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Abstract:

Spatial information on soil properties is an important input to hydrological models. In current hydrological modelling practices,
soil property information is often derived from soil category maps by the linking method in which a representative soil property
value is linked to each soil polygon. Limited by the area-class nature of soil category maps, the derived soil property variation is
discontinuous and less detailed than high resolution digital terrain or remote sensing data. This research proposed dmSoil, a data-
mining-based approach to derive continuous and spatially detailed soil property information from soil category maps. First, the
soil–environment relationships are extracted through data mining of a soil map. The similarity of the soil at each location to
different soil types in the soil map is then estimated using the mined relationships. Prediction of soil property values at each
location is made by combining the similarities of the soil at that location to different soil types and the representative soil
property values of these soil types. The new approach was applied in the Raffelson Watershed and Pleasant Valley in the
Driftless Area of Wisconsin, United States to map soil A horizon texture (in both areas) and depth to soil C horizon (in Pleasant
Valley). The property maps from the dmSoil approach capture the spatial gradation and details of soil properties better than those
from the linking method. The new approach also shows consistent accuracy improvement at validation points. In addition to the
improved performances, the inputs for the dmSoil approach are easy to prepare, and the approach itself is simple to deploy. It
provides an effective way to derive better soil property information from soil category maps for hydrological modelling.
Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Information on spatial variation of soil properties is one
of the key inputs for many hydrological models. Detailed
spatial data on soil properties can better characterize soil
conditions and have the potential to improve simulation
accuracy (Zhu and Mackay, 2001; Bosch et al., 2004; Di
Luzio et al., 2004; Chaplot, 2005; Anderson et al., 2006;
Li et al., 2012). However, soil property data used in
hydrological models is usually less detailed than other
inputs (e.g. digital terrain data and remotely sensed
vegetation data) as it often cannot provide pixel-level
(continuous) spatial variation information. The mismatch
in spatial details causes incompatibility between the soil
information and other information (Band and Moore,
1995; Zhu, 1997). This incompatibility issue might be
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more evident in distributed hydrological modelling where
spatially detailed simulation needs to be performed (Zhu
and Mackay, 2001).
The detailed information on soil spatial variation can be

derived through spatial prediction using field samples.
Kriging techniques (Isaaks and Srivastava, 1989;
Goovaerts, 1999) and machine learning/regression tech-
niques (Moore et al., 1993; Bui et al., 2006) are
commonly used for this purpose. Most of these methods,
however, might require a large amount of field soil
samples in order to build a meaningful predictive model.
It is hard to obtain such sample sets for many
hydrological modelling applications. Instead of using
field samples, Zhu et al. (1996), Zhu (1999) and Zhu
et al. (2001) developed the SoLIM approach to derive
detailed soil spatial information based on fuzzy logic and
expert knowledge. This approach, however, requires a
knowledge acquisition process in which soil experts’
knowledge on soil landscape relationship needs to be
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solicited. This is usually not a feasible solution for
hydrologists. In addition to predictive methods, different
sensing technologies are increasingly used to obtain soil
spatial information directly. Remote sensing uses soil
spectral reflectance to differentiate soil properties (Barnes
et al., 2003; Mulder et al., 2011). Though it can obtain
spatial information at large scale, there are still many
challenges. For example, vegetation cover may obscure the
soil response. In recent years, proximal soil sensing is
becoming a promising technique in soil mapping. Proximal
soil sensing involves the use of optical, geophysical and/or
electromagnetic methods to directly measure soil properties
(Rossel et al., 2010; Rossel et al., 2011). It has already
gained great success in deriving high resolution soil
property information for precision agriculture and some
other fields. However scaling the technology to larger areas
(e.g.watershed scale) is still a challenge.
In current hydrological modelling practices, soil

category maps are the major sources to derive soil spatial
information. A commonly used approach for obtaining
soil property information from soil category maps is the
linking method in which a representative soil property
value is assigned to each soil polygon (Grossman et al.,
1992). The linking method has the advantage of
simplicity, but the derived soil property information
suffers a major problem: the soil property is implied to be
uniform within each of the soil polygons and changes
only occur at polygon boundaries. The derived spatial
variation of soil properties is thus discontinuous and
lacking spatial details. This drawback is mainly caused by
the area-class nature of soil category maps. Many efforts
have been made to generate more detailed soil category
maps from existing ones (Moran and Bui, 2002; Qi and
Zhu, 2003; Li et al., 2004; Kempen et al., 2009; Yang
et al., 2011). However, the outputs are still area-class
maps, so deriving soil property information from those
maps still suffers the discontinuity issue. Research has
also been done to generate soil property information from
soil category maps using ensemble approaches. Instead of
a single soil property value, an empirical or theoretical
probability distribution is linked with a soil type. Based
on the probability distributions, a statistical simulation is
conducted to derive many realizations of soil property
maps (Heuvelink and Webster, 2001; Webb and Lilburne,
2005; Loosvelt et al., 2011). A nice feature of this
approach is it can provide uncertain information about the
derived soil information. However, the derived soil
property maps may look ‘unnatural’ as they are purely
from statistical simulation. The spatial nature of the
variation in a soil polygon is not explicit stated, and its
relationships to environmental covariate are not captured.
This paper presents a new approach to characterize the

