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Abstract—With the rapid development of data observation and model simulation in geoscience, spatial-temporal data have become

increasingly multidimensional, massive and are consistently being updated. As a result, the integrated maintenance of these data is

becoming a challenge. This paper presents a blocked hierarchical tensor representation within the split-and-merge paradigm for the

compressed storage, continuously updating and data querying of multidimensional geospatial field data. The original multidimensional

geospatial field data are split into small blocks according to their spatial-temporal references. These blocks are represented and

compressed hierarchically, and then combined into a single hierarchical tree as the representation of original data. With a buffered

binary tree data structure and corresponding optimized operation algorithms, the original multidimensional geospatial field data can be

continuously compressed, appended, and queried. Data from the 20th Century Reanalysis Monthly Mean Composites are used to

evaluate the performance of this approach. Compared to traditional methods, the new approach is shown to retain the quality of the

original data with much lower storage costs and faster computational performance. The result suggests that the blocked hierarchical

tensor representation provides an effective structure for integrated storage, presentation and computation of multidimensional

geospatial field data.

Index Terms—Multidimensional data modelling, data compression, data updating, blocked hierarchical tensor representation
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1 INTRODUCTION

GEOSPATIAL field data, such as remote sensing images
and large climate model simulation data, are becoming

multidimensional and massive [1]. These data have large
volumes (e.g. several gigabyte) and high dimensionality (e.g.
dozens or hundreds of attributes). Large amounts of obser-
vation of exiting attributes/variables are uninterruptedly
generated by global observation systems [2]. These data are
often compressed for storage. The newly arrived data should
also be continuously compressed and appended to the exist-
ing data in such a way that the newly added should be inte-
grated to the existing data and made as a whole with the
existing data. In addition, this updating process should be
completed in a short time and can be repeatedly applied for
the next patch of new data. The compression and storage
should maintain the consistency of the spatial-temporal ref-
erence (STR) of this data. Balance among the data accuracy,
data compression performance and convenience for index-
ing, querying and analysis is required.

The explosion of both the data volumes and dimension-
ality of these geospatial field data makes the storage, man-
agement, query and processing a daunting challenge to
existing solutions [3]. Multidimensional data are stored
and accessed linearly in memory and on hard disk but
should be randomly queried and updated from any dimen-
sion. Classical methods use data indexes (e.g., Pyramid, R-
Tree, VA-Files) to accelerate the query and storage [4].
These data indexes split data into segments and then map
the segments to the linear ordered data I/O sequence [5].
When the dimension grows, both the data segmentation
and the data structure are becoming complex and ineffi-
cient. Big data or data-intensive computing solutions use
parallel data I/O and computation to accelerate the data
accessing and updating [6]. However, large number of
computers and complicated computation architectures are
required to provide the I/O bandwidth and computation
power needed [7].

The situation becomes worse when the continuously data
compressing, appending and updating are required. Within
the existing data representation and analysis framework,
neither the classical methods nor the big data or data-inten-
sive computing solutions are suited for dynamic data
appending and updating [8]. And finding alternative data
structures which fit the underlying storage architecture and
are easy for data appending, compression and querying at
the same time might be challenging [9]. To our best knowl-
edge, nearly all exiting solutions for continuously data
processing require different data structures during the man-
agement, query and analysis procedures and need to under-
gone several complex processing steps before they reach the
stage as final, manageable, searchable and computable data
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products [10]. The frequent data transfer between different
data structures in addition slows down the processing
throughput.

Tensor is an indispensable tool for multidimensional data
processing and analysis [11]. Derived from data-intensive
applications, computationally-oriented researchers organize
multidimensional arrays as tensor-structured datasets [12],
[13]. Tensor decomposition [14], tensor-based PDE solving
and signal extraction [13] are then be applied for pattern
extraction, high dimensional data manipulations and visual-
izations [15], [16], [17], [18]. However, most of these tools are
for specific computations and have limited functions for data
management, query, manipulation and operation [11]. In
most solutions, the curse of the dimensionality problem [19]
andNull Space problem [20] still exist.

Recently, the hierarchical tensor representations (HTR)
(e.g., [21], [22], [23], [24], [25]) provide completely new tensor
approximation of high dimensional data expression and rich
reference for high dimensional data analysis. Hierarchical
tensor representation has the property of coordinates-inde-
pendence, and it has the inherited linkage between tensor
algebra, calculus and partial differential equations [26].
Thus, hierarchical tensors representation provides us the
ideal mathematical structure and analysis tools to manage
and analyze high-dimensional data [27]. Most recently,
computational tools, htucker-Toolbox [28], tensor-train Tool-
box [21] and Tensor Calculus library [29] are gaining increas-
ing attention [27]. These advances of hierarchical tensor-
based computation have already been used in abstract math-
ematical and engineering numerical computations. Hierar-
chical tensors, which are proved to be a useful tool for
multidimensional computation, also provide the potential to
be a powerful tool in multidimensional geospatial field data
representation, compression and operation.

However, several critical issues need to be addressed for
hierarchical tensors for multidimensional geospatial field
data representation and operation. The first is that the
dimension of the geospatial field data is mostly determined
by splitting of the spatial-temporal references (e.g., latitude,
longitude, height and time). The imbalance of the dimension
splitting (i.e. the resolution between spatial-temporal dimen-
sions) of the attributes will be a critical obstacle for efficient
storage and computation. For example, for a gridded global
data, the split of the spatial dimensions ranges from dozens
to thousands (e.g., 1440� 720 for a 1/4� grid). Yet the tempo-
ral and attribute dimensions vary from two to several thou-
sands. This dimensionality imbalance will rapidly increase
the complexity and storage space for typical tensor solutions.
Second, geospatial field data are dynamically updated and
appended. During the data updating and addition, the spa-
tial-temporal reference should be kept consistently in a stan-
dard datum. However, most of exiting hierarchical tensor
approaches are optimized for neither dynamic data updating
and combining nor maintaining the consistency of spatial-
temporal reference. Third, therewill be a high risk of encoun-
tering the Null Space problem [20]. Due to the imbalance of
dimensionality, the dimensions split tensor might be very
sparse, and many data units will be null. Fourth, some low-
dimensional characteristics will no longer be present in the
high dimension. For example, when the dimension is large
enough, the nearest distance and furthest distance will not

be as significant as they are in the low dimension space. The
diminishing difference between the nearest and furthest dis-
tances will make the classical data analysis and operations
inefficient [30].

The above issues call for a new data structure and new
algorithms to support data organization, compressed stor-
age, data appending and query. Near balanced hierarchical
representation and organization will be more helpful and
efficient than multidimensional tables or arrays for support-
ing large tensor expression [31]. The dimension imbalance,
the sequentially data appending and randomly data access
nature of multidimensional geospatial field data require
data to be stored in each dimensional structure indepen-
dently as blocks rather than stored as a whole linearly. In
this way, quick and stable data organization, efficient and
compressed data storage, continuous data appending can
be applied to each block independently.

