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Abstract This paper presents a regionalized vulnerability curve-building approach to

vulnerability and risk assessment of wheat subjected to drought that uses the Environ-

mental Policy Integrated Climate (EPIC) model and statistical analysis. We defined wheat

vulnerability as the degree to which a wheat production system is likely to experience yield

loss due to a perturbation or drought hazard. Wheat vulnerability in a given region is thus

the yield loss divided by the drought hazard index (DHI). By simulating a variety of wheat
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yield losses and associated DHIs, wheat drought vulnerability curves can be developed. We

propose that agricultural systems be considered uniform within each wheat-planting region

and different in different regions, according to territorial differentiation, when regionalized

vulnerability curves are built. Based on this principle, a detailed regional crop calendar was

improved, and optimized wheat varieties were refined that can differentiate agricultural

systems within wheat-planting regions. The crop calendar was improved based on the

assumption that local farmers have perfect knowledge in selecting sowing and harvesting

dates. The wheat varieties were optimized by adjusting the genetic parameters of wheat in

the EPIC model using the Shuffled Complex Evolution algorithm–University of Arizona

(SCE-UA) method. Based on these improvements and innovations, the precision of most

vulnerability curves was improved, and the curves were compared favorably to those

observed in previous studies related to differences in the genetic character of wheat, the

crop calendar, environmental conditions, and other relevant factors. Differences within

each region were smaller than differences between regions. More detailed wheat vul-

nerability curves allow for the assessment of expected wheat yield loss and also allow for a

high level of precision in an evaluation, at a variety of scales, of risk of wheat subject to

drought. The proposed approach to building regionalized vulnerability curves has the

potential to be the basis for crop drought vulnerability curves in different geographical

areas at multiple scales.

Keywords Drought � Regionalized vulnerability curves � EPIC model � Wheat � China

1 Introduction

Vulnerability assessment is one of the key scientific issues in disaster risk research (Cutter

1996; Brooks 2003; Sullivan 2011). Vulnerability, which is defined as the degree to which

a system is susceptible to and unable to cope with the adverse effects of climate change

(McCarthy 2001), is an important concept in the study of risk and has been assessed in

numerous case studies (Yoo et al. 2006; Field et al. 2012). Vulnerability is recognized as

an inherent property of looseness when crops are threatened (Blaikie et al. 1994;

McCarthy 2001; ISDR 2002; Turner et al. 2003a, b). More specifically, in agricultural

drought research, vulnerability assessment attempts to calculate the loss or potential loss

of crops or agricultural systems in order to identify factors causing vulnerability (Wil-

helmi and Wilhite 2002; Zhang et al. 2013a, b). Thus, crop drought vulnerability

assessment provides important scientific support in drought planning and mitigation

(Ganji et al. 2006). Our research will build regionalized wheat drought vulnerability

curves for wheat crops in China.

Vulnerability was assessed qualitatively when the term was first coined. Some widely

applied qualitativemethods are descriptive, for example in the RH (Turner et al. 2003a), PAR

(Wisner 2004) and BBC models (Birkmann 2006). These methods provide the theoretical

bases for quantitative vulnerability assessment. In agricultural drought vulnerability re-

search, common quantitative disaster vulnerability assessment methods include a historical

disaster loss data assessment, amulti-index evaluationmethod, and a hazard loss curve-based

(vulnerability curve) assessment (Wang et al. 2013). Because the historical disaster loss

method focuses on the disaster loss rate, it cannot reflect the process and mechanism of

vulnerability formation and often suffers from insufficient data. The multi-index evaluation
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method uses the analytical hierarchy process (AHP), a fuzzy comprehensive evaluation, the

Delphimethod, the nearmethod, and the projection pursuit technique to determine theweight

of indexes (Wu et al. 2013). Statistical methods, such as empirical orthogonal function (Kim

et al. 2011), expand gray relation analysis (Jiang et al. 2012), GIS (Wu et al. 2011), and other

mathematical or technical methods, are also used in the multi-index evaluation method.

However, the vulnerability estimate resulting from this method can only reflect the relative

spatial distribution characteristics but cannot provide an actual value. Moreover, weight

determination can be subjective. For example, the AHP method depends on expert eval-

uations to weigh the importance of factors, and the level of expertise fundamentally influ-

ences the final evaluation results. These shortcomings have limited the utility of vulnerability

assessment and have led to increased interest in the vulnerability curve method.

A vulnerability curve (function) can be used to analyze the relationship between hazard

intensity and loss of exposure. Many vulnerability curve studies have been reported related

to such phenomena as floods (Dutta et al. 2003; Merz et al. 2004), earthquakes (Colombi

et al. 2008), windstorms (Lee and Rosowsky 2005), and hail (Hohl et al. 2002). Wang et al.

(2013) quantified wheat drought vulnerability. His research proposed an operational ap-

proach for assessing the physical vulnerability of two wheat varieties to drought using the

Environmental Policy Integrated Climate (EPIC) model. Wheat yield loss was estimated

using vulnerability curves that relate the water stress-based drought hazard index (DHI) to

the yield loss rate under a particular level of drought intensity. However, this method,

which uses the vulnerability curves of only two wheat varieties to assess vulnerability in

China, is insufficient and requires a high degree of simplification, as it does not take

territorial differentiation into account despite its large scale. Crop varieties, which are

crucial parameters and have significant influence on wheat yield (Wang et al. 2005; Wu

et al. 2009), have for the most part been ignored in previous studies. In addition, the crop

calendar, which is obtained from statistical data, has a temporal resolution of 10 days,

which is not precise enough and does not fit the model well as a crucial and sensitive

parameter. Jia (2010) and Jia et al. (2012) also constructed regionalized vulnerability

curves for corn according to China’s corn regionalization, using the EPIC model, but the

genetic parameters used in the model were the same for each corn-planting region, so the

study found differences per corn-planting unit although the assessment was conducted

according to corn-planting regions. Crop varieties, which are determined by genetic pa-

rameters, are the main cause of vulnerability difference among regions, a factor that cannot

be neglected when using the EPIC model to assess crop vulnerability.