spatial variation of soil properties from soil category
maps. The approach, referred to as dmSoil, employs the
Copyright © 2014 John Wiley & Sons, Ltd.
similarity model (Zhu, 1997; Zhu et al., 2001) to represent
the spatial gradation of soils in an area. The similarity model
is populated by coupling soil environmental covariates with
soil–environment relationships extracted through data
mining of the soil category maps. The information
represented in the similarity model is then combined with
representative property values of the soil types in the area to
map the spatial gradation of soil property (Zhu et al., 2010).
The major contribution of this paper is it provides a

new approach to obtain spatially continuous soil property
information from existing soil category maps. The
required inputs for the new approach are readily available,
and the procedure is easy to deploy for hydrologists. The
derived soil property information is compatible with
other inputs (e.g. digital terrain data, vegetation data) in
hydrological modelling.
METHODOLOGY

Basic idea

Instead of assuming uniform soil properties within each
soil polygon (the current assumption conveyed by use of
the linking method commonly adopted in hydrological
modelling), a raster data model is used to represent soil
property variation at pixel level. The spatial resolution
can be set to be the same as other inputs data (e.g.Digital
Elevation Model) of hydrological models. Following the
similarity model proposed by Zhu (1997), each location
(pixel) of a study area holds a similarity vector with its
elements representing a 0–1 similarity measure to each
soil type present in a soil category map. The similarity of
the soil at a location to a soil type is approximated by the
degree to which the environmental condition of the
location is optimal for the soil type (Zhu et al., 1996). The
optimality of environmental conditions for a given soil
type can be approximated by the environmental frequency
curves constructed by overlaying the soil category map
with environmental covariates (environmental variables
that co-vary with soil), as shown in Figure 1. In other
words different environmental frequencies can be taken as
indication of the degree to which the environmental
conditions are optimal for the soil type. The highest
frequency corresponds to optimality value of 1. For a
location, their optimality values at individual environ-
mental variable level are determined based on the
frequency curves. Those optimality values can then be
integrated to get the overall environmental condition
optimality. The overall optimality is used as the final
similarity measure between the soil at the location and the
soil type.
Once the similarity of the soil at a location to a set of

prescribed soil types is determined, the value of a given
soil property at the location can be computed using the
Hydrol. Process. (2014)



Figure 1. Data mining on soil category maps to extract the optimality of environmental conditions for each soil type

SOIL PROPERTY MAPPING THROUGH DATA MINING OF SOIL CATEGORY MAPS
similarity weighted approach (Zhu et al., 2010). The
combination of similarity representation of soils and the
similarity weighted approach will provide the mechanism
for a better approximation of soil spatial variation.

Procedure

The proposed dmSoil approach consists of the
following major steps:

Preparation of environmental covariates. Based on
Jenny’s soil formation factors (Jenny, 1941) and the
scorpan concept (McBratney et al., 2003), environment
covariates include climate, organism, topography, parent
material etc. The specific set of environment covariates
used depends on the nature of the study area and the soil
property to be predicted. For example, in study areas
where topography plays a major role in soil formation, a
Digital Elevation Model (DEM) and the derived terrain
attributes from the DEM, such as slope, planform
curvature, profile curvature and wetness index, can be
used to characterize topographic conditions.

Data mining of soil category maps. As described in
‘Basic idea’, the goal for datamining of soil categorymaps is
to model frequency distributions as optimality. Specifically,
for a nominal (categorical) environmental variable, the
dominant value (the category with the highest frequency) is
regarded as optimal environmental value. For example, if the
polygons of a soil type overlap with different parent material
types, themodal parentmaterial that dominates the polygons
is regarded as the optimal parent material for the soil type.
For a continuous environmental variable, such as

elevation, a curve can be used to mathematically model
the frequency distribution. Both parametric method and
non-parametric method could be used for this purpose:

Parametric method to fit frequency distribution for
continuous variable: In the parametric method, the
frequency distribution is usually assumed to follow a
theoretical model, and the parameters are calibrated for
that model. Many frequency distributions can be fitted
Copyright © 2014 John Wiley & Sons, Ltd.
using aGaussianmodel, inwhich the only parameters needed
are the mean and standard deviation. The Gaussian model is
symmetric, which often does not approximate natural
frequency distributions very well. To model asymmetric
distributions, first the mode of the frequency distribution is
used to separate the environmental values into two parts.
Then the standard deviations from themode are calculated for
values below and above the mode. With the mode and the
two standard deviations obtained, the frequency distribution
on the left-hand side and that on the right-hand side of the
mode can be approximated by the following equation:

f xð Þ ¼ exp
x� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2*log 2ð Þp
* σl
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where b is the modal value of the frequency distribution,
σl is the standard deviation for the values below the mode
and σr is the standard deviation for the values above the
mode. Outputs from this function are within the range [0,
1]. The modal value (highest frequency) corresponds to
value 1 which means it is assumed as the optimal
environmental value.

Non-parametric method to fit frequency distribution for
continuous variable: The frequency distribution of envi-
ronmental variable from soil maps may not comply with
the predefined shapes as assumed in parametric methods.
The non-parametric method, such as Kernel Density
Estimation (KDE), can be used to model the frequency
distribution without assuming any curve shape in
advance. The following equation shows the KDE method
for frequency distribution fitting:

f xð Þ ¼ 1
nh

Xn
i¼1

K
x� xi
h

� �
(2)
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where K is a kernel density function and h is bandwidth.
Gaussian kernel is usually used as the kernel function
and the ‘rule of thumb’ algorithm (Scott, 1992) can be
used to determine h. The derived frequency values can
be easily normalized to range [0, 1]. After the
normalization, the environmental value with the highest
frequency will get a value 1, which means it is the most
optimal value.

Similarity calculation. With the data mining result, the
similarity of the soil at a location to a soil type in the soil
category map can be quantified. To calculate this
similarity, the optimality of each environmental variable
at the location to the soil type is determined first.
For a nominal (categorical) environmental variable, if

the environmental value at a location matches the optimal
environmental value of the soil type, the optimality is 1.
Otherwise, the optimality is 0.
For a continuous environmental variable, the fitted

frequency distribution curve from either parametric or
non-parametric method is used. The optimality value for a
location is the normalized frequency value (retrieved from
the fitted curve) corresponding to the environmental value
of the variable at the location.
Once the optimality values at individual environ-

mental variable level are determined for a location,
they are integrated to get the overall environmental
optimality. As suggested by Zhu et al. (1996) and Zhu
et al. (2001), the fuzzy MIN operator can be used here
for the integration based on the limiting factor
principle in ecology. That is, the minimum optimality
among all environmental variables at the location is
used as the integrated optimality of the environmental
condition at the location to the soil type. The
integrated optimality is used as the final similarity of
the location to the soil type. The similarities of the soil
at a location to every soil type can be calculated using
this procedure.

Derivation of representative soil property value for each
soil type. The representative soil property value for
each soil type can be obtained from the associated
description of the soil category maps. If they are not
recorded in the description, regional to national soil
databases are other sources to obtain those values.
Furthermore, property values from typical field soil
profiles can also be used if they are available. If the
representative soil property is given as a range, the
mid-point value can be used as the representative soil
property value.

Soil property prediction. After the representative soil
property values for different soil types are obtained, a
similarity based weighting procedure is used to determine
Copyright © 2014 John Wiley & Sons, Ltd.
the soil property value at each location with the following
equation (Zhu et al., 2010):

vij ¼

Xn
k¼1

skij v
k

Xn
k¼1

skij

(3)

where vij is the property at location (i, j), vk is the
representative soil property value of soil type k, sij

k is the
similarity to soil type k at location (i, j) and n is the total
number of soil types in the soil category map.
CASE STUDIES

Study areas

Two study areas were selected to evaluate the ability
of the dmSoil approach to map spatial variation of
different soil properties. The location and topography
of the two sites are shown in Figure 2. The first area is
the Raffelson Watershed in La Crosse County,
Wisconsin, United States. It is 1.6 km in the
north/south direction and 2.2 km in the east/west
direction. The second area, Pleasant Valley, is in Dane
County, Wisconsin, United States. It is 3.2 km in the
north/south direction and 3.7 km in the east/west
direction. Both study areas are in the Driftless Area
of Wisconsin, which has remained free of direct impact
from late Pleistocene era continental glaciers. As a
result, the two areas have a relatively mature topogra-
phy and are typical ridge and valley terrain. The main
reason for using two study areas is that the soil maps
were produced by different soil surveyors. The
comparison of the application of dmSoil between the
two areas would provide information of the applicabil-
ity of this approach. However, a more comprehensive
analysis of the behavior of this approach across
different landscape types is beyond the scope of
this research.
The soil category maps of the two study areas were

obtained from the NRCS Soil Survey Geographic
database (SSURGO). SSURGO is the most detailed
digital soil database in the United States. Data are
stored in over 60 tables that provide information at
three basic levels: map units, soil components and soil
horizons. Each map unit has one or more components
(soil series), and each component is associated with a
few soil horizons. Map unit polygons provide the
basic spatial units of the SSURGO dataset. In this
research, the major component (soil series) of the map
unit is used as the soil type of the map unit polygon.
The soil category maps of the two study areas are
shown in Figure 3.
Hydrol. Process. (2014)