The integrated use of the split-and-merge paradigm [32]
and the hierarchical tensor decomposition [22] provides
an ideal solution for multidimensional geospatial field
data representation, compression and operation. The split of
original geospatial field data in accordance with the spatio-
temporal references can produce more balanced multidi-
mensional tensor blocks with spatial-temporal coordinates
logged orderly. These tensor blocks can then be represented
hierarchically to support both the sequential data appending
and the randomly data access. Taking advantage of tensor
approximation, tensors of each block can be compressed effi-
ciently. By developing dynamically updatable data represen-
tation, efficient hierarchical data structures and data
merging/updating algorithms, the continuously addition
with compression, updating and querying of multidimen-
sional geospatial field data can be achieved.

In this paper, a hierarchical tensor decomposition based on
the split-and-merge paradigm is developed for continuously
compression and appending of multidimensional geospatial
field data. Our goal is to propose a hierarchical data structure
to reformulate and store the large volume of geospatial field
data and to develop methods for data storage, query and
computation support using this data structure. We illustrate
this through a prototype implementation. The prototype has
five components: 1) the design of a buffered hierarchical data
structure and data decomposition strategies; 2) a proposal for
a blocked data separation mechanism for splitting the huge
tensors into small blocks according to the spatial-temporal
reference; 3) a proposed algorithm that allows for data
appending which is free of arithmetical operations and also
computationally adaptive with continuous compression; 4)
the development of a hierarchical structure-preserving and
dimensional-independent data query which needs only to
reform the row of the matrix in the leaf node; 5) the provision
of computational operators such as tensor addition and linear
operations, as well as a hierarchical structure-preserving
computational framework.

The preliminaries of multidimensional representation of
geospatial field data are given in Section 2. Methods and
implementation for blocked hierarchical data representa-
tion, combining and data appending, compression and
query mechanism are presented in Section 3. The experi-
mental results are presented in Section 4 and conclusions
are provided in Section 5.
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2 PRELIMINARY AND FRAMEWORK

2.1 Tensor Representation of Multidimensional
Geospatial Field Data

Geospatial field data are data with geographical coordi-
nates, which can be formulated as attribute cubes associated
with their spatial-temporal references.

Definition 2.1 (Spatial-Temporal References). An STR is a
single valued one-to-one mapping of the real geographical
space into the n-dimensional mathematical space, in the form
of f : Gn 7! Rn, in which Gn is the coordination space of the
real geographical world, and Rn is the n�dimensional func-
tional space.
The definition of STR here is generalized and compatible

with the definition of spatial-temporal dimensions in the
spatial-temporal database or STOLAP systems. Thus, it is
possible to split the STR with temporal and spatial projec-
tion for characteristics analysis. For example, a four-dimen-
sional geographical space can be mapped as R4 ¼ R3 �R,

where R3 is the three-dimensional spatial space composed
by latitude, longitude, and height; R is the temporal coordi-
nation of the four-dimensional space. A full subspace repre-
sentation of a three dimensional tensor A 2 Rr1�r2�r3 leads
to a linear combination of seven subspaces of fRr1 ;Rr2 ,
Rr3 ;Rr1�r2 ;Rr2�r3 ;Rr1�r3 ;Rr1�r2�r3g.

According to the definition of STR, a multidimensional
spatial-temporal field with the same STR can be defined by
a tuple with multiple field elements, with the form of
<ST; F1; F2; . . . >, where ST is the spatial-temporal referen-
ces of the field, and Fi is the associated attribute domain.
Then multidimensional data cube can be directly repre-
sented as a tensor as follows:

Definition 2.2 (Tensor Representation of Multidimen-
sional Data). Given a series of multidimensional array sets,
SDi ¼ fFt1 ; Ft2 ; . . .Ftng with equal size, a tensor-based multi-
dimensional data cube can be defined as:

SD ¼ x 2 Rn1�n2�����nd ; (1)

where x is the d dimensional tensor and n1; . . . ; nd denote
numbers of elements with dimension from 1 to d, respectively.
It is also called the dimensionality of the ith mode.

The nth element in a sequence is denoted by a superscript
in parentheses. For example, the matricization of the tensor x

along the dimension (mode) n is denoted by AðnÞ, which is
called the nth matrix in a sequence. The fiber and slice can be
seen respectively as the generalized extension of matrix
rows/columns and two-dimensional sections of a tensor in
higher orders. According to the tensor definition, a higher
dimensional tensor can also be composed of tensors (i.e., the
lower dimensional tensors), thus the tensor can be used to
define data sets of arbitrary dimensions. For example, we can
reorganize the three dimensional tensor (rank-3 tensor) as a
bigmatrix by expanding the tensor through one dimension.

2.2 Hierarchical Tensor Decomposition
for Geospatial Data

The subspace combination of original tensor data can
be represented as a tree structure, called dimension tree
or subspace partition tree [22]. The hierarchical tensor

representation according to a specific subspace partition
tree [22] is defined as follows:

Definition 2.3 (Hierarchical Tensor Representation). Given
a subspace partition tree TD, a tensor v 2 V ¼ a �j2D Vj with
finite index setD. The hierarchical tensor decomposition of v is
characterized by finite dimensional subspaces UD as

Ua � Va :¼ a �j2D Vj for all a 2 TD; (2)
where

Ua ¼ Uj;a 2 LðTDÞ
Ua1 � Ua2 ;a 2 TDnLðTDÞ;a1;a2 2 SðaÞ:

�
(3)

With Equations (2) and (3), the hierarchical structure of
the entire tensor can be constructed. If bases Ba ¼ ½bðaÞ1 ; . . . ;

bðaÞra 	 2 Ua and bra are given to generate a subspace represen-
tation of Ua, it has the following relationship:

b
ðaÞ
l ¼

Xra1
i¼1

Xra2
j¼1

c
ða;lÞ
ij b

a1
i � b

a2
j ; fa1;a2g ¼ SðaÞ; (4)

where Cða;lÞ ¼ ðcða;lÞij Þ1
i
ra1 ;1
j
ra2
2 Kra1�ra2 , 1 
 l 
 ra are

the coefficient matrices that define isomorphism. With this
definition, we arrive at the hierarchical subspace representa-
tion of the original tensor.