The main goal of our study is thus to propose an analytical procedure that can assess

the vulnerability of wheat to drought while avoiding these shortcomings. Vulnerability is

described here in terms of hazard loss curves, which describe the yield loss rate of a

specific element at risk (i.e., a wheat field) compared with the DHI, which is based on

water stress derived from the EPIC model. In the following sections, we describe the

methodological framework on the basis of the EPIC model, using China as the research

area. In addition, a model calibration and validation are performed. First, we calibrated

the crop calendar and genetic parameters of each region. We then ran the EPIC model in

each region in drought and optimal scenarios. Water stress and wheat yield, which are

the model outputs, were used to obtain the DHI and yield loss separately. Last, we

describe the analytical procedure used to develop vulnerability functions that can be used

more broadly to evaluate wheat vulnerability in agricultural drought risk analyses con-

ducted in China.
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2 Method and data

2.1 Study area

China is one of the top three wheat producers in the world. In 2011, the country’s wheat

production accounted for 16.8 % of total world production, and China was ranked the top

wheat producer worldwide (FAO 2011). Wheat is planted widely in China, which has 10

main wheat-planting regions: the South China Winter Wheat Region, the Southwest Winter

Wheat Region, the Middle and Lower Yangtze Winter Wheat Region, the Huang-Huai

WinterWheat Region, the Qinghai-Tibet Spring andWinterWheat Region, theNorthWinter

Wheat Region, the Northwest Spring Wheat Region, the North Spring Wheat Region, the

Xinjiang Winter and Spring Wheat Region, and the Northeast Spring Wheat Region (Zhao

2010a, b). However, drought is a dominant threat to wheat, representing up to 79.21 % of all

hazards to the crop (Zhang et al. 2013a, b). Most of the major wheat-planting areas, espe-

cially the Huang-HuaiWinterWheat and theNorthWinterWheat regions, are under threat of

drought hazard (He et al. 2011; Zhang et al. 2013a, b). It has been estimated that drought

caused 1.58 9 107 t in crop yield loss annually from 1950 to 2001 in China, accounting for

56.2 % of loss from all natural disasters (Wang 2007). Moreover, drought frequency and

potential yield loss are increasing due to global warming (Zhang et al. 2013a, b; Cao et al.

2014). A significant aggravation trend of meteorological drought in China from 1980s to

2000s has also been documented (Li et al. 2014), especially for winter wheat-planting areas

(Wang et al. 2012), which contribute more than 70 % of wheat production. Wheat has thus

been a consistent focus of agricultural drought research, and the increasingly aggravated

drought in China makes understanding its vulnerability to drought even more critical. Re-

gionalized wheat drought vulnerability curves could be the foundation of better assessments

of wheat drought risk. Such research is necessary not only for formulating drought mitigation

policy, but also for its potential as a methodology in other crop drought research.

Wheat planting in China has distinctive regional characteristics because of diverse

natural conditions, planting systems, varieties, and production levels. Climate, for exam-

ple, varies in terms of the wheat-growing season, yearly average temperature and yearly

precipitation, which ranges from 100 to more than 350 days, 0 �C in Mohe to 23.8 �C in

Hainan and from 100 mm inland to 2500 mm at the southeast coast, respectively. These

significant regional differences in natural conditions lead to stark regional features for

wheat planting, and are why wheat-planting zonation is the basis of this study. Of the 10

wheat-planting zones in China (Zhao 2010a), the Xinjiang Winter and Spring Wheat region

was divided into the North Xinjiang Spring Wheat Region and the South Xinjiang Winter

Wheat Region for this study, because the former plants mostly spring wheat, and the latter

is suitable for winter wheat planting (Zhao 2010b). Note that the Qinghai-Tibet winter and

spring wheat region is regarded as a spring wheat region because the spring wheat-planting

area covers more than 66 % of the region (Zhao 2010b). There are thus actually 11 typical

wheat-planting zones for our EPIC model and analyses (Fig. 1).

2.2 Methods

The regionalized agricultural drought vulnerability curve is applicable to a vulnerability

assessment of wheat affected by drought. We propose a new statistical method based on

Tobler’s First Law of Geography (Tobler 1970) via an EPIC model simulation. To model

the regional impact of drought on wheat yield loss, we hypothesize that the wheat varieties
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and crop calendar vary across each wheat-planting region. Factors such as fertilization,

tillage, or irrigation will remain the same for each station during the simulation periods.

For the purpose of examining spatial differences in agricultural drought vulnerability,

temporal differences, such as change in vulnerability with time due to the improvement of

wheat varieties, are not considered.

Figure 2 illustrates the method’s conceptual framework. The regional vulnerability

curves are represented by two key indicators: yield loss and the drought index. The two

indicators are obtained from the EPIC model. The drought index is bounded by the duration

and intensity of water stress (WS), which is one of the output variables of the EPIC model.

