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a b s t r a c t

A digital soil mapping exercise over a large extent and at a high resolution is a computationally expensive
procedure. It may take days or weeks to obtain the final maps and to visually evaluate the prediction
models when using a desktop workstation. To increase the speed of time-consuming procedures, the use
of supercomputers is a common practice. GoogleTM has developed a product specifically designed for
mapping purposes (Earth Engine), allowing users to take advantage of its computing power and the
mobility of a cloud-based solution. In this work, we explore the feasibility of using this platform for
digital soil mapping by presenting two soil mapping examples over the contiguous United States. We also
discuss the advantages and limitations of this platform at its current development stage, and potential
improvements towards a fully functional cloud-based soil mapping platform.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Current soil mapping heavily depends on the use of technology
and computers, starting with the use of computer-based geo-
graphic information systems (GIS) in the late 1960s (Coppock and
Rhind, 1991). This rudimentary system rapidly evolved towards
current digital soil mapping (DSM) which uses sophisticated data
mining techniques combined with environmental information.
DSM makes the organisation and visualisation of spatial data more
efficient, giving the opportunity to perform complex analysis and
database management, virtually replacing the manually drawn
map polygons with a soil information system.

The rapid progress in digital soil mapping is partly motivated
by the increasing interest in soil information at regional or na-
tional scales and the implicit economic constraint of fieldwork and
laboratory analysis. Scientists have refreshed the methods to as-
sess soil resources using tools like the aforementioned GIS, in
conjunction with global positioning system (GPS), environmental
information in the form of raster maps and remote sensing tech-
nology (McBratney et al., 2003). McBratney et al. (2003) made an
extensive review of soil predictive models and formalised the di-
gital soil mapping framework, proposing an empirical model to
predict, and not only explain, soil properties or soil classes based
on its soil-forming factors (Scorpan factors; i.e. other soil proper-
ties, climate, organisms, topography, parent material, age and

space). The so-called Scorpan factors can usually be represented in
a digital form, usually as raster data. The mapping is achieved by
building a spatial soil prediction function which relates observed
soil variables with Scorpan factors. This technique is called Digital
Soil Mapping (DSM). Digital mapping techniques homologous to
DSM also are used in other earth science disciplines, such as
mapping landslides (Farahmand and AghaKouchak, 2013) or
mapping opal occurrences (Landgrebe et al., 2013).

For applications at a field or landscape extent, conventional
desktop workstations are powerful enough to manage data, ima-
gery, build models, and generate prediction maps. However,
desktop workstations quickly become inefficient when moving to
the application of high-resolution mapping to large spatial extents
such as regions, continents, or the world. For example, the Landsat
7 project, which started in 1999, captures about 300 images per
day, and is equivalent to more than 1 petabyte (1 petabyte¼106

gigabytes) of raster data. Managing this volume of information to
generate a spatio-temporal model at a continental or global extent
is not a trivial task.

As a response to this challenge, GoogleTM is developing a
platform capable of storing and analysing raster data using its
computing infrastructure where algorithms are designed to run in
multiple processors simultaneously. The aim of this work is to
explore the feasibility of using this platform for DSM. We will
demonstrate its application for mapping soil properties and clas-
ses, and discuss the advantages and limitations of this platform at
its current stage of development. Finally, we propose potential
improvements towards a fully functional cloud-based digital soil
mapping platform.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2015.06.023
0098-3004/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: jose.padarian@sydney.edu.au (J. Padarian),

budiman.minasny@sydney.edu.au (B. Minasny),
alex.mcbratney@sydney.edu.au (A.B. McBratney).

