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Abstract Detailed maps of regional spatial distribution of

soil organic carbon (SOC) are needed to guide sustainable

soil uses and management decisions. Interpolation methods

based on spatial auto-correlations, environmental covari-

ates, or hybrid methods are commonly used to predict SOC

maps. Many of these methods perform well for gentle

terrains. However, it is unknown how these methods per-

form to capture SOC variations in complex terrains,

especially areas of which land uses are interrupted by

human activities, such as the Loess Plateau of China. This

study compared four interpolations or predictive methods

including ordinary kriging (OK), regression kriging,

ordinary kriging integrated with land-use type (OK_LU)

and a soil land inference model (SoLIM). The purpose of

this study is to find appropriate methods, which are suitable

to the complex terrain in Loess Plateau region of China.

The study area was a typical watershed in Loess Plateau

with complex hilly–gully terrain and various land-use

types. A field sampling dataset of 200 points was parti-

tioned into 1/2 for model building and 1/2 for accuracy

validation in a random way. Nine environmental covariates

were selected: land-use types, digital elevation model, solar

radiation, slope degree, slope aspect, plan curvature, profile

curvature, surface area ratio, and topographic wetness

index. The mean absolute percentage error, root mean

square error, and goodness-of-prediction statistic value

were selected to evaluate mapping results. The results

showed that the use of easily obtained environmental

covariates, land-use types and terrain variables improved

accuracies of SOC interpolation, which will be of interests
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for related research of similar environments in the Loess

Plateau. SoLIM and OK_LU can be two suitable and

efficient methods, which produced detailed, reasonable

maps with higher accuracy and prediction effectiveness, for

the study area and similar areas in the Loess Plateau.

Keywords Spatial interpolation method � Soil organic

carbon � Auxiliary environmental variables � The Loess

Plateau regions

Introduction

Information on the spatial distribution of soil organic car-

bon (SOC) is increasingly required for watershed man-

agement and ecological modeling application (Zhu et al.

2001). SOC is of fundamental importance in the chemical

and physical properties of soil. On a global scale, the SOC

pool is about 3.3 times the amount of the atmospheric

carbon pool and 4.5 times the amount of the biotic carbon

pool (Lal 2004). To map spatial variations of SOC is very

meaningful for predicting and quantifying the capacity of

the SOC stock. In the field of soil science, it is of specific

interest to estimate the SOC stock regionally or globally

because of its impact on global climate through the global

carbon cycle (GCC). The pedosphere contains more carbon

than the atmosphere and biosphere combined (Grace and

Williams 2004). Thus, credible estimation of the SOC

stock is important for understanding anthropogenic effects

on the GCC and the attendant climate change (Kumar and

La 2011).

Generally, SOC maps can be generated using spatial

interpolation methods with point observation data. Thus,

spatial interpolation methods provide an essential tool (Lin

and Chen 2004; Viscarra Rossel and McBratney 1998).

Generally, they can be classified mainly as three catego-

ries: methods based on spatial auto-correlations, methods

based on covariates, which are related to or influence the

spatial distribution of SOC, and hybrid methods (Ersahin

2003; Hosseini et al. 1994). Methods based on spatial auto-

correlations, such as IDW (Inverse Distance Weighted),

kriging, construct functions of spatial locations or distances

of point observations to interpolate maps (Robinson and

Metternicht 2006). Methods based on covariates, such as

multiple regression model, derive relationships between the

objective geographical element (SOC) and its environ-

mental covariates (such as terrain parameters, vegetation

conditions) to predict maps (Ersahin 2003; Hosseini et al.

1994). Recently, a soil land Inference model (SoLIM),

which was developed by Zhu et al. (2001), is one repre-

sentative approach based on covariates. This approach has

been proved as an efficient soil-mapping method (Qi and

Zhu 2003). Hybrid methods, such as regression kriging

(RK) and co-kriging, employ both spatial auto-correlations

and relationships between geographical element and its

covariates to predict maps (Ersahin 2003; Hosseini et al.

1994; Robinson and Metternicht 2006). It is reported that

accuracies of SOC maps can be improved when using

hybrid techniques with auxiliary information such as

lithology, topography, etc. (Ahmed and Demarsily 1987;

Lin and Chen 2004; Minasny and McBratney 2007). The

Loess Plateau of China has received the most attention in

China among these fragile and sensitive regions due to its

vital domestic status and problematic eco-environment,

which is characterized by arid, hilly and gully (Miao et al.

2012). Because vegetation restoration has been conducted

since 1950s to control soil erosion, especially, Grain-for-

Green in 1999, it is greatly important to understand SOC

change in Loess Plateau under the dramatic ecological

restoration driven (Chen et al. 2007; Wang et al. 2010).

The spatial distribution of SOC content is continuous in

nature, therefore only the continuous map can best repre-

sent the true situation of the study area. In fact, accurate

and spatially continuous data across a region are usually

needed by scientists to make justified interpretations, and

the spatially continuous SOC data with finer resolution are

needed in many cases. However, such data are usually not

readily available and are often difficult and expensive to

acquire, and it is still an important portion in recent

research (Perry and Niemann 2008; Tramblay et al. 2010;

Yao et al. 2012). Thus, estimating the values at unsampled

sites using data from point observations is necessary, and

spatial interpolation methods provide an essential tool to

meet this need.

