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The demand for parallel geocomputation based on raster data is constantly increasing
with the increase of the volume of raster data for applications and the complexity of
geocomputation processing. The difficulty of parallel programming and the poor
portability of parallel programs between different parallel computing platforms greatly
limit the development and application of parallel raster-based geocomputation algo-
rithms. A strategy that hides the parallel details from the developer of raster-based
geocomputation algorithms provides a promising way towards solving this problem.
However, existing parallel raster-based libraries cannot solve the problem of the poor
portability of parallel programs. This paper presents such a strategy to overcome the
poor portability, along with a set of parallel raster-based geocomputation operators
(PaRGO) designed and implemented under this strategy. The developed operators are
compatible with three popular types of parallel computing platforms: graphics proces-
sing unit supported by compute unified device architecture, Beowulf cluster supported
by message passing interface (MPI), and symmetrical multiprocessing cluster sup-
ported by MPI and open multiprocessing, which make the details of the parallel
programming and the parallel hardware architecture transparent to users. By using
PaRGO in a style similar to sequential program coding, geocomputation developers
can quickly develop parallel raster-based geocomputation algorithms compatible with
three popular parallel computing platforms. Practical applications in implementing two
algorithms for digital terrain analysis show the effectiveness of PaRGO.

Keywords: geocomputation; raster; parallel computing; parallel operator; graphics
processing unit (GPU); cluster; compute unified device architecture (CUDA); message
passing interface (MPI); open multiprocessing (OpenMP)

1. Introduction

As one of the most common geographic data types, raster is widely used in various
geocomputation domains, such as digital terrain analysis (DTA), distributed hydrological
modelling and remote sensing image analysis (Duckham et al. 2003). Raster-based
geocomputation is traditionally coded as sequential algorithms by geocomputation devel-
opers. Currently, there is ever-growing demand for parallel raster-based geocomputation
because of the rapid growth not only in the volume of raster data for geocomputation but
also in the complexity of raster-based geocomputation (Healey et al. 1998, Armstrong
2000, Clarke 2003).
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Much research effort has been put into the development of parallel programming of
raster-based geocomputation (e.g., Armstrong and Marciano 1996, Huang et al. 2011,
Tesfa et al. 2011, Qin and Zhan 2012) due to the higher availability and the lower
operational costs of various parallel computing platforms (Zhang 2010). However, parallel
programming has not been an easy task for most geocomputation developers who are
familiar with sequential (or serial) programming and are really interested in the develop-
ment of geocomputation method not in the parallel implementation of these methods. For
novices, parallel programming is a long process with a steep learning curve because
parallel programming introduces many complicated details (such as communication,
synchronization, and load balancing), which are not encountered in sequential program-
ming (Wang and Armstrong 2009). It is still difficult, even for those with good experience
in parallel programming, to code an efficient and scalable parallel geocomputation
program. Furthermore, it is very often that each parallel geocomputation program is for
one type of parallel computing platform (e.g., graphics processing unit (GPU), Beowulf
cluster, and symmetrical multiprocessing (SMP) cluster). Different parallel computing
platforms often have neither unified parallel hardware model nor a unified parallel
programming model. This means that a parallel geocomputation program coded for a
specific parallel computing platform often has limited portability to other parallel comput-
ing platforms.

All this raises the question as to whether an efficient way can be devised to code a
raster-based geocomputation method only once as a sequential program then compile
multiple parallel versions (one for each type of parallel computing platform). Researchers
have explored this possibility by encapsulating the parallel programming details of
common raster-based operations in a parallel raster-based programming library (or,
parallel raster-based geocomputation operators (PaRGO)). The geocomputation develo-
pers can then use the library to code a parallel program for a specific parallel computing
platform in a way that resembles sequential programming.

Parallel raster-based programming libraries of this type currently include Parallel
Utilities Library (PUL) (Bruce et al. 1995), parallel raster-based Neighbourhood
Modelling (NEMO) (Hutchinson et al. 1996), Global Arrays (GA) (Nieplocha et al.
2006), Parallel Raster Processing Programming Library (pRPL) (Guan and Clarke
2010), and Image Processing Framework (IPF) (Membarth et al. 2011). There is a
trade-off between transparency and versatility. The more parallel details these libraries
hide, the more parallel ability they lose. IPF and NEMO achieve high transparency by
hiding the parallel details well. Users without parallel programming knowledge can use
them to write parallel codes. However, IPF and NEMO only support local and focal (or
neighbourhood) operations, but neither IPF nor NEMO support regional (zonal) or global
operations. PUL and GA hide only some parallel details, but this strategy exposes a lot of
complex parallel programming library interfaces. In such a way, PUL and GA can be used
for parallelization of all kinds of raster-based operations (as long as an operation is
parallelizable) by users who have some parallel raster-based programming experience.
Compared with the other existing parallel raster-based programming libraries, pRPL
achieves a good balance between transparency and versatility by hiding most of the
parallel details, leaving only some basic parallel details (such as determining the master
node, etc.) to be assigned by users. Thus, pRPL can support not only local and focal
operations, but also some regional and global raster operations.