Before running the EPIC model, the genetic parameters and tillage date, which are the most

sensitive parameters, must be calibrated. An agricultural system classification, which uses

wheat varieties and management measures (crop calendar, fertilizer, pesticide, irrigation,

Regional 
vulnerability 

curves
EPIC Model

Yield loss

Crop system 
classification (wheat 
type, farming season)

Drought 
index Methodology for 

vulnerability 
curve generationTillage 

date

Genetic 
parameter

Calibration

Fig. 2 Flowchart for the proposed framework of agricultural drought vulnerability analysis of wheat

Fig. 1 Planting regionalization of wheat in China
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etc.), is used to define the capacity of each agricultural system. The agricultural systems are

considered the same within each wheat-planting region and different in different regions.

2.2.1 Agricultural drought index

To simulate the influence of drought on wheat, effects other than drought should be

eliminated through drought scenario settings. In the EPIC model, the stress caused by

water, nutrients, temperature, aeration and radiation is estimated. The stresses range from 0

to 1 and affect plants in several ways. The stresses are considered in estimating constraints

on biomass accumulation. The biomass constraint is the minimum level of water, nutrient,

temperature, and aeration stresses (Williams 1995). The potential biomass is adjusted daily

if any of the five plant stress factors is less than 1.0, using formula 1:

DB ¼ DBp

� �
REGð Þ ð1Þ

where REG is the crop growth regulating factor (the minimum stress factor). In the

simulation of agricultural drought, because the availability of water is one of the most

critical among the factors that affect plant growth (Chaney 1981), the DHI should be based

on water stress, and the other stresses should be eliminated. In Wang et al.’s study (2013),

there are two scenarios: (1) wheat is planted with full nutrients and sufficient water; (2)

wheat is planted with full nutrients and no irrigation (in other words, only rain-fed; the

differences in yields were caused by water stress only). However, Wang’s method could

not completely eliminate the influence of temperature stress, so the yield loss rate was

magnified (drought intensity was minimized equivalently according to formula 3) when

temperature stress was more intensive than water stress (when TS\WS). An assumption

that wheat grows at an optimal temperature (TGi equals Toj in formula 2) during the growth

periods in the drought simulation is thus made in order to eliminate temperature stress.

TSi ¼ sin
p
2

TGi � Tbj

Toj � Tbj

� �� �
ð2Þ

where TG is the average daily soil surface temperature in �C; Tb is the base temperature

for crop j, and To is the optimal temperature for crop j.

Lyj ¼
YLD1y � YLD2y

max YLD1j
� �

¼
HIð Þ

Pn
i¼1 DBp

� �
i

� �
� HIð Þ

Pn
i¼1 DBp

� �
i

TSiþWSi� TSi�WSij jð Þ
2

� �

HIð Þ
Pn

i¼1 DBp

� �
i

� �

�
HIð Þ

Pn
i¼1 DBp

� �
i

� �
� HIð Þ

Pn
i¼1 DBp

� �
i
WSið Þ

� �

HIð Þ
Pn

i¼1 DBp

� �
i

� � ¼ Lyjws

ð3Þ

where Lyj is the loss rate of yield calculated in Wang’s research; Lyjws is loss rate of yield

caused only by water stress; DBp

� �
i
is the biomass increment in day i; HI is the harvest

index; TSi and WSi are the temperature stress and water stress in day i, respectively.

The agricultural DHI is key to our method because the vulnerability curves are esti-

mated in terms of DHI based on water stress versus the yield loss rate of wheat. WS

represents the constraints on crop growth brought by water deficit. A close relationship

between crop yield and WS has been established (Wu and Wilhite 2004). WS, as a daily

output variable of the EPIC model, ranges from 0 to 1. The lower the value, the stronger
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the water stress. In this study, the DHI built with WS is composed of the magnitude and

duration of the stress, reflecting the intensity of drought hazard in the wheat-growing

period. (formula 4).

DHIyj ¼
Pn

i¼1 1�WSið Þ �min DHIkð Þ
max DHIkð Þ �min DHIkð Þ ð4Þ

where DHIyj refers to the agricultural DHI of y year in station j; WSi denotes the WS

intensity of day i when WS occurs; n denotes the total days when there is water stress; and

max/min (DHIk) denotes maximum/minimum of the index of agricultural DHI of all years

in all stations in region k.

In this manner, local soil conditions, wheat genetic characteristics, and cropping sys-

tems are included in the analysis, and water stress is determined by these parameters

directly or indirectly. The water stress is calculated through formula 5 in the EPIC model

(Williams 1995):

WSi ¼
PM

l¼1 ui;l

Epi

ð5Þ

where WS is the water stress factor; u is the water use in layer l, and Epi is the plant’s

potential water use on day i.

The related factors in formula 5 are calculated using formulas 6–8 (Williams 1995):

Ep ¼
E0ð Þ LAIð Þ

3
; 0�LAI� 3:0

Ep ¼ E0; LAI[ 3:0

ð6Þ

where Ep is the predicted plant water evaporation; E0 is the potential evaporation; and LAI

is the leaf area index.

upl ¼
Epi

1� exp �Kð Þ 1� exp �K
Zl

RZ

� �� 	
� 1� UCð Þ 1� exp �K

Zl�1

RZ

� �� 	� �� �

� UC
Xl�1

k¼1

uk ð7Þ

where upl is the potential water use rate for layer l; RZ is the root zone depth; Zl is the depth

of layer l; K is a water use distribution parameter; and UC is the water deficit compensation

factor.

ul ¼ upl exp 5
4 SWli �WPlð Þ
FCl �WPlð Þ � 1

� �� �
; SWl\

FCl �WPl

4
þWPl

ul ¼ upl; SWl �
FCl �WPl

4
þWPl

ð8Þ

where SWli is the soil water content in layer l on day i and FC and WP are the soil water

content at field capacity and wilting point for layer l, respectively.