Most of the above methods are performed at an

acceptable level for gentle terrains when producing spa-

tially continuous surfaces of soil properties based on

ground point data, but few of them performed satisfactorily

for complex terrains (Sigua and Hudnall 2008). There are

still existing challenges in predicting or interpolating SOC

spatial distribution in Loess Plateau (Fu et al. 2009; Fu

1989). It is necessary to seek appropriate methods based on

land-use modified or comprehensive consideration in

topography and geomorphology.

In order to analyze the suitability of the aforementioned

interpolation methods for complex terrains with various

land-use types and select appropriate methods for esti-

mating SOC, four methods including traditional ordinary

kriging (OK), ordinary kriging with land-use type

(OK_LU) regression kriging(RK), and SoLIM, were used

to predict SOC maps for a typical watershed in Loess

Plateau. Among them, OK is the most commonly used

method (Zhu and Lin 2010). According to the existing

research, SOC content in Loess Plateau regions is heavily

influenced by factors such as the land-use type (Chen et al.

2007; Yao et al. 2012). Thus, OK_LU was proposed to

240 Environ Earth Sci (2015) 73:239–251

123



interpolate spatial variations of SOC by taking the differ-

ence of SOC content among different land-use types into

account. Besides, RK and SoLIM consider environmental

covariates such as slope, topographic wetness index into

SOC interpolations, which have been used widely in SOC

content mapping for they are known to control different

soil processes and the spatial distribution of SOC content

(Mueller and Pierce 2003).

Performances of these methods were assessed in terms

of root mean square error (RMSE), mean absolute per-

centage error (MAPE) and goodness-of-prediction statistic

(G) using independent validation dataset. RMSE measures

the average magnitude of the error, which is squared before

they are averaged, so that the RMSE gives a relatively high

weight to large errors, which is most useful for undesirable

large errors. MAPE is an accuracy measure based on per-

centage (or relative) errors, and G value measures effec-

tiveness of the models.

The objectives of this study were: (1) to study SOC

content variation in a region, which is small but hetero-

geneous in land-use types; (2) to assess the importance of

using environmental covariates to improve the accuracy of

SOC mapping; (3) to determine the optimal interpolation

method, which fits to the hilly–gully terrain in the semi-

arid Loess Plateau. Fulfillment of these objectives is

essential in further study of SOC of the similar watershed

in the Loess Plateau area and assisting the production of

soil properties maps for heterogeneous Loess Plateau

areas.

Materials and methods

Study area

The study area is Yangjuangou watershed located in the

center of the Loess Plateau near Yan’an, Shaanxi, China

(Fig. 1). It covers an area of 2.02 km2. There are significant

topographic variations within the loess hills and gully

landforms of the study area. The maximum altitude dif-

ference from hilltop to gully bottom is 225 m. The region

has a semi-arid continental climate with an average annual

rainfall of 535 mm. The rainfall is concentrated mainly

between July and September, and varies greatly from year

to year.

The study area belongs to the loess hilly–gully region,

the soil in the study area is mainly derived from loess, which

is fine silt to silt in texture and weakly resistant to erosion.

In the Loess Plateau, the sunlight is strong in the day-

time, and the soil began to swell after irradiation. While

during the night, the temperature drops, and the soil began

to shrink after cooling. Through alternative action of

reciprocating temperature gap between day and night, after

repeated expansion and shrink of soil particles, gradually

different sizes of stone, sand and clay are formed.

In spring and winter, the northwest wind is prevailing,

and the sand and gravel is blown up by the powerful wind.

Among them, the big and heavy gravels cannot fly too far, so

they remained in situ and created the Gobi Desert, while the

tiny sands can be blown far away to create piles of deserts.

Fig. 1 Location of

Yangjuangou watershed in

China and distribution of

training dataset (ntraining = 100)

and validation dataset

(nvalidation = 100) points across

the Yangjuangou watershed
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Because the summer rain is concentrated, and surface

soil is exposed for lack of vegetation protection, the soft

and loose loess is strongly scoured by heavy rain, and

affected by constant water erosion, eventually the land-

scape of mountains and valleys is formed. The terrain of

study is very broken, and the land-use type is very com-

plicated. There are more sloping fields than the flat land,

blocks are both small and scattered, which is not benefited

for irrigation and mechanization.

As a result of the Grain-for-Green project that was

launched in 1998, most of the cultivated lands on steep

slopes were abandoned for fallow or grown by planted

vegetation. There is some dam land, which was built in

valley, stopping the soil scoured from mountains and then

deposited into farmland. Grasslands and forestlands now

dominate the hill slopes, and shrubs are thriving at the

bottom of the north-facing slopes.

The land-use type map of Yangjuangou watershed is

shown in Fig. 2, which was interpreted from the 10-m-

resolution remote-sensing image of ALOS in 2000, and

auxiliary artificial investigation was implemented to check

and amend the land-use map. There are eight land-use

types: shrubland, forestland, slope cropland, grassland,

terrace, dam land, water bodies and residential land.

Among these land-use types, forestland covers the largest

area of 0.63 km2, followed by grassland and shrubland that

are 0.51 and 0.50 km2, respectively.