The main shortcoming of existing parallel raster-based programming libraries is their
poor portability, that is, each of them suits only one specific parallel computing platform.
pRPL, PUL, NEMO, and GA encapsulate a message passing library, and thus are suitable
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for Beowulf cluster. They are not available for GPU and also might not achieve high
efficiency on SMP cluster. IPF, which is based on CUDA, applies only to GPU.
Furthermore, existing parallel raster-based programming libraries often support only a
very few file formats of raster data. This situation also limits the practical applicability of
these libraries.

This paper presents a strategy to address the portability problem in existing parallel
raster-based programming libraries. This strategy is then illustrated through the design and
implementation of a set of PaRGO, which are compatible with different parallel comput-
ing platforms. Specifically, PaRGO has the following characteristics: (1) it hides the
parallel details as much as possible; (2) it supports local, focal, and global raster opera-
tions; (3) it is compatible with common parallel computing platforms (i.e., Beowulf
cluster, SMP cluster, and GPU); and (4) it supports a variety of commonly used raster
data formats.

2. The strategy and the development of PaRGO

2.1. Basic idea and overall design

In order to design PaRGO, firstly the sequential raster-based geocomputation algorithm
was compared with the corresponding parallel algorithm. Most sequential raster geocom-
putation algorithms include the following five steps (Figure 1a):

Figure 1. Flowchart of (a) general sequential algorithm and (b) general parallel algorithm of raster-
based geocomputation.

International Journal of Geographical Information Science 3
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(1) Read metadata (e.g., spatial extent, and projection) from the raster file.
(2) Create input and output domains in memory according to the spatial extent

information.
(3) Read raster data from the external memory to input domain.
(4) Compute in one round or more iterative rounds of processing. In each iteration,

the computation function f(i, j, range, inputDomain, outputDomain) is performed
for each cell. The parameter range refers to the scope of raster needed for the
computation of a cell. Based on range, computation function f(i, j, range,
inputDomain, outputDomain) reads data from inputDomain for computation of
each cell and then puts the computation result into outputDomain.

(5) Write the result outputDomain from memory to a raster file in the external
memory.

Compared with the general sequential algorithm of raster-based geocomputation, a general
parallel algorithm of raster-based geocomputation (Figure 1b) involves a large number of
parallel programming details. These can be divided into three categories: (1) domain
decomposition, (2) communication, and (3) input/output (I/O). If the above three kinds of
parallel programming details could be encapsulated and hidden for the user, geocomputa-
tion developers need only to implement the computation function f(i, j, range,
inputDomain, outputDomain) in sequential programming style to code parallel algorithms.
This will relieve the developers of the burden in dealing with the parallel programming
details and allow them to focus on the geocomputation itself.

According to above basic idea, a set of PaRGO was designed. PaRGO consists of
three core modules to hide three kinds of parallel programming details for users: the
domain decomposition module, the communication module, and the I/O module. A
highlight that makes PaRGO superior to existing parallel raster-based programming
libraries, is that it is designed to include different versions to support the following
common parallel computing platforms (Lin and Snyder 2008):

(1) Shared memory parallel machine, in which each processor shares the global
memory by system bus (Figure 2a). These mainly include symmetric multipro-
cessor (SMP) and coprocessor (e.g., GPU) devices. A multithreading program-
ming model (Dongarra et al. 2005) is normally applied to shared memory parallel
machines. The widely used multithreading programming models include open
multiprocessing (OpenMP) for SMP parallel computing devices (e.g., multipro-
cessors in personal computers) and compute unified device architecture (CUDA)
for GPU devices.

(2) Distributed memory parallel machine, in which each processor has its own
memory and interacts with other processors by communication network
(Figure 2b), is represented by Beowulf cluster. A message passing parallel
programming model is normally used on distributed memory parallel machines.
Currently, the most widely used message passing programming model is message
passing interface (MPI).