Figure 3. Soil category maps of the two study areas obtained from SSURGO database: (a) Raffelson Watershed; (b) Pleasant Valley

Figure 2. Locations and topography of two study areas

SOIL PROPERTY MAPPING THROUGH DATA MINING OF SOIL CATEGORY MAPS
Experiments

Covariate selection. In both study areas, topography is
the primary factor that determines the soil variation. This can
be further verified by the SSURGO soil maps which show
clear correlation between soil and terrain conditions. In the
experiments 10-m resolution DEMs (obtained from Wis-
Copyright © 2014 John Wiley & Sons, Ltd.
consin Office of Natural Resource Conservation Service,
United States Department of Agriculture) were used to
generate slope gradient, planform curvature, profile curva-
ture, topographic wetness index and slope aspect to
characterize topography. Geological information (major
bedrock geology breaks) was also included to depict soil
Hydrol. Process. (2014)
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parent material conditions of the two study areas. This
information can usually be obtained from geologymaps and
local soil survey reports. In this research, the geologic maps
provided by the local soil scientist (Duane Simonson) in the
Driftless Area were used.

Optimality modelling and similarity calculation. For
each study area, the soil map was overlaid with the
environmental covariate layers to conduct data mining.
For categorical environmental variable (i.e. parent
material), the dominant values were regarded as the
optimal environmental values, and the value of each
location is compared with the optimal type to determine
the optimality. For continuous environmental variables
(i.e. all the terrain attributes), both the parametric and
non-parametric methods were experimented with to fit
the frequency distributions. The fitted curves were then used
to calculate the optimality.
After the optimality values at the individual environ-

mental variable level are determined for each location,
these values are integrated using the fuzzy MIN operator,
as described in ‘Similarity calculation’, to obtain the
overall environmental optimality. The integrated optimality
is used as the final similarity of the soil at each location to the
prescribed soil type.

Mapped soil properties. The soil properties mapped in
the Raffelson Watershed are sand and silt percentage
(soil texture) of soil A horizon. In Pleasant Valley, the
soil properties mapped include sand, silt percentage of
soil A horizon and depth to soil C horizon.
The representative soil property values were also

obtained from the SSURGO database. For a soil complex
with more than one major soil components (soil types),
the representative value of each soil type was retrieved,
and a weighted average approach was used to derive its
final representative soil property value. The weights were
the proportions of different soil types in the complex. In
the Raffelson Watershed, the representative sand and silt
percentages of A horizon were calculated based on the
Figure 4. Maps of sand percentage of A horizon in the Raffelson Watershed f
fitting and (c) the dmSoil approach

Copyright © 2014 John Wiley & Sons, Ltd.
representative percentage of samples that passes #10
(2.0mm) sieve and #200 (0.074mm) sieves recorded in
the SSURGO database. In Pleasant Valley, the represen-
tative sand and silt percentages of A horizon were
calculated using the same method as the Raffelson
Watershed, and the representative value for depth to C
horizon was calculated by summing all the depth values
above the C horizon.

Evaluation methods. The prediction results from the
dmSoil approach were compared with that from the
linking method. Visual evaluation was first conducted to
see whether the soil property maps from the dmSoil
approach could better capture the continuous soil property
variation of the two study areas.
In addition to visual evaluation, field validation

samples were used to quantitatively validate the results.
In the Raffelson Watershed, a total of 49 field samples
were collected. Large portion of the 49 samples were
collected along a few transects to cover different
landscape positions and different soil types. Laboratory
analysis was conducted to determine the soil texture in the
A horizon for all samples. In Pleasant Valley, a total of 48
samples had laboratory analysis done for soil texture in
the A horizon, and 50 samples were collected for depth to
the C horizon measured. Similar to the Raffelson
Watershed, many samples were collected along a few
transects to cross different landscape positions and
different soil types. A few validation points fall in soil
polygons labeled as ‘stony and rocky land’ in Pleasant
Valley. Since there are no representative property
values for those polygons, the linking method cannot
predict soil properties at those sample locations.
Therefore, those validation points were excluded from
the comparison.
The field samples along transects were used to evaluate

whether the dmSoil approach could better capture the
continuous soil property variation along transects. The
whole field sample sets were used to assess the prediction
accuracy. Specifically, the root mean squared error
rom (a) the linking method, (b) the dmSoil approach with parametric curve
with non-parametric curve fitting