Soil samples data

Field sampling was carried on in 2011. Sampling points

were selected at least three different positions from top,

middle and bottom of slopes for each land-use type. Lati-

tude and longitude coordinates of each point were obtained

using GPS and the detailed information of each sample

including slope aspect, slope degree and land-use type was

recorded. Soil samples in 0–30 cm depth were collected

with a soil core auger (Eijkelkamp, diameter 60 mm).

Three cores taken within a 1 m 9 1 m square were com-

bined in one sample. 200 soil-sampling samples were

finally collected, including 66 soil samples of forestland,

40 soil samples of shrub land, 46 soil samples of grassland,

10 soil samples of slope cropland, 24 soil samples of dam

land, and 14 soil samples of terrace land. Locations of these

data points are shown in Fig. 1.

Once extracted from the ground, the samples were

placed in aluminum cans with tight-fitting lids. Soil sam-

ples were analyzed at State Key Laboratory of Urban and

Regional Ecology, Research Center for Eco-Environmental

Sciences, Chinese Academy of Sciences. After being air-

dried and grinded in the laboratory and sieved through a

2-mm screen, the samples were weighed and packed. Then

indoor experimental analysis was carried out. The method

of outside heating by K2Cr2O4 was applied to measure the

SOC content of samples.

To produce a spatially continuous surface and evaluate

the performance of each interpolation method, the whole

dataset of 200 samples was divided randomly into training

dataset (n = 100) and validation dataset (n = 100) by one

of the Geostatistical Analyst tools called ‘‘subset features’’

in ArcGIS software (version 10.0, ESRI Inc., Redlands,

CA, USA). The training dataset was used to predict spatial

variations of SOC, while the validation dataset was used to

evaluate performances of all the interpolation models. In

order to minimize the impact of distribution of the training

dataset on the performance of the methods, the building of

datasets (including training dataset and validation dataset)

was conducted three times (S1–S3). For each time, the

spatially continuous surface was produced by four inter-

polation approaches and the performance was assessed

accordingly. The final results are average of results of the

three times.

Environmental covariates

Based on the cognition of the soil-environmental covariates

relationship in the study area, as well as the existing

research results of the relationship between SOC content

and environmental covariates, nine variables were chosen

to depict the environment characteristics in the SoLIM

Fig. 2 Land-use type map of Yangjuangou watershed
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method: land-use type, digital elevation model (DEM),

solar radiation, slope degree, slope aspect, plan curvature,

profile curvature, surface area ratio (SAR), and topographic

wetness index (TWI).

Among all selected terrain variables, DEM usually has a

negative correlation with SOC content (Lian Gang et al.

2006; Qiu et al. 2004). Slope degree reflects the local ter-

rain surface tilt, which has a direct relationship with the

degree of surface soil stability and exhaust ability of the

surface flow, thereby affecting the content of SOC (Huang

Ping et al. 2009). The slope aspect is defined as the hori-

zontal projection of the slope normal line, which deter-

mines sunshine duration and solar radiation intensity that

can be accepted by the ground, thus influences the growth

status of vegetation, even the accumulation and decom-

position of SOC content (Zhong et al. 2006). Curvature is

the characterization of terrain attributes of convex–concave

shape changes in each section direction of local topogra-

phy, which can be used to depict the converge or diffusion

of surface streams, the intensity of soil erosion, etc., and

also affects the spatial distribution of SOC content (Zhou

Bin and Wang 2003). Surface area ratio (SAR) is the ratio

of surface area and the projection area, which depicts the

ups and downs of internal shape of grid, and can be used to

distinguish between mountains and plains with different

terrain features (Jenness 2004). The different surface

morphology of the ups and downs must inevitably lead to

the differences of accumulation and decomposition process

of surface SOC content. Topographic wetness index (TWI)

can quantitatively reflect the comprehensive condition of

soil water storage and drainage, and similarly affects SOC

content (Lian Gang et al. 2006).

In the study area, altitude, longitude and latitude were

obtained a GPS receiver with 5-m precision, and later

imported into a geographic information system (ArcGIS

10.0) as Albers coordinates. A 5-m-resolution DEM was

derived from a 1:10,000 scale topographic map using

ArcGIS 10.0. The slope degree and aspect were measured

with a geological compass. The plan curvature, profile

curvature and solar radiation were generated by Arcgis

10.0 based on DEM while the solar radiation is the yearly

sum of radiation. Surface area ratio (SAR) was the ratio of

surface area of a grid and projected area, which depicts ups

and downs of the terrain inside a grid and can be used to

distinguish mountains and plains with different terrain

features, because the difference exists in the accumulation

and decomposition process of SOC. SAR was generated by

the algorithm presented by Jenness (2004), and the topo-

graphic wetness index (TWI) was generated by the Sim-

DTA 1.0 software with Qin’s multiple-flow-direction

algorithm (Qin et al. 2007). For the nine maps of envi-

ronmental covariates, the scale of them is 1:10,000, and the

resolution of them is 5 m.

Interpolation methods

Four methods were applied for interpolation. The OK and

OK_LU method were conducted using ArcGIS 10.0. For

the RK methods, the linear regression functions were

established in SPSS 16.0, and the prediction of the con-

tinuous spatial surface was conducted by ArcGIS 10.0; as

for the SoLIM method, it was generated by the SoLIM

software (http://SoLIM.geography.wisc.edu/software/email_

address.aspx).