(3) Hybrid distributed-shared memory parallel machine, which can be seen as a
combination of above two types, has an overall structure of distributed memory
and consists of many shared memory components (Figure 2c). SMP cluster is
representative of this type of parallel machine. MPI/OpenMP hybrid program-
ming is popular on SMP cluster.

4 C.-Z. Qin et al.
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In this study, PaRGO was designed to provide three versions with a unified user interface,
namely, a CUDA version, an MPI version, and an MPI/OpenMP version. In such a way
PaRGO can aid the geocomputation developers towards coding once in a sequential
programming style and then compiling parallel programs for GPU, Beowulf cluster, and
SMP clusters. From the perspective of software architecture, PaRGO serves as a middle-
ware that connects parallel programming libraries specific to different parallel computing
platforms with raster-based geocomputation algorithms (Figure 3).

2.2. Design of domain decomposition module

2.2.1. Domain decomposition

Parallel algorithms of raster-based geocomputation commonly decompose the data
domain into rectangular subdomains using any of three straightforward strategies of
domain decomposition (i.e., row-wise, column-wise, and block-wise). Each subdomain
is processed by a process unit when two minimum bounding rectangles (MBRs) are
assigned to describe the subdomain for the computation task on this process unit. The first
MBR (so-called ‘task MBR’) is used to indicate the range of the result after the
computation task is completed by the corresponding process unit. The second MBR
(‘data MBR’) is used to indicate the scope of data required for the computation task of
the process unit.

Figure 2. Three types of modern parallel computing machines: (a) shared memory parallel
machine; (b) distributed memory parallel machine; and (c) hybrid distributed-shared memory
parallel machine.

International Journal of Geographical Information Science 5
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In parallel raster-based geocomputation, the core of domain decomposition is to
assign these two MBRs for each process units. Task MBR is determined by the spatial
extent of input data, the number of process units, and the domain decomposition strategy.
Data MBR is determined by not only the corresponding task MBR but also operations in
the raster computation task, which is more complicated. For local operation, data MBR
overlaps with the corresponding task MBR. For focal operation in which the computation
for a given cell requires the values of its neighbouring cells, data MBR contains not only
the task MBR but also the neighbouring area of the task MBR. For global operation, in
which the computation for a given cell requires all cells in the input domain, data MBR
constitutes the whole input domain. The data MBR for regional operation is hard to
predefine, making the parallelization of the geocomputation algorithms involved in
regional operation the most difficult, and usually requires the developer to be familiar
with parallel details. Because of this, the current design of PaRGO does not support
parallelization of regional operation, which is similar to the situation with existing
parallel raster-based programming libraries. When the number of process units is assigned
by user before the execution of parallel raster-based geocomputation, each process unit
will be accordingly assigned its task MBR and data MBR in a static decomposition way,
which means that both MBRs of each process unit will be unchanged during the
execution.

2.2.2. Workflow in domain decomposition module

The domain decomposition modules in the platform-specific versions of PaRGO have
different workflows to determine the two MBRs, especially the data MBR.

(1) In the CUDA version, the thread is the basic process unit of CUDA, and all
threads share the same address space. In this situation, the master thread first
creates a shared array with the same size as the input data domain in memory.
Then each thread directly maps to the shared array according to the corresponding
data MBR (Figure 4a).

Figure 3. Architecture of parallel raster-based geocomputation operators (PaRGO).

6 C.-Z. Qin et al.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

gr
ap

hi
c 

Sc
ie

nc
es

 &
 N

at
ur

al
 R

es
ou

rc
es

 R
es

ea
rc

h]
 a

t 2
0:

11
 2

4 
A

pr
il 

20
14

 



(2) In the MPI version of the domain decomposition module, the process is the basic
process unit of MPI, and each process has a separate address space. Thus, each
process needs to create its own subdomain in memory according the size of its
data MBR (Figure 4b).

(3) In MPI/OpenMP version of the domain decomposition module, the workflow
consists of two steps. The first step is the same as the workflow of the MPI
version. In the second step, each thread directly maps to the shared array accord-
ing to the corresponding data MBR, which is similar to the workflow of CUDA
version (Figure 4c).

2.3. Design of communication module

2.3.1. Communication modes

There are two basic modes of communication in parallel programming, that is, implicit
communication used for multithreading programming models (e.g., CUDA and OpenMP),
and explicit communication used for the message passing parallel programming model
(e.g., MPI). In the implicit communication mode, when a thread modifies the value of cell
in its task MBR, other threads whose data MBR contains this cell can simultaneously
obtain the modified value on this cell because all threads share a global array. Therefore,
the communication within CUDA is transparent to users.