2.3 Hierarchical Geospatial Field Data
Representation (HGFDR)

With the subspace representation, the STR as well as the
attribute data can be represented by combination of subspa-
ces. According to the subspace partition of STR and hierar-
chical tensor decomposition, we can define the hierarchical
geospatial field data representation as following:

Definition 2.4 (Hierarchical Geospatial Field Data Repre-
sentation). Given a subspace partition tree TD, a subspace
representation of geoscience field tensor data v 2 V ¼
a �j2D Vj, the HGFDR of v is defined as

Ua ¼ a �j2D Uj

¼ ðU1 � U2Þ �B12|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
U12

�ðU3 � U4Þ �B34|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
U34

� � � � � ðUn�1 � UnÞ �Bðn�1Þn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Uðn�1Þn

¼ ðU12 � U34Þ �B1234|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U1234

�ðU56 � U78Þ �B5678|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U5678

� � � �

� ðUðn�3Þðn�2Þ � Uðn�1ÞnÞ �Bðn�3Þðn�2Þðn�1Þn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Uðn�3Þðn�2Þðn�1Þn¼ � � �

¼ ðU
12���n=2 � Uðn=2þ1Þ���nÞ �B

12���n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U12���n

;

(5)

where a 2 TD is the hierarchical tree node and Ui is the coef-
ficient matrix/tensor of each dimension or mode cluster. Bi

is the transfer tensor, which makes the computation bal-
anced and satisfies the relationships as given in Equation (6):

Ua ¼ ðUa1 � Ua2ÞBa;a1;a2 2 SðaÞ: (6)
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With Equation (5), the matrix expression of the parent
node can be recursively reconstructed by the son node and
the interior transfer tensor Ba. A hierarchical subspace
approximation and the recursive reconstruction are used to
construct the coefficients of the interior nodes. Since the Ua

can be solved from Equation (5), only the leaf node matrix
Ui and the transfer tensor Bi need to be estimated to con-
struct the hierarchical representation of field data according
to Definition 2.4. Thus we have

vecðxÞ ¼ ðU1 � � � � � UdÞ � ðB12 � � � � �Bðd�1ÞdÞ
� ðB1234 � � � � �Bðd�3Þðd�2Þðd�1ÞdÞ � � � � �B12���d: (7)

2.4 The Overall Framework

The overall framework of the hierarchical expression and the
updating of the geospatial tensor are depicted in Fig. 1. The
overall idea of the blocked geospatial representation and
compression is to split the original imbalanced geospatial
tensor into several more dimensional balanced sub-tensors
(blocks). These blocks are represented, compressed and
updated individually. Then these separately represented
and compressed tensors can bemerged to form the hierarchi-
cal representation of the original geospatial field data. Then
the hierarchical representation of the original geospatial field
data can be queried and computed efficiently. Since the
blocks are much smaller and more dimensionally balanced
than the original geospatial tensor, the hierarchical represen-
tation and compression in the split-and-merge paradigm are
not only much more computation and memory efficient, but
alsomore accurate due to better data consistency.

3 THE BLOCKED HIERARCHICAL TENSOR

REPRESENTATION

In this section, we designed a split-and-merge paradigm
that splits the multidimensional geospatial data into blocks,
represents and compresses the blocks with hierarchical ten-
sor decomposition, and then reconstructs the compressed
blocks into a single hierarchical representation of original
geospatial data. The reconstructed hierarchical tensor repre-
sentation maintains the subspace structure of tensor and
compresses the cost of storage and operations.

3.1 Hierarchical Representation of Attribute Blocks

With the subspace split of STR and the attribution dimen-
sion, the multidimensional geospatial field data can be split

into blocks. Each block has its own spatial-temporal referen-
ces. In typical situations, the STR of multidimensional attri-
bution fields is the same and is hidden in the data
organization. That is, the multiple attribution data are usu-
ally a separate data cube, which can be directly represented
by a tensor. With the above assumption, we can split the
original tensor into several blocks without disorganizing
the order of the STR.

A function SplitToBlocksðT; bÞ, where T is the original
tensor and b is the block size, is designed to split the origi-
nal tensor into several near balanced sub blocks. In
SplitToBlocksðT; bÞ, the original tensor data are first split
based on the attributes because it is possible that signifi-
cant differences in data ranges and characteristics between
different attributes exist. The split according to the spatial
and temporal dimensions is then applied to further reduce
the dimension imbalance and make the blocks into an ideal
size. Since the dimension of the data varies differently, the
users are required to customize the split number for each
dimension. To keep the natural structure of the data, the
split of the temporal dimension is usually a factor of the
data-updating interval. For the spatial dimensions, it is
usually a regular block which has the same size in terms of
the coordinate space.

Assuming all the blocks of the attribute data in feature
space RA1�A2�����Ad are classical tensor data, and attributes
a1; a2; . . . ; ad as elements of attribute set A, we can define a
binary attribute tree that stores the attribution block as
follows:

Definition 3.1 (Binary Multidimensional Attribute Tree,
BMAT). Given the order d, a binary attribute tree T is defined
by the binary splitting of the attributes from 1; 2; . . . ; d recur-
sively until each leaf node contains only a single attribute di.
Thus, any node of the BMAT can be identified by elements of
the power set Pf1; 2; . . . ; dg that satisfy:
1) The root has full attribute sets of tr ¼ f1; 2; . . . ; dg.
2) Every leaf node contains only one attribute label, thus

tl ¼ fig; i 2 T .
3) Every interior node, which is not a leaf, has two sons

t1 ¼ u ¼ fi; iþ 1; . . . ; jg and t2 ¼ v ¼ fjþ 1; jþ 2;
. . . ; kg that form an orderly and almost balanced parti-
tion of t, which satisfies t1 [ t2 ¼ t and u < v for all
u 2 t1 and v 2 t2.

The coefficients of the BMAT nodes should be computed
very carefully. The determination of the coefficients of the
BMAT should make the BMAT meet the following criteria:
1) the BMAT should be consistent with the hierarchical ten-
sor representation; 2) the node of BMAT should be indepen-
dent and can be easily appended and compressed; 3) after
the appending and compression of the nodes of BMAT, the
representation of the whole tensor is reconstructed which is
also a BMAT. Similar to the approaches in [22], we solve the
coefficients of the BMAT by recursively applying SVD for
subspace projection.

In BMAT, we split the core tensor into several n�m
matrices, where n and m are numbers of elements for each
individual attribute, to form a hierarchical structure. The

columns of U ðnÞ can then be produced from the first Inth col-
umns of the left singular matrix in SVD. The transfer tensor

Fig. 1. The overall framework of hierarchical expression of geospatial
field data tensors.
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Ba, which expresses the interaction between two dimen-
sions a1 and a2, can be extracted from the SVD of the

(a1;a2) matricization. With matrices U ð1Þ; . . . ; U ðn�1Þ;
U ðnþ1Þ; . . . ; UðNÞ fixed, the original tensor can be projected

into the RI1�����In�1Inþ1�����IN dimensional space. For this con-
struction, the interior nodes in the hierarchical representa-
tion only store the interaction of the direct son nodes. To
make the tensor product closed, an additional dimension
which reveals the characteristics of the matrix U should be
added. Then the interior-node expression is a rank-3 tensor,
which expresses the < characteristic > � < leftnode > � <
rightnode > interaction.