Ordinary kriging (OK)

Ordinary kriging (OK) is a type of kriging used to estimate

the value of a random variable at one or more unmeasured

points (Kumar and La 2011) and a spatial interpolation

estimator Ẑ x0ð Þ used to find the best linear unbiased esti-

mate (at non-sampled location) of a second-order station-

ary random field with an unknown constant mean as

follows:

Ẑðx0Þ ¼
Xn

i¼1

kiZðxiÞ ð1Þ

where Ẑðx0Þ is kriging estimate at non-sampled location x0,

Z(xi) is sampled value at location xi, and ki is the weighting

factor for Z(xi).

The estimation error is

Ẑðx0Þ � Zðx0Þ ¼ Rðx0Þ ¼
Xn

i¼1

kiZðxiÞ � Zðx0Þ ð2Þ

where Z(x0) is unknown true value at x0, and R(x0) is

estimation error. For an unbiased estimator, the mean of the

estimation error must equal zero. Therefore,

E Rðx0Þf g ¼ 0 ð3Þ

and

Xn

i¼1

ki ¼ 1 ð4Þ

Minimum variance of estimation error is required for

solving the interpolation problem by kriging. The mini-

mization of the estimation error variance under the con-

straint of unbiasedness leads to a set of equations for the

weighting factors, ki, which can be solved by an optimi-

zation routine (Chowdhury et al. 2010). The details on the

ordinary kriging technique and related information can

refer to Goovaerts et al. (Goovaerts et al. 2005), and the

specific details on the software routines can refer to the

Geostatistical Software Library (GSLIB) and Users Guide

(Kupfersberger et al. 1998).
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Ordinary kriging integrated with land-use type (OK_LU)

Several studies have indicated that land-use type informa-

tion is significantly related to the spatial pattern of soil

property variations (Basaran et al. 2008; Hu et al. 2007). In

our study area, the landscape is complicated and associated

with various land-use types. In order to explore how land-

use type information will assist mapping SOC spatial dis-

tribution, this method (OK_LU) incorporates the categor-

ical land-use type information for spatial interpolation of

SOC. The specific method includes the following two

steps:

Firstly, the average SOC content values for each land-

use type were calculated. The soil organic carbon content

value of each training sample point Z(Xkj) is then divided

into mean value l(Tk) of the same type and deviation

R(Xkj), which can be expressed as

Z Xkj

� �
¼ l Tkð Þ þ R Xkj

� �
ð5Þ

where Z(Xkj) is the training sample’s soil organic carbon

content; l(Tk) is the mean value of soil organic carbon

content of the same land-use type; R(Xkj) is the deviation.

R(Xkj) is regarded as a new regional variable, which is

interpolated with ordinary kriging;

Secondly, the interpolation of deviation R(Xkj) is fin-

ished. The predicted soil organic carbon content value of

sample is the sum of the mean value l(Tk) of the SOC

content of the same land-use type and the estimated devi-

ation R0(Xkj).

Z0 Xkj

� �
¼ l Tkð Þ þ R0 Xkj

� �
ð6Þ

Regression kriging (RK)

RK is a spatial interpolation technique that combines the

regression of the dependent variable on auxiliary variables

with the kriging of the regression residuals (Hengl et al.

2007; Zhu and Lin 2010). The target variable SOC was

fitted with each auxiliary dataset using the linear regres-

sion. By detrending the regression predictions, the residuals

were geostatistically analyzed and interpolated using

ordinary kriging, and finally the regression predictions and

interpolated residuals were summed. In RK, the auxiliary

datasets in the regression were the same as in the liner

regression (Bi et al. 2008). The function used to perform

RK is given as below in Eq. (7) (Hengl et al. 2007):

ẐðsoÞ ¼ m̂ðs0Þ þ êðs0Þ ¼
Xp

k¼0

b̂k � qkðs0Þ þ
Xn

i¼1

ki � eðsiÞ

ð7Þ

where m̂ðs0Þ is the fitted drift, êðs0Þ is the interpolated

residual, b̂k are the estimated drift model coefficient (b̂0 are

the estimated intercept), ki are kriging weights determined

by the spatial dependence structure of the residual and

where e(si) is the residual at location si.

The nine variables were used as independent variables

when constructing regression function for RK. Except the

construction land and water area, there are six original

land-use types. S1–S6 are used to indicate six land-use

types. Since land-use type is a categorical variable, pre-

process on this variable was conducted. Five dumb vari-

ables of T1, T2, T3, T4, and T5 are set in the SPSS. The

setting of parameters was displayed in Table 1. For

example, while the land-use type is S1, T1 = 1,

T2 = T3 = T4 = T5 = 0, and so forth.

In the regression analysis, five variables of T1, T2, T3,

T4, and T5 that represent the variable of land-use types as a

whole were put in block 1, and variable selection method

was set as compulsory (Enter) in. The other eight variables

were in the second block with variable selection method of

stepwise regression (Stepwise). The final regression func-

tions of three datasets were established as both the function

and the parameters passed through the test of significance

(P \ 0.05) (Table 2).

Soil land inference model (SoLIM)

Soil land inference model (SoLIM) is a predictive approach

to infer soil mapping based on environmental variables and

Table 1 Dumb variables for land-use types

Category T1 T2 T3 T4 T5

S1 (Forestland) 1 0 0 0 0

S2 (Grassland) 0 1 0 0 0

S3 (Shrubland) 0 0 1 0 0

S4 (Terrace) 0 0 0 1 0

S5 (Slope cropland) 0 0 0 0 1

S6 (Dam land) 0 0 0 0 0

Table 2 Significance test of each regression factors

Sig.