Hydrol. Process. (2014)
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(RMSE) was calculated from field samples for both the
dmSoil approach and the linking method. The smaller the
RMSE, the better the prediction accuracy is. The equation
of RMSE is as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

vi � v′ið Þ2

n

vuuut
(4)

where vi is the ith observed value, v′i is the ith
predicted value and n is the number of validation
samples. In addition to RMSE, a one-tailed paired
samples t-test was performed for each of the mapped
soil properties to see whether the prediction errors
(absolute differences between the predicted and
observed values) of the dmSoil approach are signifi-
cantly lower than the prediction errors of the linking
method in the field validation sets. The p values from the
t-test were used for comparison.
Figure 5. Maps of depth to C horizon in Pleasant Valley from (a) the linking
dmSoil approach with non

Figure 6. Observed versus predicted depth to C

Copyright © 2014 John Wiley & Sons, Ltd.
Results and evaluation

Visual evaluation of the derived maps. The soil
property maps generated from the dmSoil approach were
visually compared with the maps from the linking
method. Figure 4 shows the maps of predicted sand
percentage of soil A horizon in the Raffelson Watershed.
Though the general spatial patterns of the maps from the
linking method and the dmSoil approach are similar, the
results from the dmSoil approach have greater spatial
continuity and more spatial details. The map from the
linking method indicates that there is no variation of sand
percentage within each of the polygons. This uniform
distribution within a soil polygon cannot be realistic in
this area. In contrast, the maps from the dmSoil
approach clearly show spatial gradation of sand
percentage within a polygon. The map from the linking
method shows sharp changes at polygon boundaries,
which is also not realistic in this area. The maps from
the dmSoil approach exhibit continuous changes at the
method, (b) the dmSoil approach with parametric curve fitting and (c) the
-parametric curve fitting

horizon at two transects in Pleasant Valley

Hydrol. Process. (2014)
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polygon boundaries and the transitions between differ-
ent neighbourhood soil polygons are captured. It can
also be noted that the maps from the parametric curve
fitting and non-parametric curve fitting exhibit no
significant difference.
The maps of predicted depth to C horizon in Pleasant

Valley are shown in Figure 5. Similar to Figure 4, the
results from the dmSoil approach show a smoother
variation of depth to C horizon from valleys to ridges.
The small variations of depth on slopes, which are
missing in the result from the linking method, are also
captured. Again, no significant difference can be seen on
the maps from the parametric curve fitting and non-
parametric curve fitting.

Evaluation on spatial continuity along transects. As
mentioned before, we have field samples collected along
a few transects that cross different landscape positions.
At those transects, we compared the observed soil
property values at the sampled locations, the predic-
tions from the linking method and the predictions from
the dmSoil approach. As an example, the comparisons
of depth to C horizon at two transects in Pleasant
Valley are shown in Figure 6.
The predictions from the dmSoil approach appear

to be more continuous while the predictions from
linking method suffer from abrupt changes in
boundary and no variations within a soil type. The
predictions from the dmSoil approach are generally
closer to the field observed values. This indicates the
dmSoil approach does a better job at approximating
the real-world soil property variation than the linking
method.
Table I. RMSE on the validation samples: the

Raffelson Watershed

Sand in A
Horizon (%)

Silt in A
Horizon (%)

Linking method 19.68 17.86
dmSoil (parametric) 17.43 15.78
dmSoil (non-parametric) 17.37 15.64

Table II. One-tailed paired samples t-test results ( p values) for com
approach on vali

Raffelson

Sand in A
horizon

dmSoil (parametric) versus linking method 0.0081
dmSoil (non-parametric) versus linking method 0.0152

Copyright © 2014 John Wiley & Sons, Ltd.
Assessment of prediction accuracy with all validation
samples. The RMSE from the linking method and the
dmSoil approach for the field validation samples are
shown in Table I. The dmSoil approach always yields
lower RMSE compared to the linking method. The
accuracies of dmSoil approach on field validation samples
are consistently higher than that of the linking method for
different mapped soil properties. Between the two curve
fitting method (parametric and non-parametric), no
consistent trend, i.e.which curve fitting method consis-
tently yields better result, can be observed from the table.
Table II shows the results from the one-tailed paired

samples t-test. For sand and silt percentage of soil A
horizon in Raffelson Watershed, the prediction errors of
the dmSoil approach are significantly lower than those of
the linking method at the 95% confidence level. In
Pleasant Valley, the differences between the prediction
errors of the dmSoil approach and those of the linking
method for the sand and silt percentage in soil A horizon
are not statistically significant (p values >0.05). For depth
to C horizon, however, the prediction error is significantly
lower than those of the linking method at the 95%
confidence level.
In order to make a more detailed comparison,

scatterplots of observed versus predicted values at
validation sample locations were generated for the two
study areas. Figure 7 shows the scatterplots of observed
versus predicted depth to C horizon from the linking
method and the dmSoil approach (non-parametric) in
Pleasant Valley. The scatterplot from the linking method
shows apparent discontinuities and the lack of within-
class variation (dots distribute along horizontal lines). In
contrast, the scatterplot from the dmSoil approach shows
linking method versus the dmSoil approach