In explicit communication mode, because each process of MPI has a separate address
space, modification on a cell by one process cannot affect other processes whose data
MBR contains these cells before explicitly message passing codes are executed to allow
these processes to communicate with each other. MPI/OpenMP hybrid programming
involves both communication modes. In this situation, the communication within the
MPI part is explicit when the communication within OpenMP part is implicit and
transparent to users.

Figure 4. Workflow of (a) CUDA version, (b) MPI version, and (c) MPI/OpenMP version of the
domain decomposition module, exemplified by a row-wise domain decomposition case with four
process units.

International Journal of Geographical Information Science 7
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2.3.2. MPI-based communication workflow in communication module

The communication module of PaRGO needs to encapsulate the explicit communication
process related to MPI and so to make it transparent to users. For this purpose, the
communication module is designed to work in three steps:

Step 1. Specify the sending–receiving relationship between processes. At the begin-
ning of the communication process with MPI, in the sending process it must be specified
which are the receiving processes. Each receiving process must also specify the sending
process(es) from which they will receive messages. Inside the communication module this
is determined by the domain decomposition strategy used. For example, Figure 5a shows
under the row-wise (or column-wise) domain decomposition strategy with n processes, the
processes P0 and Pn−1 communicate, respectively, with the processes P1 and Pn−2 when the
process Pi communicates with the two processes (Pi−1 and Pi+1), which use the neighbour-
ing subdomains of the Pi’s subdomain. The situation for a block-wise domain decom-
position strategy is similar (Figure 5b).

Step 2. Determine the data-sending range and the data-receiving range for each
process. The data-sending range of a sending process to one of its receiving processes
comprises the cells within both the task MBR of the sending process and the data MBR of
the receiving process. This data-sending range is exactly the data-receiving range of the
receiving process from this sending process. Note that for local operation both the data-
sending range and the data-receiving range for each process are empty.

Step 3. Communicate among processes at the end of each iterative round of proces-
sing. MPI provides different types of sending and receiving routines, such as standard
type, synchronous type, ready type, buffered type, and so on. Each type is for a different
purpose. For raster-based geocomputation, the message size needed for communication is
often greater than the threshold of the system buffer. This may cause a bottleneck because
the send process must wait when there is insufficient buffer for the receive process. In
order to avoid this problem, the communication module of PaRGO adopts buffered
communication that automatically sets the buffer size according to the size of the message.

Figure 5. The receiving process IDs of each sending process: (a) for the row-wise domain
decomposition strategy; (b) for the block-wise domain decomposition strategy.

8 C.-Z. Qin et al.
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2.4. Design of I/O module

I/O module of PaRGO is based on the open-source geospatial data abstraction library
(GDAL1), which provides a single abstract data model to read and write a variety of
spatial raster data formats. GDAL has been widely used to support a variety of commonly
used geospatial raster data formats in sequential geocomputation (Warmerdam 2008). In
the I/O module of PaRGO, the parallel I/O mode of using GDAL is explored to improve
the I/O efficiency of parallel raster geocomputation.

Because the MPI version and the MPI/OpenMP version of a parallel algorithm both
have the same I/O, the MPI version supports the I/O needs of both versions of PaRGO.
The CUDA-version I/O module also involves data-transfer between graphics memory in
GPU and internal memory. In this section, the designs of the MPI-version and CUDA-
version I/O modules of PaRGO are described.

2.4.1. MPI-version I/O module

The function of the MPI-version I/O module is to load raster data stored in external
memory into internal memory for each process according to its data MBR, and later to
write the raster data of the computation result within the task MBR from internal memory
to external memory for each process.

A sequential I/O mode using GDAL to access raster data has been applied to parallel
raster-based geocomputation in some recent studies (e.g., Wang et al. 2012). In the
sequential I/O mode, a master process takes charge of the whole I/O process between
internal and external memory when other processes access their data subdomains through
communication with the master process. This mode has not only the single bottleneck
problem when the size of raster data file exceeds the memory of the master node, but also
the overheads of data distribution between the master process and the work processes.