According Equation (6), we have�
UH
a1

� UH
a2

�� Ua ¼ �
UH
a1

� UH
a2

�� �
Ua1 � Ua2

��Ba ¼ Ba:

(8)

Equation (8) suggests the Ba in any level is the product
of the subtree in the a level and their two son nodes.
Therefore, it produces a recursive construction of the com-
putation of Ba.

With Equations (7) and (8), we have the following addi-
tional Equations:�

U1
H � U2

H � � � � � Ud
H
�� vecðxÞ

¼ �
U1

H � U2
H � � � � � Ud

H
�� ðU1 � U2 � � � � � UdÞ

� ðB12 � � � � �Bðd�1ÞdÞ � � � � �B12���d

¼ ðB12 � � � � �Bðd�1ÞdÞ � � � � �B12���d: (9)

In Equation (9), all the leaf nodes on the right side have
disappeared, and the tensor product of the traverse of the
leaf node matrix and the original tensor, that is, a numeri-
cal tensor with determined values, is represented on the
left side. The resulting tensor can then be represented by
the hierarchical tensor in the form of BMAT. The leaf nodes
of this BMAT can be further computed with the SVD. By
recursively using Equations (7) and (9), we can compute all
the coefficients. Since the estimation of each Ui is indepen-
dent, there is an easy parallelism for large-scale field data
representation. If all the interior nodes are expressed by
the transfer tensor, the original block tensor can be recur-
sively reconstructed from all the nodes. Any subsets of the
original tensor can be partly reconstructed by the subtree.
Clearly, this recursive reconstruction is a good property for
data indexing.

3.2 The Blocked-HGFDR Algorithm

Two critical termination criteria, accuracy and the data
size, are considered in the blocked hierarchical tensor
representation. In the blocked hierarchical tensor repre-
sentation, both the accuracy and the data size are first
controlled by the block size b, then the BMAT T and the
rank k [22]. The block size b determines the size and
dimension of the block tensor, which is the foundation of
the selection of BMAT T and the rank k. The BMAT T
determines the computation balance. To reduce the com-
plexity, we initialized a list for storing the balanced tree
data structure of each block during the decomposition.

The optimal rank k affects the number of coefficients and
thus affects the approximation precision and final data
size. We developed a rank determination function and
used the empirical results (see detailed discussion in sec-
tion 5.2) for the rank k determination. The CompRank(T,
", f) procedure determines the minimal rank k according
to the approximation error " and the desired compression
ratio f. The optimal rank k is the minimal k that satisfies
the relations:

" ¼ aRank�b

f ¼ orisize
aRank3 þ bRank2 þ cRankþd

;

�
(10)

where a, b, a; b; c; d are empirical coefficients that are deter-
mined by the complexity and structure of the data. Com-
pared with solutions proposed by [22], we developed the
form from a recursive decomposition. The matricization
process MatricizeðX; dimrepiÞ deals with the matricization
of X according to the dimension sequence dimrepi and the
dematricization process dematðU; k1; . . . ; ktÞ, and represents
the reconstruction of the new tensor with a dimension of
½k1; . . . ; kt	 from the matrix U . Algorithm 1 and Fig. 2 illus-
trated the representation algorithm.

Algorithm 1: Compute the Hierarchical Expression
(CompHi(T, tree, ", f, bk))

Input: Original tensor T, BMAT tree, Precise ",
Compress_ratio f, Split_Block_Size bk

Output: The list of hierarchical tensor trees hT
//Split the original data according to block size bk;
Ti¼ SplitToBlock(T,bk);
hT ¼ listðhT ½1	; hT ½2	; :::hT ½i	Þ;
//Transverse each block do hierarchical tensor
representation;

for i 2 Ti do
//Calculate the optimized rank k;

Fig. 2. Hierarchical tensor decomposition.
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k ¼ CompRank(Ti, ", f);
//Calculate the leaf nodes;
Treduce ¼ T ;
hT ½i	 ¼ InitHtðtreeÞ;

for j 2 tree:LeafIDs do
//SVD of the t-dimensional matricization;eT ðtÞ

i ¼ Ut

P
t V t;

hT ½i	:Node½j	 ¼ Utð:; 1 : kÞ;
Cj�1 ¼ ðUH

d � � � � � UH
1 ÞTi;

for j ¼ ½tree:LeafIDs� 1 to 0	 do
for tree.LevelIDs(m)=j do
if (tree.isLeaf(m))==false theneMðmÞ

j ¼ Sm

P
m V m;

hT ½i	:Node½m	 ¼ Sjð:; 1 : kÞ;eMj�1 ¼ ðQm2TiB
H
mÞCi;

Broot ¼ vecðM0Þ;
return hT ;

In the hierarchical tensor representation of each block,
the transfer tensor Bi and the Ui matrices are organized in
ascending order according to their associated singular
values. A truncation of these coefficients can be applied
with a simple selection mechanism similar to the principal
components analysis form data compression. With differ-
ent Bi and Ui, the approximation accuracy is determined
by the hierarchical rank ðktÞt2T , and the hierarchical

ranks have singular values that fulfill the boundariesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i>kt

s2
i

q

 "=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d� 3

p
[22]. Therefore, an optimal trunca-

tion must exist that fulfills the A�AHk k 
 ". With the
help of Equation (9), the SVD truncations are applied
recursively to compute the decomposition. If the selected
characteristics are large enough, the data can be approxi-
mated for any given accuracy. For real compression, the
coefficient selection can be applied according to the data
storage capacity and the expression accuracy.

3.3 Combining Blocks to Hierarchical
Representation of Original Tensor

The result of algorithm 1 is the hierarchical representation
of a series of blocks, which should be combined to retrieve
the representation of the original tensor. Since we hope the
combined hierarchical representation of tensors is also a
hierarchical representation, it is an ideal solution to keep
the BMAT structure and calculate the BMAT coefficients of
the original tensor directly from the hierarchical represen-
tation of the blocks.

To achieve the block combination, we first define the ten-
sor appending in the original tensor form. Given two ten-

sors A 2 RI1�I2�����I
n1
i

����In and B 2 RI1�I2�����I
n2
i

����In , the

i-dimension-data appending is defined as appendðA;BÞ
2 RI1�I2�����I

n1þn2
i

����In .
A direct initiation of updating tensor data simply com-

bines the tensors through the dimension. In the hierarchical
representation of the blocks, the row and column of each Ui

contain the length of dimension and the feature size at each
dimension, respectively. The data appending from dimen-
sion i increases the length of dimension i, but without
changing the length of other dimensions. Since the data

elements are accumulated in all dimensions, the feature
data are extended. We thus have the following rules for
data appending:

1) For the data appending dimension, the new Ui is per-

formed by column expanding as Ui ¼ ðUiA 0
0 UiB

Þ;
2) for the other dimensions, only the row combining

Ui ¼ UiA UiB½ 	 is performed;
3) for all interior nodes, the data interaction should be

extended to make the tensor product closed. There-
fore, Bi ¼ ð BiA

0
0

BiB
Þ. With these three rules, a data-

appending algorithm can be constructed by decom-
posing the geospatial field data into hierarchical
representation and combining each node. For exam-
ple, the dimensional data appending from the sec-
ond dimension can be defined as

½AB	i ¼ ½U1AU1B	 �
U2A 0

0 U2B

" #
� B12A 0

0 B12B

" #
�½U3AU3B	 � ½U4AU4B	

� B34A 0

0 B34B

" #
� B1234A 0

0 B1234B

" #
:

(11)

A generalized algorithm for the dynamic-data
appending is given in Algorithm 2. In Algorithm 2, the
procedures Combðx; yÞ and DiagCombðx; yÞ perform the
direct column combination and diagonal combination
for the two matrices x and y. According to the hierarchi-
cal data structure illustrated in Fig. 2, the combination
can be constructed by direct node selection and matrix
combination without any arithmetic computation.
This property greatly improves the efficiency of data
appending. Since the data can be appended from any
dimension with the same style, the hierarchical data
representation provides a convenient structure for com-
plex data appending.