2.2.2 Vulnerability curve establishment

The modified scenario settings from Wang et al. (2013) are wheat planted with full nu-

trients, optimal temperature and enough water (through irrigation settings in the EPIC
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model) in the optimal scenario (YLD1) and wheat planted with full nutrients, optimal

temperature, and non-irrigation (rain-fed) in the drought scenario (YLD2). Thus, the dif-

ference between the two revised scenarios should result from the effect of water stress

alone. The yield loss rate is calculated using formula 9, and the corresponding DHI is

calculated under the drought scenario through formula 4.

Lyj ¼
YLD1y � YLD2y

max YLD1j
� � ð9Þ

where Lyj is the loss rate of yield of y year in station j; YLD1y and YLD2y are the yield of

y year under optimal and drought scenarios, respectively; and max (YLD1j) is maximum

annual yield of station j.

However, another problem arises when scenario settings in some regions have vul-

nerability curves with many points that have a yield loss rate reaching nearly to 1 (Fig. 7).

This is because the precipitation in some or most stations of these regions is minimal, and

in the drought scenario, the WS can reach below 0.01. When this is the case, wheat will

almost completely die. To address the problem, just enough irrigation is provided in the

drought scenario to prevent the wheat from dying, and at the same time to prevent the

drought intensity from being overly influenced.

Previous studies have found that crop yield loss and drought intensity have a logistic

relationship (Jia et al. 2012; Wang et al. 2013). To generate the vulnerability curves

(hazard-loss curves), a regression analysis method is used, requiring enough sample points.

The number of stations in each region allows for the generation of a large number of

scenarios of drought hazard intensity, ensuring the precision of the vulnerability curves.

2.2.3 Model calibration and validation

Model calibration helps to verify the wheat varieties, which are determined by genetic

parameters in the EPIC model and management measures (mainly the crop calendar and

other measures using default values) that are used for the crop system classification of the

wheat-planting regions. The sowing and harvesting dates (especially the sowing date),

which are highly sensitivity parameters related to crop yield (Wu et al. 2009), are different

for each region because of the variation in environmental conditions. Thus, the determi-

nation of the wheat sowing and harvesting date for each region is completed first. Our

model assumes that local farmers have perfect knowledge in selecting sowing and har-

vesting dates (Liu et al. 2008). In simulating the impact of drought, the model finds proper

planting and harvest dates for optimized total yield during the simulation period. The

alternative date is determined using the earliest sowing day, sowing date range, and du-

ration (Table 1: Zhao 2010a, b).

Model calibration aims to determine a set of genetic wheat parameters that could

represent the physiological characteristics of each wheat region. Calibration is completed

using the Shuffled Complex Evolution Algorithm–University of Arizona (SCE-UA), which

is an automatic calibration method proposed by Duan et al. (1992). The simulations

through SCE-UA are regarded as valuable as they sample the entire parameter space, with

a focus on solutions near the optimum (Xu et al. 2013). Based on previous studies (Wang

et al. 2005; Wu et al. 2009; Liu 2009), the following six parameters were selected for

calibration: (1) potential radiation use efficiency (WA), (2) harvest index (HI), (3) point in

the growing season when leaf area begins to decline due to leaf senescence (DLAI), (4)

normal fraction of N in crop biomass at mid-season (BN2), (5) potential heat unit (PHU),
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and (6) crop parameter control leaf area growth of the crop under non-stressed condition

(DLP2), which are the most sensitive parameters for crop yield in the EPIC model. The

calculation procedure and parameter settings of the algorithm are based on Duan et al.

(1993, 1994). The objective function is F ¼ Abs 1� dy
� �

, where dy represents the coef-

ficient of determination. The convergence tolerance of the objective function and pa-

rameter iteration step length are 0.1 and 10-5, respectively. The calibration will stop if

convergence is not achieved after 5000 iterations. The boundary values of a crop’s genetic

parameters are listed in Table 2. A specific station with relative consecutive time series is

selected for each region with the observed wheat yield data. The other stations’ data for

each region are used for validation. The following parameters are used to measure the

precision of the model calibration and validation (Gaiser et al. 2010).Mean relative error

MRE ¼ 1

n

Xn

i¼1

ŷi � yið Þ
yi

ð10Þ

Table 2 Calibrated parameter boundary values

Parameters Default Range

Spring wheat Winter wheat Lower range Higher range

WA 30.0 35.0 30 45

HI 0.5 0.5 0.45 0.6

DLAI 0.60 0.60 0.1 1

BN2 0.0250 0.0230 0.0134 0.06

PHU 1500 1500 1200 2400

DLP2 49.950 50.950 10 100

Table 1 Sowing and harvesting dates used for calibration (refer to Zhao 2010a, b)

Region Earliest sowing day Sowing date range Duration

Month Day

0 10 30 21 125–150

1 8 20 82 175–250

2 10 21 30 200–225

3 9 11 39 230–250

4 3 21 30 130–190

5 9 11 39 250–280

6 3 11 30 120–150

7 9 21 19 245–265

8 3 11 40 110–120

9 4 1 19 90–100

10 3 11 50 100–120

In column Region: 0: South China Winter Wheat Region; 1: Southwest Winter Wheat Region; 2: Middle
and Lower Yangtze Winter Wheat Region; 3: Huang-Huai Winter Wheat Region; 4: Qinghai-Tibet Spring
and Winter Wheat Region; 5: North Winter Wheat Region; 6: Northwest Spring Wheat Region; 7: Xinjiang
Winter Wheat Region; 8: North Spring Wheat Region; 9: North Xinjiang Spring Wheat Region; 10:
Northeast Spring Wheat Region, which have the same meaning in the following tables and figures
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Model efficiency