The MPI-version I/O module of PaRGO adopts a parallel I/O mode of using GDAL
proposed by Qin et al. (2013) (Figure 6). Note that the direct application of GDAL with
the parallel I/O mode is highly inefficient and does not even achieve correct output for
column-wise or block-wise domain decomposition (Qin et al. 2013). Qin et al. (2013)
analysed the reasons for this problem and proposed an MPI-version data redistribution
module solution based on a two-phase I/O strategy. In the parallel I/O mode with the aid
of data redistribution module, each process uses GDAL to directly read its data subdomain
stored in external memory. After computation, each process uses GDAL to open the
shared output raster file in external memory and to write the result data in it (Figure 6).
Thus the shortcomings of the sequential I/O mode are avoided and the I/O efficiency of
parallel raster geocomputation is improved. The specifics of both the problem and its
solution are not included here due to length limitations; interested readers are referred to
Qin et al. (2013) for details. By this means, the MPI-version I/O module of PaRGO hides
the parallel I/O details for users when the parallel I/O can be supported for a variety of
commonly used geospatial raster data formats.

2.4.2. CUDA-version I/O module

Compared with the MPI-version I/O module, the CUDA-version I/O module of PaRGO
takes charge of not only transferring data between internal and external memory by
GDAL, but also transferring data between the internal memory and the graphics memory
in GPU. The read operation implemented in the CUDA-version I/O module is in two steps

International Journal of Geographical Information Science 9
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(Figure 7): (1) load data from external memory into internal memory; and (2) upload data
from internal memory to graphics memory. The write operation implemented in the
CUDA-version I/O module is also in two steps (Figure 7): (1) transfer data from graphics
memory to internal memory; and (2) write data from internal memory to external memory.

3. Implementation of PaRGO

The MPI, MPI/OpenMP, and CUDA versions of PaRGO were developed in C++ pro-
gramming language and are implemented as a template programming library. In this way
PaRGO supports all commonly used types of cell attribute values in raster-based geo-
computation. Further, PaRGO is implemented as an object-oriented programming library
that comprises kernel classes and user classes (Figure 8).

Figure 6. Parallel raster I/O mode of using GDAL with a data redistribution module for parallel
geospatial processing (Qin et al. 2013).

Figure 7. Workflow in CUDA-version I/O module of PaRGO.
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3.1. Kernel classes

The kernel classes of PaRGO include DeComposition, Communication, and I/O classes
(Figure 8), which implement the modules for domain decomposition, communication, and
I/O, respectively. The design of PaRGO encapsulates these three categories of parallel
programming detail. The DeComposition class supports the three straightforward domain
decomposition strategies, that is, row-wise, column-wise, and block-wise. The
Communication class provides a buffered communication mode. The MPI-version I/O
class provides parallel I/O for commonly used geospatial raster data formats by using
GDAL with a data redistribution module under the parallel I/O mode. Kernel classes
support user classes and are transparent to users.

3.2. User classes

User classes, with a unified user interface for the three versions of PaRGO, are called by
geocomputation developers. This enables the developers to code in a sequential object-
oriented programming style but achieve the parallel algorithms compatible with the three
commonly used parallel computing platforms.

User classes include the parallel environment class, the geo-raster data classes, and the
raster operation class (Figure 8).

3.2.1. Parallel environments class

The parallel environments class (Application) is mainly used to initialize the parallel
environment at the start of a parallel program and to release parallel resources at the end
of the parallel program.

3.2.2. Geo-raster data classes

The geo-raster data classes comprise the Neighborhood, MetaData, CellSpace, and
RasterLayer classes. The Neighborhood class defines the range used for a raster operation
on a cell. Arbitrary neighbourhood configuration is supported. The MetaData class
records two types of metadata of geo-raster data: (1) the global metadata, such as the
original extent of raster data, NoData, projection, etc.; and (2) task MBR and data MBR.
The CellSpace class stores subdomain values for each process unit. The RasterLayer class
is called by users to access a raster layer defined by the Neighborhood, MetaData, and
CellSpace classes.

Figure 8. Kernel classes and user classes in PaRGO.
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3.2.3. Raster operation class

PaRGO provides a base class, RasterOperator, for users. By writing customized
RasterOperator classes derived from this base class, users can implement their own raster
geocomputation operation, as they do in sequential object-oriented programming.

4. Application

4.1. Coding parallel raster-based geocomputation algorithm using PaRGO

This section describes the application of PaRGO to the parallel programming of two
algorithm cases in DTA based on the gridded digital elevation model (DEM), which is a
typical domain of raster-based geocomputation, to evaluate the effectiveness of the
proposed PaRGO. The algorithms used in this study are (1) a slope gradient algorithm,
representing a simple algorithm, and (2) a DEM-preprocessing algorithm, representing a
more complex DTA algorithm.