Algorithm 2: Dynamical Data Block Combining &
Updating(Combine(hT, tree, ", f))

Input: list of hierarchical tensors hT, Inserting
tensor InT, BMAT tree tree, Precise ",
Compress_ratio f

Output: The combined tensor hNewT
hNewT = hT 0;
for i = 1 to hT.count do
for j = tree.nodecount-1 to 0 do
OrNd = hNewT.Node[j]; InNd = hT i.Node[j];
if (tree.isLeaf(j)) then

if (OrNd.size()== InNd.size()) then
hNewT.Node[j]=Comb(OrNd, InNd);

else
hNewT.Node[j]=DiagComb(OrNd, InNd);

else
hNewT.Node[j]=DiagComb(OrNd, InNd);

Return hNewT;
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4 CONTINUOUS DATA COMPRESSION, UPDATING

AND QUERY

4.1 The Buffered Binary Tree Data Structure

The major issue in the situation of continuously data appe-
nding and updating is the coordination of the compres-
sion/updating of the appending block and the
compression/updating of the exiting entire data. The com-
pression/updating of the entire data are often much slower
than that of the block data. A unified data structure, the
buffered binary tree, is developed to achieve the coordina-
tion of the compression/updating of the newly appended
data and the entire data. The buffered binary tree was con-
structed by adding buffer spaces to each node of the binary
tree. Thus, operations such as inserting, updating and
queries operate data directly through the corresponding
buffer area at each level rather than transverse all the way
from the root to the leaves [33]. Since the buffers require
much less space compared with the whole hierarchical tree
and are much more frequently written, they could be
stored in high speed storage such as memory or the Solid
State Disks, while the huge binary tree, which gets updated
much less frequently and occupies a massive amount of
space, could be placed on the hard disks. Therefore it is not
only write-optimized but also memory efficient.

According the combination process of the BMAT (Algo-
rithm 2), the tensor data appending from one dimension
with the other dimension kept consistent can be performed
by node-to-node BMAT combining. Fig. 3 illustrates how
this buffered binary tree can be used in the continuously
data appending and updating. The initial binary tree stores
the original entire data represented as BMAT. The newly
arrived data in the form of BMAT are appended using Algo-
rithm 2. This combination will be very quick but memory
consuming because no mathematical computation is per-
formed. When a certain criterion of the memory usage of
the appended data is achieved, the data in the binary tree
are compressed. Meanwhile, the newly appended data are
also continuously appended to the buffer with another
thread. When the compression of the data in the binary tree

is finished, the BMAT stored in the buffer are then continu-
ously appended to the tree nodes again. With the buffer, the
time cost of the hierarchical tensor representation of blocks
and the compression of the entire data can be balanced.

4.2 Continuous Data Updating with Compression

The hierarchical subspace representation of tensor provides
a possible solution for the compression of massive geospatial
field data. With only leaf-node coefficients stored, the overall
subspace hierarchy and the original data can be recon-
structed with the tensor product. Since the tree structure is
independent of the number of elements with different
dimensions, the tree structurewill be consistent if the dimen-
sion number and the relations between different dimensions
are determined. This property will lead to an independent
updating of coefficients of the tree nodes rather than of the
tree structures. Therefore, the BMAT tree structure proposes
a linear storage cost and an efficient method for data query,
transformation, operation and computation.

The direct data appending requires a large amount of
storage space because of the diagonal matrices and tensors
constructed. Since the major data redundancy is the co-lin-
earity of the combined Ui matrices and the sparse transfer
tensor Bi, the compression can easily be constructed by
orthogonal projection of both the Ui and Bi to a nested
frame, which is achieved by changing the bases. However,
the projection of the HGFDR is not direct due to its hierar-
chical structure. It needs to retain the tensor product mean-
ing and the data accuracy. We therefore first use the
Gramian matrix as a bridge to fully support the projections.

A Gramian matrix of a set of vectors v1; . . . ; vn in an inner
product space is the Hermitian matrix of inner products,
whose entries are given by Gij ¼ hvj; vii [34]. Assuming

Xt ¼ UtBt
H , we have:

XtðXtÞH ¼ UtBt
HBtUt

H ¼ UtGBtUt
H; (12)

where GBt ¼ Bt
HBt is the Gramian matrix of the columns of

B. According to Equation (9), we can then develop the pro-
jection algorithm for the HGFDR.

Fig. 3. The memory data structure and its updating flow.
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Given an orthogonal basis St 2 Rkt�rt for the rt dominant
eigenvectors of the Gramian matrix Gt, By defining the pro-

jection operator P :! QtStSt
HQt

H , we have

Ut

X
t

V H
t ¼ Ut ¼ QtRt ¼ UQt

X
Qt

V H
QtURt

X
Rt

V H
Rt: (13)

Then, we can define a projection that PtPt
H ¼ QtStSt

HQt
H ,

where St contains the rt dominant eigenvectors of RtGtRt
H ,

Qt is the Q matrix in the QR decomposition of Ut matrix. So,
we have

QaRa ¼ ðSa1
HRa1 � Sa2

HRa2Þ �Ba: (14)

With this equation, we can define the projection compu-
tation algorithm (Algorithm 3). In this algorithm, the
orthogonalization of the hierarchical tensor is defined with
the procedure Mat2orthogonalðhT Þ, and with the help of
QR decomposition. The CalGramianðT Þ procedure com-
putes the Gramian matrix of tensor T [28]. To consistently
and continuously apply the computation between different
levels, the ModenProdðT; uÞ is defined. ModenProdðT; uÞ
performs the u�mode matrix product of tensor T and
TransðxÞ calculates the transposition of matrix x. The over-
all structure showing how the computation performed with
the hierarchical tree structure is illustrated in Fig. 4.