Y1 Y2 Y3

Constant 0.015 0.002 0.000

T1 0.000 0.009 0.000

T2 0.000 0.047 0.000

T3 0.000 0.019 0.022

T4 0.000 0.024 0.000

T5 0.000 0.017 0.000

Variable 1 0.000 (TWI) 0.028 (SAR) 0.024 (Solar

radiation)

Variable 2 0.009

(Slope)

0.029 (Plan

curve)

0.032 (Slope)
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relationships between soil and its environment (Zhu et al.

1997, 2001). Under the SoLIM framework, Liu et al. (2012)

proposed a method based on ‘‘individual representative-

ness’’ of each sample to predict soil properties (Liu et al.

2012). The basic idea is as follows. Based on the soil-land-

scape model (Hudson 1992) and case-based reasoning idea

(Aamodt and Plaza 1994), each sample contains corre-

sponding relationships between soil properties and envi-

ronment conditions. Under the assumption that the more

similar is environment condition between two locations the

more similar soil property values will be, each sample can be

considered as a representative over locations with similar

environmental conditions (Hudson 1992; McBratney et al.

2003). Moreover, the level of representativeness of an

individual sample for an unsampled location can be

approximated by computing the similarity in environmental

conditions between the two locations. Based on this ‘‘indi-

vidual representativeness’’ concept, soil property values at

unsampled locations can be estimated based on the envi-

ronmental similarity to individual samples, which consist of

three major components: (1) selecting environmental vari-

ables and characterizing environmental conditions; (2) cal-

culating environmental similarity; (3) estimating soil

property value based on the environmental similarity.

Spatial structure analysis indices

Nugget over sill ratio (N/S), which defines the proportion

of short-range variability that cannot be described by a

geostatistical model based on a variogram, has been used to

quantify the strength of spatial structure (Pei et al. 2010).

An N/S ratio of 0.3 means that 30 % of the variability

consists of unexplainable or random variation. N/S ratio

was divided into three categories ([0.6, 0.3–0.6, and\0.3)

to classify the strength of spatial structure by Cambardella

and Karlen. The N/S ratio \0.3 indicated strong or dis-

tributed in patches, between 0.3 and 0.6 denoted moderate,

and [0.6 indicated weak spatial dependence (Cambardella

and Karlen 1999).

In addition to N/S, the ratio of sill to the sum of sill and

nugget variance S/(N ? S) as discussed by Cambardella

et al. (1994), was also calculated. A ratio approaching one

means a strong spatial pattern, whereas, a ratio approaching

zero indicates that there is no spatial pattern (Ge et al.

2007b).

Evaluation indices

Performance of the estimations was tested using six sta-

tistical indices as follows:

1. Mean absolute percentage error (MAPE) (Li and Heap

2011). The MAPE was used to assess prediction bias.

2. Root mean square error (RMSE). RMSE was used as a

measure of prediction precision.

3. Goodness-of-prediction statistic (G) (Kravchenko and

Bullock 1999). For G value, if G = 1, it means the

predicted value and measured value are completely

consistent.

4. The variance accounted for (VAF) (Mirbagheri et al.

2000). It is defined as one minus the ratio of the

variance of the model’s error in estimating SOC to the

variance of the SOC data.

5. The adjusted determination coefficient (Adj-R2) (Mar-

quÍez et al. 2003). It compensates for this optimistic

trait in the determination coefficient by taking into

account the size of the sample and the number of

prediction variables. Unlike R2, the adjusted determi-

nation coefficient does not necessarily increase when

additional variables are added to an equation.

These are the metrics that estimate the deviation of

estimations from observations. The model with the lowest

MAPE and RMSE, while the VAF, Adj-R2, G values are

closer to 1 were considered as the least biased. The six

indices are calculated as follows:

MAPE ¼ 1

n

Xn

i¼1

Pi� Oið Þ=Oij j ð8Þ

RMSE ¼ 1

n

Xn

i¼1

ðPi � OiÞ2
" #1=2

ð9Þ

G ¼ 1�
Xn

i¼1

ðPi � OiÞ2
,
Xn

i¼1

ðOi � OÞ2
" #

ð10Þ

% VAF ¼ 100� 1�
Pn ðOi � PiÞ2Pn

1 O2
i

" #
ð11Þ

where n is the number of validation points, Pi is the pre-

dicted value at point i, Oi is the observed value at point i,

and O is the sample arithmetic mean.

Results

General statistics for SOC content

As shown in Table 3, the SOC content for the top 30-cm

soil layer varies from 1.20 g kg-1 to 5.35 g kg-1 under

different land-use type. The variance among different land-

use types is 82.70 %. The order of the mean value of SOC

content is as follows: forestland [ shrub land [ grass-

land [ dam land [ slope cropland [ terrace. The signifi-

cance test for SOC content among different land-use types

was demonstrated in Table 3. For terrace, the mean value

of SOC content is lowest and significantly different from
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all of other land-use types because of the little biomass

input and frequent human disturbance. The significant

difference also exists between forestland and slope crop-

land, forestland and dam land. We can conclude from the

Table 3 that there is a difference in SOC content among

different land-use types.