4.1.1. Algorithm case 1: coding a parallel slope gradient algorithm using PaRGO

Slope gradient calculation is a typical neighbourhood computation algorithm. Without
loss of generality, a third-order finite difference method (Horn 1981) commonly used to
calculate slope gradient (Skidmore 1989) was selected for this case study.

Because parallel programming details have been encapsulated in PaRGO and are
transparent to the user, the slope gradient algorithm can be parallelized in a simple
sequential object-oriented programming way using PaRGO. The codes of the parallel
slope gradient algorithm with PaRGO are in two parts: the first part is to implement
customized class SlopeOperator derived from the base class RasterOperator by over-
riding the computation function Operator (Code 1); the second part is a main function that
simply calls the methods of the user classes in PaRGO (Code 2).

Code 1. The customized class SlopeOperator of the parallel slope gradient algorithm using
PaRGO.

class SlopeOperator : public RasterOperator<double>
{

public:
SlopeOperator()
:RasterOperator<double>(),
inputLayer (NULL), outputLayer (NULL) {}

~SlopeOperator() {}
void demlayerLoad(RasterLayer<double> &layer); //load input raster layer
void slopelayerLoad(RasterLayer<double> &layer); //load output raster layer
virtual bool Operator(int i, int j); //operator function for geocomputation

protected:
RasterLayer<double> * inputLayer; // input raster layer
RasterLayer<double> * outputLayer; // output raster layer

};
// load input gridded DEM
void SlopeOperator::demlayerLoad(RasterLayer<double> &layer)
{

inputLayer = &layer;
}

12 C.-Z. Qin et al.
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4.1.2. Algorithm case 2: coding a parallel DEM-preprocessing algorithm using PaRGO

DEM-preprocessing is used to remove depressions and flat areas in an original DEM,
which is necessary to reasonably calculate flow accumulation and other important regional
topographic attributes on DEM (Hengl and Reuter 2009). The DEM-preprocessing algo-
rithm proposed by Planchon and Darboux (2001) (or P&D algorithm) takes an iterative
approach to revising the elevation of cells in depressions and flat areas in the original
DEM with a user-specified, very small step value of elevation-revision. The P&D algo-
rithm is thought to be suitable for calculating flow accumulation at a finer scale (Qin et al.
2006). In this study, we selected the P&D algorithm as the second algorithm case for
parallelization by PaRGO.

The P&D algorithm proceeds in two steps: the first step, the water-covering step, is a
local operation that floods the entire original DEM to a sufficiently high water level,
except at the boundary of the DEM; the second step is the water-removal step, which
iteratively drains the excess water off to ensure that for each cell there is a path leading to
the boundary (Planchon and Darboux 2001). In the water-removal step, each iteration is a

//load slope gradient raster
void SlopeOperator::slopelayerLoad(RasterLayer<double> &layer)
{

outputLayer = &layer;
}
//operator function for computing slope gradient
bool SlopeOperator::Operator(int i, int j)
{

CellSpace<double> &dem = *(inputLayer->cellSpace());//input DEM data
CellSpace<double> &slope = *( outputLayer->cellSpace());//output raster data
Neighborhood<double>& nb = *( inputLayer->neighborhood()); //assign the

neighborhood window
MetaData &meta = *(inputLayer->metaData()); //metadata of raster layer
int cellSize = meta.cellSize; //cell size of DEM
double* d = new double[nb.size()]; //record the elevation values in the

neighborhood window
for(int k = 0; k < nb.size(); k++)
{

int iRow = i + nb[k].row();
int iCol = j + nb[k].col();
d[k++] = dem[iRow][iCol];

}
//calculate slope gradient by the third-order finite difference method
double dx = (d[8] + 2*d[5] + d[2] - d[6] -2*d[3] - d[0])/(8.0* cellSize);
double dy = (d[2] + 2*d[1] + d[0] - d[6] -2*d[7] - d[8])/(8.0* cellSize);
slope[i][j] = sqrt(dx*dx + dy*dy); //write results in the CellSpace of output raster
delete []d;
return true;

}
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focal operation. This iterative procedure is compute-intensive and needs to be parallelized
(Qin and Zhan 2012).

When using PaRGO, the multistep and iterative P&D algorithm is coded as parallel
algorithms in a sequential object-oriented programming style. The codes of the parallel
P&D algorithm in PaRGO comprise three parts. The first two parts are the customized
classes derived from the base class RasterOperator for the water-covering step and the
water-removal step. The third part is the main function. Due to length limitations, the code
file of the P&D algorithm using PaRGO is provided as supplementary materials of this
paper.