MEF ¼
Pn

i¼1 yi � �yð Þ2�
Pn

i¼1 yi � ŷið Þ2
Pn

i¼1 yi � �yð Þ2
ð11Þ

Root-mean-square error

RMSE ¼ 100

�y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ŷi � yið Þ2
s

ð12Þ

where n is the sample number; y is the observed yield; ŷ is the predicted maize yield; and �y
is the mean of the observed values. Values of mean relative error (MRE) close to zero

indicate small differences between the predicted and measured mean crop yield, which

thus indicate little systematic deviation or bias in the entire dataset. The same conclusion

can be drawn if the model efficiency (MEF) is close to one. Values of absolute error or

root-mean-square error (RMSE) close to zero indicate the precision and reliability of the

prediction for single-yield estimation points.

2.3 EPIC model and inputs

The EPIC model was developed from the Erosion Productivity Impact Calculator model

(Williams et al. 1984), which was originally developed to assess the effect of soil erosion

on crop productivity. Because of its advantage in simulating crop growth processes based

on daily step (Williams et al. 1989; Sharpley and Williams 1990), the EPIC model has been

widely used in crop drought research, such as building wheat drought vulnerability curves

(Wang et al. 2013), maize drought risk assessment (Jia 2010; Jia et al. 2012; Yin et al.

2014), and crop irrigation management (Rinaldi 2001). For simulating the wheat growth

process, the model inputs include meteorological data, soil data, and agricultural data such

as crop yield used for model calibration and validation (Table 3).

Table 3 Major data sources

Data name Content Source

Meteorological data Daily recorded dada, 1950–2011,
752 stations, includes precipitation,
temperature, radiation, wind speed
and relative humidity etc.

China meteorological data sharing
service system of China
Meteorological Administration
(http://cdc.cma.gov.cn/gx/web/
sjfljs.jsp)

Spatial distribution of soil
type

1:1,000,000 digital soil map of China Institute of Soil Science, Chinese
Academy of Science

Soil properties Soil layers, texture data, and organic
carbon etc.

Chinese Soil Genus Records
(National Soil Survey Office
National Soil Survey Office 1994)

Wheat yield data Annual wheat yield data recorded by
agro-meteorological experimental
stations of China Meteorological
Administration, 2000–2011, 175
stations

China meteorological data sharing
service system of China
Meteorological Administration
(http://cdc.cma.gov.cn/gx/web/
sjfljs.jsp)

Wheat regionalization map Wheat-planting regionalization map
of China

Data sharing net of Chinese
Academy of Agricultural Sciences
(http://www.caas.net.cn/sjk/54019.
shtml)
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Daily routine meteorological data were obtained from 752 China Meteorological Ad-

ministration stations, including daily maximum and minimum temperature, wind speed,

humidity, and precipitation, and were used in the model processing. Daily solar radiation

data were available from 122 China Meteorological Administration stations. The solar ra-

diation data at other stations were estimated based on sunshine duration data using the

Angstrom-Prescott model (Angstrom 1924; Prescott 1940) as used in our previous studies

(Wang et al. 2012; 2013). The soil data include soil type and soil properties. The digital soil

map of China (1:1,000,000) was produced by the Institute of Soil Science and the Chinese

Academy of Science (Shi et al. 2004). Soil property data, including the physical and chemical

properties of soil, such as the number of soil layers, soil albedo, bulk density, clay content,

soil pH, and soil organic matter, were extracted from Chinese Soil Genus Records (National

Soil Survey Office 1994). Both of these data sources have been used in our previous research

(Jia 2010; Wang et al. 2012; Jia et al. 2012; Wang et al. 2013). Crop yield data provided by

386 agro-meteorological experimental stations of the China Meteorological Administration,

among them 175 stations (37 stations that record spring wheat yield, 141 stations that record

winter wheat yield, and three of these stations that record both) had annual wheat yield

records from 2000 to 2011. These wheat yield data have been validated as meeting the needs

of EPIC model calibration and validation (Wang et al. 2012, 2013).

3 Results

3.1 EPIC model parameters

The proposed method allowed us to establish a set of optimized EPIC model parameters for

wheat yield simulation, including sowing and harvesting date and genetic parameters. The

best sowing and harvesting date for each station in each region is listed inTable 4. The genetic

parameters of wheat for each wheat region are then determined and are listed in Table 5.

The derived crop calendar, especially the sowing date, can eliminate the ‘‘stress’’ of the

crop calendar (otherwise it may lead to a yield decline), because it is a better fit for the

model’s operation, compared with the statistical crop calendar (Wang et al. 2012). In

addition, it incorporates the farmers’ capacities to cope with climate change, which

Table 4 Best sowing and har-
vesting date in each wheat region

Region Sowing date Harvesting date

Earliest Latest Earliest Latest

0 30-Oct 18-Nov 29-Mar 17-Apr

1 20-Aug 8-Nov 27-Apr 16-Jul

2 21-Oct 18-Nov 3-Jun 1-Jul

3 11-Sep 18-Oct 19-May 25-Jun

4 21-Mar 18-Apr 27-Sep 25-Oct

5 11-Sep 18-Oct 18-Jun 25-Jul

6 11-Mar 8-Apr 8-Aug 5-Sep

7 21-Sep 8-Oct 13-Jun 30-Jun

8 11-Mar 18-Apr 9-Jul 16-Aug

9 1-Apr 18-Apr 10-Jul 27-Jul

10 11-Mar 28-Apr 9-Jul 26-Aug
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improves decision making when profiling the differential vulnerability of each wheat-

planting region (Turner et al. 2003a), by adjusting the sowing and harvesting date for

optimized yield (Liu et al. 2008).