The regression functions for RK

The Models’ degree of fitting is R2 = 0.178, 0.158, 0.161,

respectively. The regression functions of three times

employed by the RK method to estimate the spatial dis-

tribution of SOC content were given below:

Y1 ¼ 1:244þ 0:313� T1þ 0:326� T2þ 0:399422

� T3� 0:346� T4þ 0:340

� T5þ 0:205� TWIþ 0:020� Slope ð12Þ

Y2 ¼ 1:345þ 0:011� T1� 0:149� T2þ 0:344

� T3� 0:754� T4� 0:014� T5þ 1:439

� SAR� 0:318� Plancurve ð13Þ

Y3 ¼ 3:947þ 0:156� T1þ 0:022� T2� 0:545

� T3� 0:346� T4þ 0:340� T5� 5:564� 10�7

� Solar radiation� 0:001� Slope ð14Þ

For the environmental variables entered into the

regression equations of three datasets were different based

on different sample sets as shown in formulas (12)–(14), it

means that the result of RK is imperfect. This is mainly

because the land-use type information was introduced into

the regression functions compulsory considering it as a

main controlling factor for SOC in the study area.

Spatial structure of SOC

In previous SOC mapping studies, the spherical, Gaussian

and exponential have been the most widely used models in

fitting semi-variograms (Pei et al. 2010). Here, we use the

exponential model to fit the experimental SOC semi-vari-

ogram. The experimental semi-variogram of the present

Table 3 Statistic parameters of SOC in the six land-use types

Land-use

type

Soil

sample

SOC content (g kg-1) Variance

(%)
Mean Standard

error

Min. Max.

Forestland 66 3.27A 0.82 1.80 5.31 67.70

Shrubland 40 3.03AB 0.90 1.20 5.08 82.50

Grassland 46 2.99AB 0.99 1.25 5.34 99.30

Dam land 10 2.93B 0.62 2.04 4.20 42.30

Slope

cropland

24 2.91B 0.95 1.53 5.02 94.70

Terrace 14 2.28C 0.64 1.30 3.27 44.60

Total 200 3.03 0.91 1.20 5.35 82.70

The capital letters represent the significant level is p = 0.05

Fig. 3 Experimental (dots) and modeled (lines) semi-variograms.

a SOC(OK), b deviation of SOC (OK_LU), c regression residue of

SOC (RK)

Table 4 Semi-variogram models for the soil organic carbon (SOC),

ordinary kriging with land-use type (OK_LU) residuals, and regres-

sion kriging (RK) residuals

Parameter SOC OK_LU residuals RK residuals

Model Spherical Spherical Spherical

Major range/m 2,000 2,000 2,000

N/(km m-2)2 0.60 0.52 0.45

S/(km m-2)2 0.86 1.20 0.78

N/S 0.70 0.43 0.58

S/(N ? S) 0.41 0.60 0.58
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study, including the original SOC data (applied in OK), the

SOC deviation (applied in OK_LU), and regression residue

of SOC (applied in RK) together with the fitted exponential

models is shown in Fig. 3 and Table 4. The experimental

variogram model shows that SOC content for the surface

30-cm soil layer was spatially auto-correlated. This model

describes the spatial variation of the SOC content. The

range corresponds to the spatially correlated portion of the

semi-variogram.

As displayed in the Table 4, N/S differs among different

methods. The N/S of OK (0.70) is more than 0.6, while that

of OK_LU deviation (0.43) and RK residuals (0.58) are

less than 0.6. Lower N/S ratio represents the strong spatial

dependence (Cambardella and Karlen 1999; Lado et al.

2008). The results displayed support to the strong spatial

dependence of data analyzed by the hybrid approach

OK_LU to estimate the SOC content in this study area.

For S/(N ? S), it shows the strong spatial pattern with

values of ratio for the SOC, OK_LU deviation and RK

residuals of 0.41, 0.60 and 0.58, respectively. Thus, it

reveals that OK_LU deviation has stronger spatial patterns

than others, and this conclusion also sustains the reliability

of OK_LU.

SOC mapping results

SOC maps with four mapping approaches were generated

as follows (Fig. 4). All maps show the same high value

area in the north of the watershed. Apart from this, the

maps estimated and produced by diverse methods differ

significantly.

The SOC map produced by OK (Fig. 4a) shows a

smooth surface, there is only difference between the north

area and the south area, but the predicted SOC values are

so flat, their difference among various land-use types

cannot be distinguished easily.

The SOC map estimated by RK (Fig. 4c) is more

detailed than OK, it can be seen from the map that the SOC

content in shrub land and forestland is higher than other

land-use types, and that in the wild grassland is low. It

means that the SOC map estimated by RK can match the

land-use map by and large.

The SOC maps derived from the OK_LU (Fig. 4b) and

SoLIM (Fig. 4d) maps are influenced significantly by the

environmental variables and reveal more detailed infor-

mation and showed clearer variations with terrain and other

environmental variables than OK and RK. Furthermore, the

SOC map predicted by OK_LU matched the land-use map

better and more detailed, the SOC map produced from

SoLIM method seems more complicated and heteroge-

neous since it takes nine variables into account. The blank

areas are water bodies and construction land where there is

no sample.