Computers & Geosciences 83 (2015) 80–88

www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2015.06.023
http://dx.doi.org/10.1016/j.cageo.2015.06.023
http://dx.doi.org/10.1016/j.cageo.2015.06.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.06.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.06.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.06.023&domain=pdf
mailto:jose.padarian@sydney.edu.au
mailto:budiman.minasny@sydney.edu.au
mailto:alex.mcbratney@sydney.edu.au
http://dx.doi.org/10.1016/j.cageo.2015.06.023


2. Google Earth Engine

Google Earth Engine (GEE), Google's geospatial data analysis
platform, provides access to a large catalogue of Earth observation
data, algorithms for analysing the data, and a programming in-
terface to create and run custom algorithms. Computations in GEE
are done using Google's infrastructure, and analyses are auto-
matically parallelised so that many computer processors may be
involved in any given computation. This automatic parallelisation
enables global-scale analyses such as that by Hansen et al. (2013),
which identified global forest change between the years 2000 and
2012 at a resolution of 30 m. The study analysed 654,178 Landsat
7 scenes, a total of 707 terabytes of data, which would have taken
1,000,000 hours if the work were done by one processing unit.
However, because the analysis was run in parallel over 10,000
machines, it only took approximately 100 hours to complete.

Earth Engine's data catalogue brings together petabytes of
Earth observation data, eliminating the need to download and
manage data locally; typically a significant proportion of the work
involved in performing large-scale geospatial analyses. Earth En-
gine stores the source data in its original projection, with all the
original data and metadata. Information from different data
sources can also be combined as Earth Engine can reproject data as
needed. The data catalogue contains a nearly complete set of data
from the Landsat 4, 5, 7, and 8 satellites downloaded from the
USGS Earth Resources Observation and Science archive, MODIS
satellite datasets, a number of digital elevation models, atmo-
spheric data, meteorological data, and several pre-classified global
land-cover datasets. Earth Engine also makes many derivative
products available, such as annual mosaics and a variety of en-
vironmental indices (e.g. NDVI, slope). However, since data storage
is considerably more expensive than data processing, most of
these derivative products are computed upon request rather than
pre-computed and stored. This “on-the-fly” analysis is a key aspect
of Earth Engine which allows for rapid prototyping of complex
algorithms. In the current implementation it is only possible to
perform per-pixel operations, excluding more complex terrain
analysis like flow direction, flow accumulation, and watershed
findings. Until now, Earth Engine has been applied in just a few
domains, including analysing cloud masks (Wilson et al., 2014) ,
urban growth (Burillo and Chester, 2013), roadless areas (Ibisch,
2013), and mangrove mapping (Giri et al., 2015).

Currently, GEE is available as a limited release, however any
scientist can register for free to use the platform and participate
towards its development. It is also worth noting that the work by
Hansen et al. (2013) was performed in collaboration with Google,
with special resources assigned to the task, which are not available
for every user.

3. Conventional DSM vs. GEE

Independent of the extent, spacing, spatial support and aim,
DSM usually has a standard workflow where we can identify five
main steps, given the soil observations at a defined area:

(1) extract covariate data at the observation locations;
(2) compile the soil and covariate data and build a regression or

classification model;
(3) apply the model to unknown locations at the whole extent;
(4) display and analyse the results; and
(5) distribute the final maps.

In this section we compare a traditional DSM routine with the
alternative that GEE offers.

3.1. Extraction of covariates

In DSM, it is usually necessary to retrieve covariates at the lo-
cations of soil observations to represent soil-forming factors which
could be a challenging process depending on the number of cov-
ariates that are available. In traditional DSM this usually implies

(a) downloading raster from websites or ftp servers,
(b) calculating the derivatives when necessary,
(c) adjusting resolutions, and finally
(d) extracting the information for the specific area.

With GEE the process can be done in a much simpler way, as
(a) many covariates are already available in the server (Table 1),
(b) calculation of derivatives is performed in bulk and in parallel,
(c) resolutions are managed directly by the platform, and (d) data
extraction is performed in the server. GEE manages the resolutions
by storing rasters in their native resolution (e.g. 30 m) and then
generates down-sampled (by mean) versions at multiples of 2 (e.g.
60 m and 120 m). When the user requires another resolution, GEE
fetches the down-sampled pixels from the next level up, and re-
samples those to the desired resolution.

Until now, Google has made available raster datasets that have
a compatible licence (e.g. CC-BY). If a raster is not already available
in GEE, it is possible to upload it to an associated Google Maps
Engine1 (GME) account to access it from GEE. This is an extra step,
not present in a traditional DSM exercise. If we obviate the time
required to upload the file (which depends on file size and con-
nection speed), and the time required for Google to process it (in
our experience, about 10–15 minutes for a 800 MB file), there is
still a significant limitation in using high resolution images be-
cause the default (free) GME account just includes 10 GB for
storage.