Algorithm 3: Continuously Data Updating and Com-
pression (UpdateComp(hOrT,InTi,~ t, ", f, LMC, B))

Input: Original hierarchical tensor tree hOrT,
Inserting tensors InTi, Updating interval~
t, Precise ", Compress_ratio f, largest allowed
memory cost LMC and buffer size B

Output: compressed hierarchical tensor hNewT
if CompHiðInTi; tree; ; ";fÞ:TimeCost 
 ~t then

hInTi = CompHi(InTi, tree, ", f);
else

HorT.buffer [i].append(HInTi);
hInTi = CompHi(InTi, tree, ", f);

while ðhOrT:MemCostþ InTi:MemCostÞ 
 LMC do
hT ¼ hOrT þ hInT ;
hnT ¼ CombineðhT; ";fÞ;
hnT¼Mat2orthogonal(hnT);

k ¼ CompRank(T, ", f);
Gt=CalGramian(T);
fori 2 tree:NodeIDs; i 6¼ 0 do

SVD of the Gt;
LeftU¼svd(Gt);
S¼leftU((:,1:k));
if i 2 tree:leafIDs then
hNewT.Node[i]¼ModenProd(hNewT.
Node[i],S);
j ¼¼ hNewT :Node½i	:ParentNodeID;
hNewT.Node[j]¼ModenProd(Trans(S),
hNewT.Node[j]);

else
hNewT.Node[i]=ModenProd(hNewT.Node[i],S);

Return hNewT;

In the buffered binary tree, two independent buffer
spaces, which are used to store the U matrix and Gram
Matrix during the data updating and appending processes,
are constructed for each node independently (Fig. 3). In the
initialization stage, the tree nodes and the buffers were all
empty. With each SVD truncation, the data value was added
to each node of the tree and the initial HGFDR can be con-
structed. Assuming the data were continually updated with
a given time interval~t, and each datumwas represented in
the hierarchical tree, we stored the data in the tree buffer to
avoid continuous data I/O. Since the data inserted to the
buffer were linear and did not need numerical computation,
they were memory- and I/O-efficient. With a given data
updating interval ~tu 
 ~t, the data updating could be
done independently of the data-updating interval. This
design provides a convenient and simple solution for data
updating in memory, which can also be customized accord-
ing to the memory and CPU conditions. Also, in the continu-
ous compression procedure, the computation of the
Gramian matrixes was stored in a separate buffer, and the
data in the nodes were first used to compute the Gramian
matrixes and then the node values were updated with the
Gramianmatrixes, in a process similar to the data appending
procedure. In this data structure, the query and insert com-

plexity areOðlog NÞ andOðlog N
B Þ, whereB is the buffer size.

The complexity of Algorithm 3 can be computed accord-
ing to the following rules:

1) The complexity of d dimensional original HGFDR of
n elements and truncation with given rank k is

Oððd� 2Þk3 þ k2 þ dnkÞ [28].
2) The data appending needs only to combine the data

and does not need algebraic computation. In the
worst case, a traverse to all the nodes will achieve
the full combination; therefore, the worst complexity
is Oð log2 dd eÞ.

3) The truncation of the appended data has a complex-
ity of at most Oðdnk2 þ dk4Þ [28].

To sum the above, the final computational complexity
of Algorithm 3 is Oðdk4 þ ðd� 2Þk3 þ ðdnþ 1Þk2 þ dnk þ
log2 dd eÞ. The complexity is linear with dimension d and a
fourth-order polynomial with selected rank k.

Since the data appending from one dimension is
nearly the same as from other dimensions, it is possible to

Fig. 4. Continues data compression.
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re-arrange the order of the hierarchical-based tensor data
expression. It is also possible to insert data slices directly
into any location of the original tensor data when the data
slices inserted have the same dimension.

4.3 Query for HGFDR

In traditional tensor expressions, the location query should
be performed sequentially. In the worst case, it may require
that all the data elements be traversed. Fortunately, the data
representation in the HGFDR hierarchical tree structure, the
recursive reconstruction of the data and the meaningful fac-
tor matrix Ui and transfer tensor Bi make each dimension
query synchronously possible. Since each row of the Ui con-
tains the order of elements, the location query can be directed
by selecting the corresponding row of Ui. A similar rule can
be applied to the interior transfer tensor Bi. A graphical
expression of the location query of HGFDR is shown in
Fig. 5. Since the data in each dimension are independent, the
query is independent to the order and can be easily parallel-
ized. Because the search only requires one index for each
dimension, the highest possible computation is OðPniÞ,
where ni is the number of elements in dimension i.

Algorithm 4: the range query of HGFDR data based on
the subtree (QueryRange(hT,RR))

Input:Hierarchical tensor hT, rectangular range RR
Output: The query tensor T
for i = hT.nLevel-1 to 0 do

for hT.LevelIDs(j)=i do
if (hT.isLeaf(j)) then
hT.Node[j]=submat(hT.Node[j],RR);

else
iLeft = hT.Node[j].lChldID(j);
iRight= hT.Node[j].RChldID(j);

hT.Node[j]=ModenProd(hT.Node[j],hT.
Node[iLeft]);

hT.Node[j]=ModenProd(hT.Node[j],hT.
Node[iRight]);

T = hT.Node[0];
Return T;

Another commonly used query of geospatial field data is
the rectangular range query for the whole tensor, for exam-
ple, extracting a certain continuously related region or slice
from a certain dimension. The range query is much simpler
since it can be performed with a subtree reconstruction. For
the range query of data that only affects certain dimensions,
the leaf nodes of these dimensions are selected and the inte-
rior nodes are reorganized. An HGFDR representation of
the subtensor that contains all the data queried can

therefore be reconstructed. Based on the reconstructed sub-
tensor, the query method can be performed to retrieve the
final query result. Algorithm 4 presents the process for the
range query of the HGFDR.

4.4 Implementation of In-Memory and Out-of-
Memory Storage Structure

Current data storage have not been optimized for multidi-
mensional data access [35]. For efficient storage, data access
and operations, a structure should be developed for data
storage. Since the primary structure of theHGFDR is a binary
tree, the only necessary step to develop the in-memory data
structure is to construct an index table to identify the rela-
tionship between Ui and Bi, stored as a multidimensional
array. Even for the purpose of data updating, the dynamical
extension of the Ui and Bi array can be achieved in-memory.
Data access in the memory can also be sequential or random
in the binary tree structure.

For large amounts of geospatial field data, it is common
that the HGFDR data cannot fit into the primary memory of
a single machine. For this purpose, a file-based data struc-
ture, which supports streaming access and flexible data
storage, is therefore more flexible for large volume data
storage. Compared with the in-memory data structures,
however, the file-based data structure is more complex. In
modern stream-based files, the data can only be stored line-
arly, thus an index table should first be developed to indi-
cate the start and end location of each Ui and Bi. To achieve
better performance, the organization of the Ui and Bi should
be accessed with the least traverse cost.