3.2 Regional wheat yield simulation

Figure 3 illustrates the simulated and observed yield data for the stations selected for

calibration. Most regions satisfied the termination criterion of objective function; however,

some regions did not. In order to assess the results of a given simulation, a graphic

comparison between the simulated and observed wheat yields is depicted in Fig. 4 for each

region. The indices for testing validation performance are provided in Table 6.

The simulated yields and observed yields for most regions are comparable (Fig. 3). The

figure shows that the slopes of the trend lines are close to 1, and theR2 is relatively high (Fig. 4).

The MRE and RMSE are small (Table 6). The values of MEF also indicate relatively good

validation results (most are close to 1). This indicates that the simulation results are acceptable.

In regions 0, 8 and 10, however, the fit is lower than for other regions. In regions 0 and 10 in

particular, the slope and R2 are close to 0. The RMSE andMRE are higher than they are in other

regions, and theMEF values are much lower (Table 6). These results may have different causes.

In regions 0 and 10, the points are quite scattered, indicating that the wheat-planting regional-

ization is not accurate enough to differentiate the wheat-growing systems, so that the wheat yield

in regions 0 and 10 have a clear difference. In fact, within these two regions, the wheat varieties

still have relatively big differences. Figure 4 (region 0) shows that the points clearly converge at

two centers, which should lead the regions to become further regionalized. Because the points are

evenly distributed on both sides of the 1:1 line, however, the result is acceptable for estimating

regional regularities. In region 8, the poor fit is due to insufficient observed data. There are only

two observed data points, and the RMSE, MRE, and MEF suggest relatively good model

performance. But the precision of the validation is uncertain due to insufficient data.

3.3 Wheat vulnerability curves for China

Figure 5 illustrates the derived sets of vulnerability curves for the 11 wheat regions. Most

curves fit very well, with an R2 close to 1. In most winter wheat regions, the curves are

Table 5 Optimized genetic pa-
rameters in each wheat region

Region Crop parameters

WA HI DLAI BN2 PHU DLP2

0 33.7 0.46 0.54 0.0441 2341 84.079

1 30.8 0.45 0.37 0.0260 1586 76.166

2 30.2 0.45 0.87 0.0205 1990 79.678

3 30.0 0.45 0.54 0.0495 1706 81.652

4 45.0 0.60 0.44 0.0289 1336 30.999

5 43.7 0.59 0.62 0.0378 1209 81.414

6 30.1 0.50 0.73 0.0543 1924 78.468

7 44.2 0.50 0.33 0.0594 1211 38.781

8 35.4 0.50 0.53 0.0392 1685 69.078

9 36.0 0.51 0.38 0.0415 1201 71.930

10 30.6 0.46 0.44 0.0298 2345 67.613
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closer to an S shape (i.e., regions 0, 1, 3, 5, and 7) as Wang et al. (2013) have pointed out.

Most curves of spring wheat regions are more linear (i.e., regions 4, 8, and 10). Wang et al.

(2013) found that a vulnerability curve imposes a magnification or reduction effect on the

disaster risk in different sections. In regions 0, 3, 5, 7 and 9, there are three sections for

which the vulnerability curve poses a reduction effect on the disaster risk with lower and

higher DHI and a magnification effect with moderate DHI. In the other regions, the

Fig. 3 Yearly yield simulations during calibration period in each wheat region, and a–k for regions 0–10,
respectively
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vulnerability curve poses only a reduction effect. This indicates that regions 0, 3, 5, 7 and 9

are generally more vulnerable than the other regions.

These vulnerability curves, compared with Wang et al.’s (2013) two vulnerability

curves for wheat, have better precision, because the differences in the relevant parameters,

such as the wheat’s genetic character, the crop calendar, and environmental conditions,

within each region are smaller than the differences among regions, so the points are more

convergent. The differences between regions are clear, which can be seen from both the

Fig. 3 continued
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figures and the functions of the vulnerability curves (Fig. 6; Table 7). The derived wheat

vulnerability curves for agricultural drought, which are based on the regionalization of

wheat planting in China, take wheat varieties (genetic properties) and crop calendars

(agricultural management) into account and can better demonstrate the regional regularity

of wheat’s vulnerability to drought and risk in China or in any particular wheat-planting

region than do curves that do not consider regional disparities.