Validation results

For each method, the prediction errors based on the vali-

dation dataset among three times did not see obviously

difference. Therefore, we took the mean values of the three

times’ results as the final results as displayed in Table 5. It

is shown that the OK_LU and SoLIM methods performed

better than the other two methods in terms of smaller

RMSE, MAPE and higher G values.

In this study, RK is superior to OK for it incorporates

spatial dependence in residuals and removes the trend.

However, RK demands a fine regression function with high

Fig. 4 Maps of the estimated soil organic carbon (SOC) content for

the surface (0–30 cm) soil of Yangjuangou watershed using different

methods: a (OK), b (RK), c (OK_LU), d (SoLIM)

Table 5 Correlation analysis between the measured values and the

estimated values

OK RK OK_LU SoLIM

MAPE 0.250 0.124 0.060 0.052

RMSE 0.520 0.448 0.315 0.329

G 0.791 0.794 0.878 0.886

%VAF 57 % 61 % 72 % 75 %

Adj.R2 0.326 0.278 0.519 0.537
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R2, and the R2 of this study is not so high (R2 = 0.278,

0.258, 0.261), there are only three variables absorbed into

each regression function and other variables are ignored.

Therefore, the prediction of RK did not show better per-

formance than SoLIM and OK_LU.

For the present study, the SoLIM (G = 0.886,

VAF % = 75 %, Adj.R2 = 0.537) and OK_LU

(G = 0.878, VAF % = 72 %, Adj.R2 = 0.519) method

have higher G values as compared with OK (G = 0.791,

VAF % = 57 %, Adj.R2 = 0.326) and RK (G = 0.794,

VAF % = 61 %, Adj.R2 = 0.278), while the SoLIM

(MAPE = 0.060, RMSE = 0.315) and OK_LU (MAPE =

0.052, RMSE = 0.329) methods have lower MAPE and

RMSE values than OK (MAPE = 0.250, RMSE = 0.520)

and RK (MAPE = 0.124, RMSE = 0.448). The validation

results show that the SoLIM and OK_LU methods have lower

prediction errors and their predicted values and measured

values are more consistent than OK and RK.

Discussion

Methods comparison

Multiple approaches have been used for analyzing spatial

variations of SOC content in general, nevertheless, no

single approach is suitable universally because of the

spatial variability which exists in soil properties (Hengl

et al. 2004; Miao et al. 2012). Here, we selected four

approaches to compare each other and to explore suitable

methods for mapping the SOC content of the surface 30-cm

soil in our study area of semi-arid Loess Plateau, which has

a complex hilly–gully terrain.

OK is a distance-based interpolation method, which may

have many practical problems when using in a complex

terrain area like our study site and it is then difficult to

produce a reliable prediction as proved by Yao et al.

(2013). Its application is restricted in the study area where

Grain-for-Green Project took place and variation trend of

SOC content is largely influenced by the complex land-

scape. Besides that no auxiliary was used, the accuracy of

OK is the worst among all the methods.

OK_LU makes good use of the land-use type informa-

tion to interpolate SOC variations because SOC content of

six land-use types is significantly different as revealed in

Table 3, which indicates that land-use type influences the

distribution of the SOC greatly. The validation results

showed that the addition of land-use type in OK_LU

improved the interpolating accuracies compared to the OK

method. The OK_LU method effectively captures this

dominating characteristic for combining environmental

variable of land-use type and kriging model together. Its

performance assessment evidently confirmed that this

hybrid interpolation method was more suitable and accu-

rate for the region of complex terrain as a simple and

convenient method.

The RK was always considered to be superior to

approaches only based on auto-correlation such as ordinary

kriging (Ge et al. 2007a; Kumar and La 2011). RK uses

both correlations between the target variable and its

covariates, and the spatial auto-correlation in residuals of

the SOC content to improve the estimations so that its

precision of prediction is better than OK. However, one of

the major limitations of RK is that this approach assumes

that covariates should have constant physical relationship

with the target variable in all parts of the study area, which

however not always be possible in real cases (Hengl et al.

2007). RK also assumes the constant trend over the space,

which did not appear in our study. When a strong rela-

tionship exists between target soil properties and auxiliary

variables, RK will be accurate for interpolating soil prop-

erties studied, otherwise, OK was better (Zhu and Lin

2010). In this study, RK is medium in mapping of SOC as

it does not fit the data in this study area.

The success of SoLIM relies highly on whether the

selected environmental covariates relate spatial variations

of soil properties (Liu and Zhu 2009; Yang et al. 2011; Zhu

et al. 2001). This study supports the conclusion that when

some easily measured soil covariates, which affect the SOC

distribution such as land-use type, topographic parameters,

and surface area ratio (SAR) were put into the SoLIM

model, a high accuracy SOC map can be generated. The

comparison with other Kriging methods showed that the

SoLIM method could be a suitable and efficient method for

predicting SOC for the Loess Plateau of China with similar

environment conditions as the study area.

Methods limitations

Soil erosion induced by rainfall events in terrestrial eco-

systems, as an important global environmental problem,

significantly impacts on environmental quality and soil

properties (Gao et al. 2014). The movement of SOC during

erosion and deposition events represents a major pertur-

bation to the terrestrial carbon cycle (Gao et al. 2013b;

Sanderman and Chappell 2013).

