectively. Because
all the processes are running simultaneously, more processes can
be completed in less execution time. However, from 16 to 64
processes the run time decreases slowly, even experiencing a rise
trend from 32 to 64 processes. This is because that as the increase
of the processes number, the subdata assigned to each process gets
smaller, resulting in more overheads of communications. It should
be noted that the time taken by using parallel algorithm with one
Fig. 11. Time taken to parallel algorithms for LS calculation with
process costs more time for that by using serial algorithm, due to
the additional preprocessing of the parallel algorithm.

In order to extend the evaluation, the speedup which is defined
as the ratio between execution time on one processor and parallel
execution time was used. There are three kinds of speedups shown
in Fig. 12, the ideal speedup, total time speedup and the compute
time (total time minus the time for disk I/O) speedup. It is obvious
that data volume has a clear influence on speedups. By using lar-
ger dataset, higher compute time speedup could be achieved
especially between 2 and 16 processes; meanwhile the gaps be-
tween the compute time speedup and total time speedup become
different DEM datasets: (a) 90-m dataset (b) 30-m dataset.



Fig. 12. A comparison of compute time speedup and total time speedup of parallel algorithms for LS calculation with different DEM datasets: (a) 90-m dataset (b) 30-m
dataset.
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wider. This is because the time taken for computation increases
with the data volume, leading a better compute time speedup;
however the overhead for disk I/O also increases by using larger
dataset, which has a bad influence on the total time speedup. It is
also noted that the advantage of larger dataset in compute time
speedup becomes smaller as the processes getting larger, it is
because that the communication gets more frequent for larger
dataset under such condition.

Because of the differences in serial algorithms and the parallel
strategy, there are clearly variations in total time speedups of
different algorithms. As shown in Fig. 13, the speedups of local
algorithms are obvious higher than that of global algorithms by
using the smaller dataset. However, the differences between local
and global algorithms get narrower by using larger dataset. The
phenomenon is caused by the increasing time taken for the I/O
disk, as a result the global algorithms which are more complex
with longer computation time can achieve higher speedups. Af-
fected by the communication in global algorithms, more processes
increase the burden of communication between processes, which
reduces the parallel efficiency. Fig. 14 shows the communication
overhead ratios of the stream algorithm and the LS factor algo-
rithm. From 2 to 16 processes, the communication ratios, defined
Fig. 13. A comparison of speedup of parallel algorithms for LS calculatio
as the ratio between time taken for communication and total ex-
ecution time, increase significantly for both datasets and both
parallel algorithms, but their growth rate slows down from 16 to
64 processes. The differences of communication overhead ratios
can also reflect the influence of I/O. It is obvious that the LS factor
algorithm owns less communication overhead ratios than the
stream algorithm, because LS factor needs more input datasets
which bring more burdens of I/O.
5. Conclusions and future work

With the improvement of DEM resolution and the extension of
the research area, serial algorithms are insufficient, sometime even
incapable to process the massive terrain datasets. In this paper, a
parallel processing model is developed for calculating the LS factor
which in turn includes the calculation of slope, flow direction,
stream, and final LS factor. From the experimental results on the
multi-node cluster the following findings are observed: (1) the
parallel implementation of the LS factor calculation dramatically
reduces the computation time, even with the datasets which
completely overwhelms the serial recursive implementation;
n with different DEM datasets: (a) 90-m dataset (b) 30-m dataset.



Fig. 14. A comparison of communication overhead ratios of parallel algorithms for LS calculation with different DEM datasets: (a) 90-m dataset (b) 30-m dataset.
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(2) due to the influence of communication overhead, the parallel
efficiency of global algorithms is inferior to that of local algo-
rithms; and (3) the parallelized LS factor algorithm achieves a
higher compute time speedup with the increase of data volume
especially when the number of process is not very large. However
the increase of the I/O overhead has a strong negative influence on
the total time speedup.

Some shortcomings still exist in the new approach. One is the
contradiction between the limited computing resources and the
massive dataset. The parallel algorithm can make it possible to
process the big data which cannot be calculated by using the
traditional serial algorithms. However, if the assigned dataset for
each processor is out of its available memory, especially when
considering the cluster which may be used for some other com-
putation tasks at the same time, the parallel algorithms may not
process the massive dataset. The granularity control has been re-
garded as a helpful tool to solve this problem. An improved par-
allel algorithmwith granularity control for the LS factor calculation
could be implemented in the further study. Another problem fo-
cuses on the disk I/O time. The experiments show that the time
taken for I/O increases rapidly with the increase of data volume.
The I/O overhead ratio could even exceed that for computation by
using a large number of processes, which makes a negative in-
fluence on the parallel efficiency. In further study, a shared file
system with high parallel I/O throughput can be used to eliminate
this bottleneck so that the parallel algorithms can be more effi-
cient and practical.
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Appendix A.1. Pseudo code of local algorithm parallelization. (inPutfile and outPutfile are the input DEM file and the output DEM
file respectively, pSize is the process number.)
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Appendix A.2. Pseudo code of parallelization strategy for global algorithms. (inPutfile and outPutfile are the input DEM file and the
output DEM file respectively, pSize is the process number. Function RingTermination( ) serves to transfer signals among all the
processes, the final signal becomes false if the signal of any process is false. Function SwapBuffers( ) denotes a function for swapping
the buffers with neighboring processes.)
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