Pleasant Valley

Sand in A
Horizon (%)

Silt in A
Horizon (%)

Depth to C
Horizon (cm)

24.80 25.92 39.48
20.47 20.95 28.83
21.67 22.02 26.73

paring the prediction errors of the linking method and the dmSoil
dation samples

Watershed Pleasant Valley

Silt in A
horizon

Sand in
A horizon

Silt in A
horizon

Depth to
C horizon

0.0016 0.2526 0.0972 0.0170
0.0010 0.4685 0.2231 0.0123

Hydrol. Process. (2014)



Figure 7. Scatterplots of observed versus predicted depth to C horizon at validation sample locations in Pleasant Valley: (a) the linking method; (b) the
dmSoil approach with non-parametric curve fitting

SOIL PROPERTY MAPPING THROUGH DATA MINING OF SOIL CATEGORY MAPS
stronger correlation between the observed and predicted
soil property values.
DISCUSSION

Analysis of the results

The case study results demonstrate the soil property
information from the dmSoil approach is able to better
capture the continuous variation nature of soil properties
and to improve prediction accuracy in terms of RMSE.
The t-test results in Raffelson watershed show that the
prediction errors from the dmSoil approach are significantly
lower than those from the linking method for both the sand
and silt percentage of soil A horizon. In Pleasant Valley, the
accuracy improvement is statistically significant for depth to
C horizon but not for sand and silt percentage of soil A
horizon. One potential reason is that the soil A horizon
texture is relatively more prone to be affected by human
activities (e.g. cultivation) than soil C horizon.
In the experiments, both parametric and non-parametric

methods were tested to fit the frequency distribution for
continuous variables when conducting the data mining.
The results did not show an apparent difference between
the two. It was originally expected that the non-parametric
method, as it does not assume the shape and can better
approximate the frequency decay, would outperform the
parametric method. One possible reason that they show
comparable performance is the non-parametric method is
more sensitive to noise in the data while the parametric
method has some generalization effects and filters out most
of small and unnecessary details. The advantage of the
parametric method is it is less computationally intensive,
especially for large datasets.
Copyright © 2014 John Wiley & Sons, Ltd.
It can be seen from the scatterplots in Figure 7 that
there is an overestimation (more points lie above 45
degree line) when the observed values are small and an
underestimation (more points lie below 45 degree line)
when the observed values are large. The major reason is
the smoothing effect from the similarity weighted
approach. For each location, we use its similarities to
different soil types as weights to derive the final soil
property. Due to the nature of this weighting procedure,
the predicted values tend to be smoothed out, which leads
to over-estimation for small values and under-estimation
for large values.

The impacts of input data on the results

The major inputs to the dmSoil approach are environ-
mental covariate data and soil category maps. Both of
them have big impact on the prediction result.
As we use environmental optimality to indicate soil

similarities, the selected environmental variables should
be good indicators to soil variations. For the two study
areas, a clear correlation can be found between the soil
variation and topography. Therefore, it is important to
include terrain attributes into the environmental variable
set. Either missing important environmental variables or
including unnecessary ones will deteriorate the results.
The soil category map should be able to capture the

environmental conditions that each soil type corresponds
to. This requires that the soil category map was generated
based on a soil-landscape model (Hudson, 1992) and the
delineated soil polygons could characterize the soil type
variation to a large extent. The soil category maps used in
this research come from the SSURGO database. Though
there are some inaccuracies/errors due to map generali-
Hydrol. Process. (2014)
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zation (e.g. smooth polygon boundaries) and manual
boundary delineation in soil survey (e.g. some mis-
matches between soil polygons and terrain positions),
the soil maps are in general of good quality, which
ensures the improvement of the dmSoil approach
compared to the linking method.
In soil category maps, some map units contain a

mixture of more than one major soil types. They are
represented as soil complexes. The existence of soil
complexes affected our results in two aspects. First, when
calculating the similarities, we had to treat a soil complex
as a ‘soil type’ and extract the environmental conditions
for the soil complex instead of single soil types. Each soil
type in the soil complex, however, has its own niche and
their environmental condition might be quite different
from each other. The second problem comes from the
derivation of representative soil property values. For a
soil complex, the weighted average approach was used to
obtain the final representative soil property values where
the weights are proportions of different soil types in the
soil complex. The final representative values are not
really ‘representative’ but only reflect average status. In
this research, we mainly focused on soil category maps
with map units dominated by a single component (soil
type) and did not address these issues. One possible
solution is to apply spatial disaggregation (Bui and
Moran, 2001; Häring et al., 2012; Nauman and
Thompson, 2014) to spatially differentiate different soil
type in a soil complex before data mining. Using the
disaggregated soil category maps is likely to yield better
prediction results.