The Loess Plateau is one of the regions in the world that

suffered from severe soil erosion. The acceleration of soil

erosion by water in response to the anthropogenic modifi-

cation of landscapes is a serious threat to natural ecosystem

functionalities, because of the loss of invaluable constitu-

ents such as SOC (Gao et al. 2012; Miao et al. 2011). In the

past decades, restoration projects were implemented to

improve soil erosion control in the region. The Grain-to-

Green project, converting slope croplands into forest or

grasslands, launched in 1999 was the most massive one (Fu
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et al. 2011). Although many research indicated that soil

erosion control capacity was significantly improved in

parts of the zone since 2000 as a result of vegetation res-

toration, soil erosion is still one of the top environmental

problems that need more ecological restoration efforts

(Gao et al. 2011).

Due to the soil erosion, the SOC content decreased in the

slope cropland, and it increased in the dam land, this trend

can be reflected in the interpolation maps of this study that

the dam land has a higher SOC value than the slope crop-

land. Many observations have also shown that substantial C

accumulation can occur in vegetation and soils after the

establishment of plantations (Fornara and Tilman 2008;

Gao et al. 2013a; Pinard and Cropper 2000). Just as in our

study, the shrubland and forestland have higher SOC con-

tent than other land-use types. On account of that erosion is

a major factor that adversely affects SOC sequestration at

eroded sites, thus the SOC erosion and deposition must be

considered in estimating the SOC. If one corroded sample

was used as a training sample while the other non-corroded

sample was used as a validation sample in an interpolation

method, then the true SOC content will be underestimated.

The reverse would be true if erosion not occurred at both

training dataset sites and validation dataset sites (Sander-

man et al. 2009). It means that a model calibrated to a site

with a history of soil erosion when applied to a site not

experiencing erosion will underestimate the SOC (Sander-

man and Baldock 2010). It is evident from some analysis

(Sanderman and Chappell 2013) that explicit recognition of

soil redistribution can impact the successful monitoring of

SOC. The effects of soil redistribution affected by erosion

and deposition will be then incorporated within these SOC

interpolation models in the future research.

Conclusion

We compared four methods, including OK, OK_LU, RK

and SoLIM, to predict the spatial distribution of SOC in a

2.02 km2 hilly–gully watershed in the semi-arid Loess

Plateau. Auxiliary environmental variables such as the

land-use type information, topographic parameters were

used to assist soil interpolation in this study. Two main

conclusions can be drawn from the study:

1. The use of easily obtained environmental covariates,

the land-use type and terrain variables in this study,

which control most of the SOC variations, usually can

improve accuracies of soil mapping. These variables

can be very helpful to map SOC in similar watersheds

of complex terrain and land-use types in the Loess

Plateau, since this study area is very typical in the

Loess Plateau.

2. SoLIM and OK_LU can be two suitable and efficient

methods when mapping spatial variations of SOC

content in watersheds like our study area in the Loess

Plateau.

Acknowledgments This work was supported by the National Nat-

ural Science Foundation of China (40925003, 40901098, 41001298)

and by the Youth Innovation Promotion Association, CAS.

References

Aamodt A, Plaza E (1994) Case-based reasoning—foundational

issues, methodological variations, and system approaches. Ai

Commun 7:39–59

Ahmed S, Demarsily G (1987) Comparison of geostatistical methods

for estimating transmissivity using data on transmissivity and

specific capacity. Water Resour Res 23:1717–1737. doi:10.1029/

WR023i009p01717

Basaran M, Erpul G, Tercan AE, Canga MR (2008) The effects of

land use changes on some soil properties in Indagi Mountain

Pass—Cankiri, Turkey. Environ Monit Assess 136:101–119.

doi:10.1007/s10661-007-9668-4

Bi H et al (2008) Spatial dynamics of soil moisture in a complex

terrain in the semi-arid Loess Plateau region, China. J Am Water

Resour Assoc 44:1121–1131. doi:10.1111/j.1752-1688.2008.

00236.x

Cambardella CA, Karlen DL (1999) Spatial analysis of soil fertility

parameters. Precis Agric 1:5–14. doi:10.1023/a:1009925919134

Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL,

Turco RF, Konopka AE (1994) Field-scale variability of soil

properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

Chen LD, Lu YH, Tian HY, Shi Q (2007) Principles and methodology

for ecological rehabilitation and security pattern design in key

project construction Yingyong. Acta Ecol Sinica 18:674–680

Chowdhury M, Alouani A, Hossain F (2010) Comparison of ordinary

kriging and artificial neural network for spatial mapping of

arsenic contamination of groundwater stochastic. Environ Res

Risk Assess 24:1–7. doi:10.1007/s00477-008-0296-5

Ersahin S (2003) Comparing ordinary kriging and cokriging to

estimate infiltration rate. Soil Sci Soc Am J 67:1848–1855

Fornara D, Tilman D (2008) Plant functional composition influences

rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

Fu BJ (1989) Soil-erosion and its control in the Loess Plateau of

China. Soil Use Manag 5:76–82. doi:10.1111/j.1475-2743.1989.

tb00765.x

Fu BJ, Wang YF, Lu YH, He CS, Chen LD, Song CJ (2009) The

effects of land-use combinations on soil erosion: a case study in

the Loess Plateau of China. Prog Phys Geogr 33:793–804.

doi:10.1177/0309133309350264
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