To support out-of-memory data storage, a file-based stor-
age data structure was designed (Fig. 6). First, a file descrip-
tion header, which logs the basic descriptions of the data,
was defined. The size of the array stored for each node and
its start and end locations were logged. For the real coeffi-
cient data storage, each node was stored in a parallel fash-
ion as a separate file or data block. The use of the separate
files or separate data blocks depends on the disk I/O. In a
single hard disk, the separate files and data block solutions
may have similar performance, but for servers with parallel
disks, like raid 0 disk arrays, the separate-file solution may
have much simpler management and access performance.
In each data updating or processing step, the size, start/end
location of the node arrays and descriptions of the file are
updated synchronously.

Fig. 5. Location query and data extraction of HGFDR.

Fig. 6. The storage data structure of the HGFDR.
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With this data structure, the data can be accessed as
following:

1) Data reconstruction. The data reconstruction needs to
traverse all the data. Every node is accessed from the
leaf node to the root node. The subspace is con-
structed with a subtree stored sequentially.

2) Data query. Since nodes are stored separately, and the
start and end location of the data section are logged.
Both the location query and range query can access
each node and select the subset independently.

3) Data appending and updating. These data manipula-
tions require accessing each node, first processing
the leaf node separately and then modifying the inte-
rior node sequentially.

5 EXPERIMENTS

5.1 Data and Configuration

The 2� � 2� 20th Century Reanalysis Monthly Mean Compo-
sites Grid (http://www.cdc.noaa.gov/Composites/) from
1871-01 through 2010-12 were selected as the experimental
data. The data set have eight attributes: Air Temperature
(Air), Geopotential Height (Hig), Zonal Wind (Uwnd),
Meridional Wind (Vwnd), Wind Speed (Wspd), Specific
Humidity (Shum), Omega, and Relative Humidity (Rhum).
For each attribute is stored as a 180� 91� 24� 1;680
(latitude� longitude� pressurelevel� time) tensor. The
memory occupation of any single attribute was about 6 GB.
By importing the data from the NetCDF into the memory,
we have a total amount of 48 GB data for test the perfor-
mance of our solution.

Three key indices, relative error, peak memory occupa-
tion and computation time, are used to benchmark the
performances. The selection of the peak memory as a mea-
sure is based on the understanding that most computa-
tions (e.g., the SVD procedure) usually occupy several
times more memory than the original data [36]. The fol-
lowing experiments were performed: 1) simulations with
different block sizes and ranks were performed with data
of a constant size to find the optimized block size and
rank; 2) incremental data appending with the optimized
block size and rank to reveal the robustness of the algo-
rithm for continuous appending data; 3) simulations with
different buffer sizes with constant block and rank to test
the impacts of the buffer size; 4) comparison of the com-
pressed performance between our solution and commonly
used scientific data formats; 5) comparison between query
and computation performance of our method and exiting
tensor approaches.

The main routines of our algorithms are implemented as
a plugging-in of the system CAUSTA [37] with Visual C++
2010 compiler and Intel MKL library. Htucker toolbox 1.2
[28], TT-toolbox 2.2 [21] and the tensor toolbox 2.4 [38] are
selected as references for the performance of query and
computation evaluation. Since these toolboxes are all imple-
mented with MATLAB, we call our routines in MATLAB
with the mex compiler. All the tests were performed in the
MATLAB 2011b environment on an Inspur NP 3560 server
with two Intel Xeon E5645 (2.4 G) processors and 48 GB
DDR-3 ECCMemory.

5.2 Selection of the Parameters

The determination of the optimized rank and block size
played a key role in the Blocked-HGFDR. In the configuration,
the first 120-month data for each attribute are first selected as
the initial data and are represented with different block sizes
and ranks. To keep the consistency of the original data, we
selected nine common divisors of the size of the temporal
dimension of the original data as different block sizes (6, 8, 10,
12, 20, 24, 30, 60, 120). The rank size changes from 40 to 300
with a step of 20. For the initial data, the buffer size is set to
zero to avoid the buffer data transfer impact for the perfor-
mance. The three performance indices were measured and
compared for each block size and rank. The situation without
blocking is also computed.

The impacts of the rank and block size on the perfor-
mance indices are similar among all the eight attributes. So,
only one typical result of the Air index is illustrated in
Fig. 7. The relative error is mainly controlled by the rank k.
For all the attributes, the relative errors quickly approached
to zero after rank k > 160. All simulations have a relative

error at the 10�6 level, which is acceptable for most engi-
neering tasks. The peak memory occupations and running
times are affected by both the block size and the rank. Com-
pared with the original HGFDR without blocking, the
blocked-HGFDR requires much less memory and computa-

tion time. For the same precision of 10�6 level, the original
HGFDR requires a rank k > 876 and a peak memory occu-
pations more than 794M for all the eight attributes. How-
ever, the blocked version only requires rank k > 160 and
peak memory less than 320M. The running time is also
reduced from dozens of minutes to less than one minute
with the blocking mechanism. For the blocked solution,
much smaller rank can achieve the full precision for repre-
sentation of each block, thus can greatly reduce the memory
cost and time occupation.

Because of the recursive use of the SVD in the HGFDR,
larger block size and rank will result in more memory and
more computation time. For block size smaller than 60, larger
block size can accelerate the computation. However, the block
size 120 requires more time. This is because the time cost in
data aggregation are becoming larger when the block size is
too large. With all attributes considered, a block size b ¼ 30
and rank k ¼ 150 are the optimal values for these parameters
for achieving a balance between accuracy and performance.

The data appending at the interval of 120 months was
simulated for continuous data appending. Each piece of the
appending data is represented as HGFDR with block size
b ¼ 30 and rank k ¼ 150 and appended to each attribute
synchronously and then compressed. For each time, four
blocks of each attribute are appending to the existing data
and then compressed. The relative error, cumulative time

Fig. 7. Simulation result of different rank and block size.
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and peak memory usage for each data appending are shown
in Fig. 8a. Clearly, the peak memory is very stable at the
level of 90M for every data appending. Since the data
appending is performed to each block individually, the data
accumulation will not affect the memory cost for each
data appending. The accumulated compression error,

although it has a growing trend, is still at the 10�6 level for
all the time. Because the appending data amount is equal
for every update, the cumulative time grows linearly. This
suggests the time cost for each data updating is stable and
only affected by the amount of data currently appended.
All these results suggest the performance of our method is
stable for continuous data appending.

The buffer size affects the computation balance between
the compression and data updating. Simulation with differ-
ent buffer sizes is also tested with the data. Since the mem-
ory requirement of each node is not consistent, it is not
suitable to provide a constant buffer size for all the nodes.
Here, we use nodes number stored in the buffer (buffer
number) as the index for the buffer size. The performance
indices change with the buffer number increasing from 0 to
11 (Fig. 8b). Bigger buffer size will lead to less time of data
compression, which has very small impact on the data pre-
cision. Therefore, bigger buffer size will lead to more accu-
rate data representation. However, when the buffer number
increases, the peak memory requirement and computation
time increase rapidly. Both the time and memory require-
ment grow rapidly when the buffer number is bigger than 5.