Besides uploading rasters that are not available in GEE, it is also
necessary to upload the soil observations. This can be done
creating a Fusion Table (in an associated Google Drive account).
The extra setup time incurred by this step depends once again on

Table 1
List of some rasters currently availablea in GEE.

Type Dataset

Satellite imagery Landsat 4, 5, 7, and 8.
Datasets derived from MODIS – including surface re-
flectance data, vegetation continuous fields, albedo
and land surface temperature
Samples of high resolution data from Digital Globe and
Astrium

Digital elevation
model

SRTM (Jarvis et al., 2008)

NED (Gesch et al., 2002)
GTOPO (Gesch and Larson, 1996)

Meteorological NLDAS (Xia et al., 2012a, b)
GRIDMET (Abatzoglou, 2013)

Miscellaneous FIRMS fire data
Landcover classifications (NLCD, GlobCover,
MOD12Q1)
Hydrosheds (Lehner et al., 2008)
Global mangrove data (Giri et al., 2011)

a New datasets are frequently uploaded. For a complete list check GEE data
catalogue (http://earthengine.google.org/).

1 Google Maps Engine will be depracated on July 29th, 2016. Google is cur-
rently working on an alternative based on Google Drive and Google Cloud Storage
(communicated via the Earth Engine Developers group).
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the amount of data and internet connection speed, and in this
work was approximately 5 minutes.

3.2. Model building

In this step of the DSM workflow it is necessary to select an
appropriate model (or data-mining algorithm) to capture the re-
lationships between the covariates and the soil properties to
predict. In DSM, models such as linear regression, regression kri-
ging, neural networks, and regression and classification trees are
typically used (Adhikari et al., 2014). In contrast, GEE is limited to
selected data mining models (Table 2). The models cover both
prediction of class (categorical) and continuous properties. Some
of the models are variants of models commonly used in DSM, such
as classification and regression trees, artificial neural networks,
and random forests.

In our experience, the platform is not flexible enough to build
models if compared with the traditional DSM, which is usually
performed using specialised software like R. It is worth noting that
it is possible to perform this step outside of GEE and generate
expressions that GEE can interpret. This gives more flexibility,
specially to perform exploratory data analysis, but it is restricted to
the use of models that can be written explicitly, such as logical
partitions (e.g. tree-like structures) and prediction formulas (e.g.
linear models).

3.3. Apply the fitted model

In the traditional DSM approach, it is necessary to extract the
covariate information at the defined grid spacing over the whole
mapping area and perform the prediction of the soil property for
the whole extent. Depending on the final resolution (grid spacing)
and the extent, this is the most computationally challenging step
of the process. For high pixel density (big areas and/or fine

resolutions) it is common to work with tiles (sub-areas) due to
RAM constraints (Padarian et al., 2014; Hengl et al., 2014).

GEE works under the same tile logic, performing the extraction
of covariates and subsequent prediction by tiles, which are han-
dled directly by the platform, and distributing each tile to an in-
dependent process in parallel. This parallelisation can also be
performed in modern workstations or computer nodes, but the
implementation is not trivial and access to the latter infrastructure
is not always possible.

Here is the major advantage of GEE, and we attribute most of
the speed gain to this step. A more detailed comparison between
the time required to complete a mapping exercise using traditional
DSM and GEE is presented in Section 4.

3.4. Map display

This additional step is usually carried out in a GIS platform,
where the performance is constrained by the workstation cap-
abilities. By default, most GIS platforms would try to draw as many
pixels as possible on screen, making the process of panning
around the interest area extremely slow. The solution im-
plemented in GIS platforms generally consists of pre-generating
lower resolution versions of the raster (overviews) once the final
map is produced, and displaying the most suitable resolution de-
pending on the zoom level.