4.2. Experimental design

In order to evaluate the portability and efficiency of PaRGO, the two parallel algorithms
using PaRGO were compiled into MPI-version programs (called MPI_Slope and
MPI_DEMPreprocessing) and MPI/OpenMP-version programs (called MPIOMP_Slope
and MPIOMP_DEMPreprocessing) on an SMP cluster, and were also compiled into
CUDA-version programs (called CUDA_Slope and CUDA_DEMPreprocessing) on a
GPU server. For comparison, the corresponding sequential algorithms were compiled
into the sequential programs (called Serial_Slope and Serial_DEMPreprocessing).

Code 2. Main function of the parallel slope gradient algorithm using PaRGO.

int main(int argc, char *argv[])
{
/* enum ProgramType{MPI_Type = 0, MPI_OpenMP_Type, CUDA_Type,
Serial_Type};*/

Application::START(MPI_Type, argc, argv); //assign parallel environment to be
MPI-based, and initialize the parallel environment

RasterLayer<double> inputLayer; //create input raster layer
RasterLayer<double> outputLayer ; //create output raster layer
inputLayer.readNeighborhood(neighborfile); //assign the neighborhood window

by reading a config file (3×3 window for this case of slope gradient calculation.
Arbitrary size of neighborhood window can be assigned by the config file.)

inputLayer.readFile(inputfilename); //open input raster data file, and
automatically make domain decomposition

outputLayer.copyLayerInfo(inputLayer); //automatically make domain
decomposition for output raster data

SlopeOperator SlpOper; //create an object of the operator of slope gradient
calculation

SlpOper.demlayerLoad(demLayer); //load the input DEM data
SlpOper.slopelayerLoad (slopeLayer); //load the output layer of slope gradient
SlpOper.Run(); //execute Operator-method for every cell in task MBR of each

process unit
outputLayer.writeFile(outputfilename); //write the results in output raster file
Application::END(); //clean the parallel computing resources
return 0;

}
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The MPI version, the MPI/OpenMP version, and the above sequential programs were
tested on an IBM SMP cluster with 134 compute nodes. Each node consists of two Intel
Xeon (E5650 2.0 GHz) 6-core CPUs and 24 GB DDRIII memory. Compute nodes share
the disk of the I/O node through Infiniband networks. CUDA-version programs were
tested on a NVIDIA Corporation Tesla M2075 (GPU) server that consists of 448 cores
and 6 GB graphics memory. The software environment included RedHat Enterprise Linux
Server 6.2 as the operating system, g++ 4.4.6, OpenMP 3.0, MPICH2 (version 1.3.1),
CUDA 4.2, and GDAL 1.9.1. The test raster data was a gridded DEM with a dimension of
11,130 × 9320 cells, which is in GeoTiff format.

Efficiency was evaluated by the runtimes and speedup ratios of parallel programs.
Here the runtime of each tested program was the execution time of the tested program, not
including the time needed for I/O between internal and external memory. For CUDA-
version programs, the runtime of the computation part also counted the time needed for
transferring data between GPU and CPU. MPI-version programs were tested with one
compute node, and with 16 compute nodes (1, 2, 4, and 8 processes for each compute
node), respectively. Correspondingly, the MPI/OpenMP-version programs were tested
with one compute node, and with 16 compute nodes (1 process × 1/2/4/8 threads for
each compute node), respectively.

Note that the P&D algorithm needs a user-specified parameter, that is, the step value
of the elevation-revision. In this test, an extremely small value (0.00005 m) was used as
this step value in all versions of the tested P&D programs to simulate an extreme case of
compute-intensive geocomputation. A larger step value would reduce the runtimes of
every tested version of the P&D algorithm; however, the speedup ratios of each tested
P&D program should not show an obvious change.

4.3. Experimental results

Runtimes of tested programs for slope gradient calculation (Table 1) show that the runtime
of CUDA_Slope was dramatically faster than for the sequential slope gradient calculation
program (Serial_Slope). MPI_Slope and MPIOMP_Slope executed with only one process/
thread need almost same runtime as Serial_Slope. When more computing resources were
used and the count of processes/threads increased, the runtimes of MPI_Slope and
MPIOMP_Slope continued to shorten. In this experiment, MPI_Slope and
MPIOMP_Slope using 64 or more processes/threads were faster than CUDA_Slope.
Runtimes of tested programs of the P&D algorithm (Table 2) similarly show a good

Table 1. Runtimes (unit: s) of tested programs for slope gradient calculation.