Fig. 4 Comparison between simulated wheat yields and observed yields in each region
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4 Discussion

4.1 Calibration and validation of the EPIC model

Crop model calibration and validation is a challenging task because of the many possible

uncertainties. One source of uncertainty is the lack of agricultural management data, such

Fig. 4 continued

Table 6 Statistical index for
validation

Region Slope R2 RMSE (%) MRE MEF

0 -0.03 0.02 29.58 0.28 0.10

1 0.73 0.59 10.74 0.11 0.80

2 0.96 0.63 10.61 0.10 0.46

3 0.84 0.55 14.16 0.14 0.79

4 1.00 0.78 12.93 0.11 0.67

5 0.94 0.76 8.80 0.07 0.68

6 0.43 0.56 9.82 0.09 0.49

7 0.74 0.67 10.86 0.09 0.65

8 1.80 1.00 7.28 0.07 0.88

9 0.79 0.88 10.12 0.09 0.82

10 0.17 0.17 17.80 0.16 0.35
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as fertilization, irrigation, tillage, and pesticide data. We relied mostly on default values

provided by the EPIC model for our agricultural management data, as is common (Wang

et al. 2013). This is one reason that the simulated yield may not match the observed yield at

peak simulation (Fig. 3). In addition to agricultural management factors, factors such as the

sowing and harvesting date (Wu et al. 2009), potential radiation use efficiency (WA),

Fig. 5 Vulnerability curves of regions 0–10, and a–k for regions 0–10, respectively
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harvest index (HI), the point in the growing season at which leaf area begins to decline due

to leaf senescence (DLAI), the normal fraction of N in crop biomass at mid-season (BN2),

potential heat unit (PHU), and crop parameter control of leaf area growth in a crop under a

non-stressed condition (DLP2) (Wang et al. 2005; Wu et al. 2009; Liu 2009), have sig-

nificant impacts on wheat yield, whether in reality or in model processing, due to the

Fig. 5 continued
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complexity of the wheat production system. It is not only time-consuming, but also very

difficult to obtain satisfactory accuracy by calibrating and validating the EPIC model while

adjusting parameters manually (Wang et al. 2013; Yin et al. 2014).

We therefore suggest that the calibration and validation of the EPIC model should seek

overall optimization, not relying on one or a few of the parameters, for obtaining satis-

factory wheat yield simulation results. We thus propose partition parameter optimization

according to the law of regional differentiation in wheat-planting areas (Jia 2010; Jia et al.

2012; Wang et al. 2012, 2013; Yin et al. 2014). From a technical perspective, the overall

optimization goal was achieved using a detailed, regional wheat-planting calendar and

optimized genetic parameters of wheat for the EPIC model, with the support of the SCE-

Fig. 6 Vulnerability curves of all regions; dotted lines with circles represent winter wheat regions; solid
lines represent spring wheat regions

Table 7 Function of vul-
nerability curves of each wheat
region

Region Function of vulnerability curves

0 L0 ¼ 0:89
1þ17:52e�6:79DHI0

� 0:048

1 L1 ¼ 0:62
1þ9:57e�6:76DHI1

� 0:059

2 L2 ¼ 0:99
1þ8:06e�4:15DHI2

� 0:110

3 L3 ¼ �0:78
1þ0:13e8:02DHI3

þ 0:691

4 L4s ¼ 0:97
1þ6:65e�4:72DHI4

� 0:126

5 L5 ¼ �0:79
1þ0:18e7:99DHI5

þ 0:668

6 L6 ¼ 0:59
1þ685:60e�12:59DHI6

� 0:001

7 L7 ¼ �0:97
1þ0:09e6:37DHI7

þ 0:892

8 L8 ¼ �23:04
1þ0:03e0:81DHI8

þ 22:418

9 L9 ¼ 0:81
1þ85:37e�9:12DHI9

� 0:009

10 L10 ¼ �1:41
1þ0:06e3:75DHI10

þ 1:333
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UA parameter optimization method. This ensures that the model output obtains high

accuracy compared with observed data and provides for the reliability of wheat drought

vulnerability curves in general. Because the SCE-UA parameter calibration is performed

by a computer, it is temporally efficient. Although the simulated yield changes more

gradually than the observed yield, it is clearer in the validation result, whereas the overall

trends of simulated and observed yields are quite good.

4.2 Regional wheat vulnerability curves

We also produced more highly accurate regional wheat vulnerability curves than can

qualitative indicators of vulnerability, which can only produce a relative vulnerability

rating (Kim et al. 2013). The proposed curves reveal the quantitative relationship between

drought and wheat yield loss rate. Moreover, the 11 regional wheat vulnerability curves

make it possible to better understand spatial differences in Chinese wheat drought vul-

nerability, than do two vulnerability curves for just spring wheat and winter wheat (Wang

et al. 2013). Our detailed wheat vulnerability curves also represent a strong scientific basis

for evaluating the risk of wheat subjected to drought at a variety of scales with the same

high precision. We therefore suggest that wheat drought management should be based on

the wheat drought vulnerability of different wheat-planting regions.

Although the wheat drought vulnerability curves were built taking the difference in

climatic conditions and time frames into account, wheat variety, which determines the

genetic parameters of wheat, was not considered, because of the large number of wheat

varieties that change frequently in different regions of China. It is also difficult to measure

the effect of changes in wheat variety on wheat production improvement at a regional scale

in different periods because of a lack of observed data, although this can easily be done in a

laboratory. We assume a steady wheat variety in all wheat-panting regions, so that the

spatial differences can be fully compared for wheat drought vulnerability, a comparison

that has great significance for the development of regional mitigation strategies to combat

wheat drought.