5.3 Performance Comparison

The compression ratio is used to compare HGFDR with
most commonly used data formats (Table 1). The file of
each attribute is stored with the ASCII(ASC), GeoTIFF,
MATLAB Binary file(.mat v7.3), NetCDF and HDF formats.
The ASC format and GeoTIFF can be seemed as the uncom-
pressed and the others can be seen as compressed data for-
mats. The HGFDR is repented with rank k ¼ 150 and block

size b ¼ 30. Clearly, the HGFDR had the lowest cost in terms
of space requirement among all the file formats. Compared
with the non-compressed formats such as ASC and Geo-
TIFF, the HGFDR only requires less than 10 percent storage
space. Even compared with the commonly used com-
pressed data formats, the HGFDR can reduce half space
required. The compression ratios between different attrib-
utes also reveal the effect of the structural complexity on
them. The indices for Omega, Rhum and Shum, which have
simpler structures, had much higher compression ratios.
The Wspd data, composed from the latitude and longitude
vector wind data field, had the lowest ratio.

To compare the appending, querying and computation
performances with exiting tensor solutions, the data are
also represented as two commonly used hierarchical tensor
formats: htucker [28] and Tensor-Train (TT)[21]. The similar
data appending is also performed by appending the block
data into the existing data. The performance comparison is
depicted in Fig. 9. All three have the relative error at the
level 10�6, and the error distributions are very similar. Our
method and htucker method have much less time cost than
the TT format, especially when the data volume gets big.
Due to the cost of the updating of the blocks, the time cost
of our solution is a little bit higher than the htucker solution
when the blocks are growing. However, for the memory
usage, our solution definitely requires much less memory
than the other two. The memory cost accumulation is stable
when the volume of the data appended is fixed. This prop-
erty makes the blocked-HGFDR suitable for massive vol-
umes of high dimensional data storage and updating.

The querying performances of HGFDR are also evalu-
ated and compared (Fig. 10a). Different subset percentages
are selected by indexing each dimension randomly from the
data represented as HGFDR, TT, original Tensor and MAT-
LAB multidimensional array formats. Clearly, our solution
have the highest performance among all these solutions.
Since the data structure of the HGFDR is in fact a search
tree and the queries of the multidimensional data are flat-
tened in a hierarchical structure that is independent of
dimensions. No data reformatting or combining operators

Fig. 8. Continues updating with different blocks and buffer.
Fig. 9. Representation performance comparison.

Fig. 10. Query and computation performance.

TABLE 1
File Size of Different Formats (Unit:GB)

ASC GeoTIFF .Mat NetCDF HDF HGFDR

Air 5.32 4.95 1.09 1.22 1.23 0.53
Hgt 5.32 4.03 1.09 1.22 0.99 0.57

Omega 5.32 4.02 1.08 0.97 0.99 0.32
Rhum 5.32 4.01 1.08 0.97 0.99 0.34
Shum 5.32 4.02 1.08 0.97 0.99 0.31
Uwnd 5.32 4.91 1.09 1.22 1.22 0.61
Vwnd 5.32 4.92 1.09 1.22 1.22 0.66
Wspd 5.32 4.92 1.09 1.22 1.23 0.68
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are needed. Even for the random query for 80 percent of
original data, the HGFDR only requires less than 0.11 sec-
ond. However, the classical matrix and tensor approach
requires more than 1.24 second. The TT method cost most
time for random query, which may be caused by the recon-
struction from the long chains of matrix computation.

The HGFDR representation can be used not only for data
compression, updating and query, but also to support the
computationwith linear tensor operators [28]. Since the com-
putation performance provides an important perspective
on the HGFDR-based analysis workflow, we also tested the
performance of the HGFDR according to [28]. As shown
Fig. 10b, the experiments were developed to compare the
computation of the Fast Fourier Transformation (FFT) of a
tensor. The computation was performed by the native MAT-
LAB function fft(), applied for both matrix and the HGFDR
format (only the air variable with compressed rank k ¼ 250
and block size b ¼ 30 is illustrated here). The memory usage
and computation time were computed and compared. The
accuracy of the Fast Fourier Transformation was also tested
by the inverse FFT of the resulting tensor and the reconstruc-
tion error was computed. Since the linear operators applied
to the HGFDR can be split and applied to each node, both the
memory usage and computation time are much less than the
original matrix computation. The reconstruction errors are

no higher than 10�6 (Fig. 10). Because the HGFDR form, both
in-memory and with the file-based HGFDR representation,
provides highly efficient and compact data storage, it is pos-
sible to construct an integrated data analysis workflow that
has high efficiency and a unified data structure.

6 CONCLUSIONS

Geoscience research is shifting to a data-driven stage. New
computational tools and data intensive scalable architec-
tures that can support unified storage, query and complex
analysis for such massive multidimensional datasets will be
critical [37]. Tensor is a natural way of representing multidi-
mensional field data. In this paper, the HGFDR, which can
support the process of representation, updating, compres-
sion, query and analysis on massive multidimensional geo-
spatial field data, was proposed. By the split-and-merge
paradigm, the HGFDR achieves the balance between data
accuracy, memory occupation and running time for such
data. The compression ratio can be customized according to
either the data scales or the accuracy. Continuous data
appending and compression allow the data scale to be con-
trolled at particular levels without losing the accuracy of
data representation. The query, and many of the commonly
used analysis methods, can be accelerated with the blocked-
HGFDR. The experiments suggest that our method provides
an effective tool for multidimensional data representation
and analysis. Since the computational efficiency is very high
and the memory cost is low even with high volumes of
data, our method has the potential for processing massive
amounts of data on a single PC.

The HGFDR allows a computational engine, including
the data management operators and data analysis opera-
tors, to be constructed. Since it can be easily updated,
queried, computed and compressed without changing its
structure, HGFDR can be easily used to form analysis

workflow, including data operation and analysis opera-
tors, which can be constructed and optimized algebrai-
cally. With the help of the dimensional independent
property of the HGFDR, some of the workflows can be
computed in parallel, which can additionally improve the
computational performance. The data analysis operators,
such as vector/matrix/tensor products, and addition and
complex operators such as FFT and SVD, can be used to
form complex analysis workflow, since both the data
operation and the analysis operators do not change the
structure of the HGFDR representation. The integration of
the total data representation, storage, operation and
workflow analysis makes the HGFDR an important con-
tribution for productive applications.

Our future works include: 1) determine the strategy for
finding best block splitting and rank determination accord-
ing to the data distribution; 2) develop the parallel data
query and analysis operators and algorithms to further
increase the scalability and performance; 3) integrate more
advanced analysis tools, such as multidimensional calcu-
lus, ordinary differential equations and partial differential
equations, with the help of tensor structure, which could
greatly improve the computational ability of the HGFDR
representation.
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