This overviews system is implemented by default in GEE,
where each tile is always 256 " 256 pixels, and it is recalculated
(and stored in cache) with every change in zoom level. This step is
directly related with the previous one because GEE only applies
the fitted model to the extent of the viewport (area displayed on
screen) at the specific zoom level (each zoom level with a max-
imum resolution). This feature allows the user to quickly visualise
a preview of the final map before exporting or downloading it.

Table 2
List of models currently available in GEE.

Model Use Description

FastNaiveBayes Classification Fast classification algorithm that uses maximum likelihood estimation to evaluate the probability of an observation
belonging to a specific category, assuming that the predictor variables are independent (Rish, 2001)

GmoMaxEnt Classification Implementation of a maximum entropy classifier, also known as multinomial logistic regression (Böhning, 1992). Si-
milar to Fast Naive Bayes, without the assumption of predictor variable independence

MultiClassPerceptron Classification regression Implementation of neural networks based on the algorithm originally proposed by Rosenblatt (1958). The algorithm
creates a network of functions connected by weights, simulating the neural structure of the human brain

Winnow Classification regression Implementation similar to the perceptron algorithm but with a multiplicative weight-update scheme (traditional
perceptron uses an additive scheme) (Littlestone, 1988)

Cart Classification regression Implementation of the Classification and Regression Trees algorithm (Breiman et al., 1984) where the data is parti-
tioned maximising the difference between groups, generating a tree-like structure of nodes (classes). In the regression
case, a linear model is fitted at each end-node

RifleSerialClassifier Classification regression Implementation of the Random Forest algorithm (Breiman, 2001). The algorithm constructs multiple trees (i.e. CART)
and generates an ensemble output by estimating the mode or average for classification and regression respectively

Pegasos Classification regression Implementation of an iterative algorithm to improve speed of support vector machine (SVM) optimisation (Shalev-
Shwartz et al., 2011)

IKPamir Classification regression SVM implementation optimised using intersection kernel (Maji et al., 2008) and Passive-Aggressive Algorithms
(Crammer et al., 2006)

VotingSvm Classification regression SVM implementation where values are assigned by selecting the value of the class with highest number of appearances
(mode)

MarginSvm Classification regression SVM implementation where the algorithm chooses the value with the maximum margin across all classifiers
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3.5. Distribution

Most of the tasks performed in conventional DSM are local (in
contrast with an online solution), so there is a need to distribute
final maps. In most cases the obvious solution is to share this
content online as a simple file available for the user to download,
or to implement a solution using one of the many available
mapping services, with the consequent hosting expense.

As we mentioned in Section 3.1, GEE is closely related with
Google Maps Engine. The latter is specially developed to store and
share maps online. In addition, the code and soil observations used
to generate the map can be shared, which allows other researchers
to replicate the mapping process. Expanding this idea, Heuvelink
et al. (2010) proposed that it is possible to create a “next genera-
tion” soil information system (SISþ) where only models are
stored, and the maps are generated “on-the-fly”. GEE presents a
potential to be this SISþ , if some of the current limitations are
addressed.

4. Case study

In this section we demonstrate how GEE handles two common
tasks in soil mapping: prediction of a categorical property (soil
class) based on a classification algorithm, and prediction of a
continuous property (soil organic carbon content) via a regression
technique. We selected the contiguous United States for both cases
because it has good data coverage over the whole extent. This case
study is just for illustration purposes and to evaluate the useful-
ness of the platform in mapping large areas.

The model training and map generation process took about 2
minutes (at a 1 km resolution) in both cases, with a relatively
simple coding process. If we were to perform a similar task in a
regular workstation, it would take about 1.5–3.5 hours if we take
into account the 0.86–1.73 ms km$2 at 1 km resolution for a global
map (considering 149.1 " 106 km$2 of land surface) reported by
Hengl et al. (2014), or the 125 ms km$2 at 100 m resolution esti-
mated by Padarian et al. (2014).