Uncertainty analysis

To evaluate the results, the derived soil property values
at field sample locations from the dmSoil approach were
compared with those from the linking method. It should
be realized that the derived soil property values contain
prediction uncertainties, so the value-to-value compari-
sons (e.g. Figures 6 and 7) also have uncertainties.
The dmSoil approach relies on the data mining result (the

optimality of environmental conditions for each soil type)
and the representative soil property value for each soil type
to map the continuous soil property variation. Both of them
would introduce uncertainties to the prediction results.
In the data mining process, it is assumed that the

environmental frequency curves constructed from all
the pixels within a soil type can approximate the
optimality of environmental conditions for the soil type.
However, the pixels of a soil type in the soil category
map may not be able to well represent the population
of the soil type. Therefore there is uncertainty when
using the environmental frequency curve to approxi-
mate the optimality.
Copyright © 2014 John Wiley & Sons, Ltd.
The representative soil property value for each soil type
is a single value. In fact, often times the representative
soil property value of a soil type is given as a value range.
Though we can use the min-point value of the range as
the representative soil property value, the actual repre-
sentative soil property value can be any value within the
range. This brings uncertainty to the derived representa-
tive soil property values.
Both uncertainties can be quantified using a simulation

approach. In the data mining process, based on the
bootstrapping idea in statistics (Mooney and Duval, 1993),
multiple rounds of random sampling (with replacement) on
the pixels within a soil type can be conducted and an
ensemble of frequency curves can be derived. This ensemble
of frequency curves could capture the uncertainty in data
mining procedure. Similarly, a random sampling can be
conducted to generate an ensemble of representative soil
property values within the range of possible representative
values. This ensemble of values could capture the uncertainty
of representative soil property values. The ensemble of
frequency curves and representative soil property values can
then be fed into the similarityweighted procedure to generate
multiple realizations of soil property maps, which could
provide a measure of final prediction uncertainty.

Implication for hydrological modelling

The dmSoil approach provides an easy and efficient
way to derive information on continuous soil property
variation for hydrological modelling. The only input data
are soil category maps and environmental covariates that
indicate soil spatial variation. Soil category maps are
already widely used by hydrologists. Environmental
covariates can usually be easily obtained from a DEM
and/or remote sensing data of the study area.
The derived soil property information from the dmSoil

approach is compatible with remote sensing data and
other input data for hydrological models, such as
topographic data, in terms of data model (raster) and spatial
resolution. More importantly, it shows better co-variation
with other parameters (such as slope gradient) of hydrolog-
ical models. As an example, the co-variation of depth to C
horizon with slope gradient along two transects in Pleasant
Valley are shown in Figure 8. The transect in Figure 8(a) is
composed of a valley (left), a big slope (middle) and a
smaller slope (right). It can be seen that the slope gradient
change on the two slopes does not have an impact on depth
to C horizon derived from the linking method. In contrast,
the depth variation from the dmSoil approach shows a
negative correlation with slope gradient. Slope gradient
indicates the strength of erosion. The greater the slope
gradient is, the stronger the erosion and the thinner the soil
would be. This negative correlation agrees with current
understanding of the physical processes. In Figure 8(b), the
depth from the linking method shows no variation (middle)
Hydrol. Process. (2014)



Figure 8. Co-variations of predicted depth to soil C horizon with slope gradient along two transects in Pleasant Valley. Slope gradient change (blue line)
does not have a clear impact on depth to C horizon derived from the linking method (dashed black line). The predicted depth to soil C horizon from the

dmSoil approach (solid black line) has a clear co-variation with slope gradient

SOIL PROPERTY MAPPING THROUGH DATA MINING OF SOIL CATEGORY MAPS
even though dramatic slope gradient change can be
observed. Similar to Figure 8(a), the depth from the dmSoil
approach shows a clear co-variation with slope gradient.
The co-variation has a big impact on hydrological

models. Soil depth, together with soil saturated
hydraulic conductivity, decides soil transmissivity.
Slope gradient is usually used to approximate the
effective hydraulic gradient of the saturated zone.
Therefore, the co-variation between soil depth and
slope gradient is central to a landscape level solution to
Darcy’s Equation in hydrological modelling. The
characterization of the spatial co-variations direct
influences the approximation of shallow through flow
and other hydrologic fluxes.
Take TOPMODEL (Beven et al., 1995; Beven, 1997)