4.3 Potential improvements for better model performance

The proposed approach for constructing regionalized vulnerability curves has room for

improvement. The model performance is not currently optimal, for one. For example, in

regions 4, 6, 7, 8, and 9 (their modified vulnerability curves are shown in Fig. 5), most points

converge on high drought hazard intensity, which coincides with the actual situation of high

drought intensity in these regions (Fig. 7). However, the problem is not fully addressed

because the vulnerability curves for these regions obtain a certain degree of deformation, and

the curves of region 6 and 8 do not fit very well (R2 equals 0.34 and 0.25). The DHI used here

is such that the duration of water stress is as important as its magnitude. However, when the

magnitude of water stress becomes large enough to kill the crop, even when the duration is

short, the drought intensity is in fact much larger than we estimated. To fully address this

problem, a more comprehensive drought index should be established. In other words, this

index should be able to indicate the drought intensity for the point at which the crop will

nearly die and should then assign a high corresponding value. Additionally, wheat variety

and agricultural management should also be taken into account as EPIC model inputs in

future research. Despite this, the proposed regionalized vulnerability curve-building ap-

proach can also be a potential reference for building crop drought vulnerability curves in

different geographical areas at multiple scales.
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5 Conclusions

This paper proposed an EPIC model-based analytical approach to developing regionalized

vulnerability curves for wheat subjected to drought. The vulnerability curves are divided

according to regions of wheat planting, with support from the SCE-UA method. The best

regional wheat sowing and harvesting dates and optimized wheat varieties (i.e., genetic

parameters of wheat) were then identified, to differentiate the agricultural systems of the

Fig. 7 Regions that have high yield loss rate even the DHI is low
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wheat-planting regions. With these improvements, we achieve more detailed and precise

wheat drought vulnerability estimates for China than have been found previously.

Detailed wheat vulnerability estimates make it possible to better understand spatial

differences in the vulnerability of wheat to drought in China. We find that the South China

Winter Wheat Region, the Huang-Huai Winter Wheat Region, the North Winter Wheat

Region, the Xinjiang Winter Wheat Region, and the North Xinjiang Spring Wheat Region

are more vulnerable than other regions. Once a wheat-planting region is identified, the

method allows for the selection and use of the appropriate set of vulnerability curves to

assess the expected yield loss. Regionalized wheat vulnerability curves provide a strong

scientific basis for evaluating the risk of wheat subjected to drought at a variety scales but

with the same level of precision. Because it allows for the comparison of wheat drought

vulnerability between areas, this research is significant in the development of regional

mitigation strategies for combating drought. We therefore suggest that wheat drought

management should be based on the wheat drought vulnerability of different wheat-

planting regions.

Further improvements could be made to this approach. A more comprehensive drought

index should be established, and wheat variety and agricultural management should also be

taken into account as EPIC model inputs in future research. However, the proposed re-

gionalized vulnerability curve-building approach provides a potential reference for de-

veloping crop drought vulnerability curves for different geographical areas at multiple

scales.
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Wu J, He B, Lü A, Zhou L, Liu M, Zhao L (2011) Quantitative assessment and spatial characteristics
analysis of agricultural drought vulnerability in China. Nat Hazards 56(3):785–801. doi:10.1007/
s11069-010-9591-9

Wu D, Yan D, Yang G, Wang X., Xiao W, Zhang H (2013) Assessment on agricultural drought vulnerability
in the Yellow River basin based on a fuzzy clustering iterative model. Nat Hazards 67(2):919–936

Xu Y, Zhang X, Ran Q, Tian Y (2013) Impact of climate change on hydrology of upper reaches of Qiantang
River Basin, East China. J Hydrol 483:51–60

Yin Y, Zhang X, Lin D, Yu H, Shi P (2014) GEPIC-VR model: a GIS-based tool for regional crop drought
risk assessment. Agric Water Manag 144:107–119. doi:10.1016/j.agwat.2014.05.017

Yoo C, Kim S, Kim TW (2006) Assessment of drought vulnerability based on the soil moisture PDF. Stoch
Environ Res Risk Assess 21(2):131–141. doi:10.1007/s00477-006-0050-9

Zhang Q, Xiao M, Singh VP, Chen X (2013a) Copula-based risk evaluation of hydrological droughts in the
East River basin, China. Stoch Environ Res Risk Assess 27(6):1397–1406. doi:10.1007/s00477-012-
0675-9

Zhang Z, Wang P, Chen Y et al (2013b) Spatio-temporal changes of agrometrorological disasters for wheat
production across China since 1990. Acta Geogr Sin 68(11):1453–1460 in Chinese

Zhao G (2010a) Study on Chinese wheat planting regionalization (I). J Triticeae Crops 30(5):886–895 in
Chinese

Zhao G (2010b) Study on Chinese wheat planting regionalization (II). J Triticeae Crops 30(6):1140–1147 in
Chinese

Nat Hazards

123

Author's personal copy

http://dx.doi.org/10.1073/pnas.1231335100
http://dx.doi.org/10.1073/pnas.1231335100
http://dx.doi.org/10.1073/pnas.1231334100
http://dx.doi.org/10.1073/pnas.1231334100
http://dx.doi.org/10.1007/s11069-013-0594-1
http://dx.doi.org/10.1007/s11069-010-9591-9
http://dx.doi.org/10.1007/s11069-010-9591-9
http://dx.doi.org/10.1016/j.agwat.2014.05.017
http://dx.doi.org/10.1007/s00477-006-0050-9
http://dx.doi.org/10.1007/s00477-012-0675-9
http://dx.doi.org/10.1007/s00477-012-0675-9

	An EPIC model-based vulnerability assessment of wheat subject to drought
	Abstract
	Introduction
	Method and data
	Study area
	Methods
	Agricultural drought index
	Vulnerability curve establishment
	Model calibration and validation

	EPIC model and inputs

	Results
	EPIC model parameters
	Regional wheat yield simulation
	Wheat vulnerability curves for China

	Discussion
	Calibration and validation of the EPIC model
	Regional wheat vulnerability curves
	Potential improvements for better model performance

	Conclusions
	Acknowledgments
	References