Count of process units used with SMP cluster

With 1 compute node With 16 compute nodes

GPU server 1 2 4 8 16 32 64 128

Serial_Slope – 5.43 – – – – – – –
CUDA_Slope 0.15 – – – – – – – –
MPI_Slope – 5.44 2.76 1.43 0.75 0.39 0.21 0.10 0.05
MPIOMP_Slope* – 5.44 2.76 1.38 0.72 0.38 0.21 0.11 0.06

Note: *MPIOMP_Slope was tested with one, and with 16 compute nodes (1 process × 1/2/4/8 threads for each
compute node).
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performance, which is due to the effectiveness of PaRGO. In this experiment,
CUDA_DEMPreprocessing also achieved high performance, which was only slower
than MPI_DEMPreprocessing using 128 processes. This shows the advantage of GPU
device for parallelization for raster-based geocomputation algorithms.

As shown in Figure 9, the speedup ratios of the tested MPI version and MPI/OpenMP
version parallel programs using PaRGO indicated almost linear speedup. In this test, the
CUDA-version programs with PaRGO also achieved a high speedup ratio, especially for
the compute-intensive P&D algorithm of DEM-preprocessing (with a speedup ratio near
100). The experimental results show the effectiveness of PaRGO.

5. Conclusion and future work

This paper presents a strategy to address the portability problem in existing parallel raster-
based programming libraries. This strategy is illustrated through the design and imple-
mentation of a set of PaRGO compatible with three popular types of parallel computing
platforms (i.e., GPU supported by CUDA, Beowulf cluster supported by MPI, and SMP
cluster supported by MPI/OpenMP). PaRGO encapsulates three types of parallel program-
ming details (i.e., domain decomposition, communication, and parallel I/O) in a form that
is transparent to users. In the I/O module of PaRGO, a parallel I/O mode using GDAL is

Table 2. Runtimes (unit: s) of tested programs for P&D DEM-preprocessing.

Count of process units used with SMP cluster

GPU
With 1 compute node With 16 compute nodes

server 1 2 4 8 16 32 64 128

Serial_DEMPreprocessing – 40,031 – – – – – – –
CUDA_DEMPreprocessing 408 – – – – – – – –
MPI_DEMPreprocessing – 40,118 20,101 10,181 5666 2857 1440 744 393
MPIOMP_DEMPreprocessing* – 40,114 20,738 10,321 6079 2659 1421 820 491

Note: *MPIOMP_DEMPreprocessing was tested with one, and with 16 compute nodes (1 process × 1/2/4/8
threads for each compute node).

Figure 9. Speedup ratios of parallel programs of (a) the slope gradient algorithm and (b) the P&D
algorithm.
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implemented to support a variety of commonly used geospatial raster data formats with a
high I/O efficiency.

By using PaRGO in a sequential object-oriented programming style, geocomputation
algorithm developers who lack knowledge and experience of parallel programming can
quickly develop parallel raster-based geocomputation algorithms based on local, focal,
and global raster operations. In addition, parallel algorithms with PaRGO can be compiled
into MPI-version, MPI/OpenMP-version, or CUDA-version programs, so as to be com-
patible with three popular types of parallel computing platforms. Practical applications of
PaRGO in coding parallel algorithms of slope gradient and DEM-preprocessing showed
the effectiveness of PaRGO.

The current version of PaRGO cannot directly support parallelization of regional
operation in raster-based geocomputation. Recently, some new parallelization strategies
for DTA algorithms with typical regional operation (e.g., flow accumulation computation)
have been proposed (Qin and Zhan 2012, Schiele et al. 2012). It is possible that
parallelization of regional operation could be supported by combining PaRGO with the
new parallelization strategies for DTA algorithms with typical regional operation. More
work is needed to confirm this utility of PaRGO.

Currently, PaRGO includes three versions with a unified user interface, that is, MPI-
version, MPI/OpenMP-version, and CUDA-version, which is compatible with Beowulf
cluster, SMP clusters, and GPU, respectively. With the rapid development of parallel
programming techniques, cross-platform parallel programming library and standard (e.g.,
OpenCL) has been released recently. Even handheld/embedded devices can be used for
parallel computing. Under the strategy proposed in this paper, it still needs additional
work to develop new version of PaRGO based on new-released parallel programming
library to provide enhanced performance and functionality for parallel raster-based
geocomputation.
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