as an example, the soil depth, soil saturated hydraulic
conductivity, slope gradient and upslope contributing area
(which can be obtained from topographic data) are used to
calculate the soil-topographic index (Beven, 1986; Quinn
et al., 1995; Ambroise et al., 1996). This index is applied
to model the relationship between lateral moisture flux
and lateral flow capacity. It measures the soil moisture
Copyright © 2014 John Wiley & Sons, Ltd.
deficit which is directly related to the run-off generation.
A better characterization of the co-variation between soil
depth and slope gradient can help to better depict the
spatial pattern of soil moisture deficit and therefore has
the potential to improve the simulation results.
The dmSoil approach has already been partially imple-

mented as a module in EcohydroLib which is series of
Python scripts for performing eco-hydrology data prepara-
tion workflows. The library is available to hydrological
modelling community through GitHub https://github.com/
selimnairb/EcohydroLib (Miles and Band, 2013).

Mapping continuous soil property variations

This paper provides a way to derive information on
continuous soil property variation from existing soil
category maps without extensive sampling and knowledge
acquisition efforts. Though the initial goal is to provide
detailed soil property information that is compatible with
other inputs in hydrological modelling, the dmSoil approach
can also be used in other fields that need detailed soil
information, such as ecological modelling.
Hydrol. Process. (2014)
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Soil property mapping is the major focus of many soil
mapping efforts that are currently carried out in the world,
such as GlobalSoilMap.net (Sanchez et al., 2009;
Hartemink et al., 2010). As mentioned earlier, research
work has been done onfield sample based spatial prediction,
expert knowledge based spatial prediction, direct observa-
tion using remote sensing and proximal sensing technolo-
gies as well as deriving soil property information from
legacy soil maps. This research contributes a newmethod to
make use of legacy soil category maps for mapping
continuous soil property variation.
Existing methods of using legacy soil category maps

for mapping soil property mainly include linking a
representative soil property value to each soil type
(referred to as the linking method in this research) and
linking a soil property distribution to each soil type. The
problem of linking a single representative value is the
discontinuity issue. Linking a probability distribution of
soil property to each soil type can generate ensemble
realizations of soil property maps, which can capture the
prediction uncertainties. However, it is a statistical simula-
tion that purely relies on the probability distribution of soil
properties. The derived maps may look very ‘unnatural’.
Soils often show strong correlations with other

environmental variables. With the development of spatial
data capture techniques (e.g. remote sensing), high quality
environmental data are increasingly available. Different
from existing methods of using existing soil maps, the
dmSoil approach makes use of these environmental
covariate data together with soil category map for
mapping soil properties. In the new method, soil–
environmental relationships are extracted from soil category
maps and an environmental similarityweighted procedure is
used to predict the soil property at each location. The
generated soil property maps can capture the continuous
spatial gradation of soil properties. They have better
correlation with soil environmental covariates and show
natural spatial autocorrelation effect (smooth transitions)
due to the spatial autocorrelation of environmental covariate
data (e.g. continuous elevation change). In addition, as
discussed in ‘Uncertainty analysis’ the uncertainties of the
dmSoil approach can also be quantified though a simulation
based approach (generating multiple realizations of soil
property maps using an ensemble of frequency curves and
representative soil property values). The dmSoil approach
provides an effective method to map continues soil property
information if soils in a study area have clear correlations
with some other environmental variables.
Different from the approach presented in this paper,

which is mainly based on soil–environment relationship, a
recent work on area-to-point Kriging (Kerry et al., 2012)
uses the Geostatitical framework to predict soil property
variation from soil category maps. A semivariogram is
estimated from areal data (soil category maps) to model the
Copyright © 2014 John Wiley & Sons, Ltd.
soil continuum. Further study should be conducted to
compare the dmSoil approach proposed in this research and
the Kriging method.
CONCLUSION

This paper presented dmSoil, a new approach to map the
continuous spatial variation of soil properties from soil
category maps to overcome the problem of the linking
method that is commonly used in hydrological modelling.
The dmSoil approach extracts soil environment relation-
ships from soil category maps using data mining
techniques. Based on the data mining result, a similarity
model is applied to map the variation of soil properties.
Compared to the soil property map derived from the
linking method, the prediction from the dmSoil approach
can better capture the variations within a polygon as well
as the transitions between polygons. The spatial continu-
ity and level of spatial details of the derived soil property
information are improved. In addition, the inputs of the
dmSoil approach are readily available for hydrologists.
The approach itself is easy to be deployed and integrated
in current model workflows. The proposed approach
provides an efficient way to derive quality soil property
information for hydrological modelling.
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