4.1. Mapping soil classes

To test the classification features of GEE, we tried to recreate
the map of soil orders in the United States based on digital map-
ping techniques. We used 10,000 profiles (Fig. 1) extracted from
the National Cooperative Soil Survey Characterization Database

(http://ncsslabdatamart.sc.egov.usda.gov) using a Rifle Serial
Classifier algorithm (which is similar to Random Forest). The
covariates used were elevation (SRTM, Jarvis et al., 2008); slope;
minimum, maximum and mean annual air temperature; and an-
nual precipitation (for year 2010, GRIDMET, Abatzoglou, 2013). All
the covariates are currently available in GEE, and slope is calcu-
lated “on-the-fly”.

The final map (Fig. 2) is a good representation of the distribu-
tion of soil orders when compared with the US soil orders map
from The Natural Resources Conservation Service (available on-
line), with a classification accuracy of 70.07% (Kappa Stat.: 0.63.
See confusion matrix in Appendix B). Two soil orders are not re-
presented: (a) Oxisols, because they are not present in the con-
tiguous United States, and (b) Gelisols, which were not present in
the database used to generate the map. In addition, there are very
few observations in the state of Florida (Fig. 1) making the map
highly uncertain in this area (to be discussed in Section 5.2).

4.2. Mapping continuous variables – topsoil organic carbon

For the regression example we used 29,784 soil profiles (Fig. 3)
from the NASIS database (USDA–NRCS, 2014) which contains la-
boratory measurements of topsoil organic carbon content (0–5 cm
depth), harmonised using an equal-area spline function (Bishop
et al., 1999). As in the previous mapping example, we used ele-
vation; slope; minimum, maximum, and mean annual air tem-
perature; and annual precipitation as covariates using a Classifi-
cation and Regression Tree algorithm.

The final map (Fig. 4) shows a good representation of the dis-
tribution of SOC considering the observations spatial coverage
(nearly complete). Model performance (R2: 0.20) was poor, but
corresponded with results reported in similar studies at this scale
(Henderson et al., 2005), and did not differ from results obtained
using a desktop workstation.

5. Towards a cloud-based soil mapping platform

The GEE platform is under “beta-testing”, with improvements
happening daily. The advantage of being in this phase is that
current users can help to improve the platform and suggest new
features that might be relevant for the scientific community.

Most of the limitations we experienced during the develop-
ment of this work were related with the “beta-testing” condition
of the platform. For example, we experienced difficulty when

Fig. 1. Location of observations used in classification example.
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working on a large set of observations (more than 20,000 ob-
servations), mainly because we exceeded the current limits of the
platform. To overcome this problem, it was necessary to run the
algorithm two or three times to complete the analysis.

With the examples presented in this work, we attempted to
perform an entire DSM exercise, using GEE built-in algorithms to
take advantage of their parallel computing capabilities. This was
not possible, but we always had the option to download the

intermediate results at any point of the workflow to continue the
analysis from a desktop workstation. At present, we can perform
data extraction, model fitting, and spatial prediction efficiently,
however, there are some methodological gaps that need to be
addressed before we can use GEE as a fully functional DSM tool.
The gaps are mainly related to geostatistics and uncertainty ana-
lysis, on which we will elaborate in the next sections.

Another important consideration to have with this or any other

Alfisols Andisols Aridisols Entisols Histosols Inceptisols Mollisols Spodosols Ultisols Vertisols

Fig. 2. Map of soil orders generated using GEE implementation of a Rifle Serial Classifier algorithm.

0 0.5 1 2 3 4 5 6 8 10 14 20

SOC (%)

Fig. 3. Location of observations used in regression example.
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type of cloud-based platform is data privacy, which is a technical
aspect that concerns the scientific community (Tugrul and Polat,
2014). In another aspect, the services that can be used to store data
to use from GEE, namely Fusion Tables and Maps Engine, and GEE
itself, give the option to keep data and scripts as private, shared
(with specific users) or public. It is important to consider that even
if the data is kept as private, it is actually located in a server that
belongs to a private company, which is a general issue that may
emerge from this outsourcing (Pearson and Benameur, 2010), si-
milar to sharing data via a non-institutional email or backing-up

information in a cloud-based service. Methods like the one de-
scribed by Tugrul and Polat (2014) are not implemented in GEE so
the researcher should decide if the platform is convenient, or if it
is necessary to pre-treat the data with techniques like obscuring
(Clifton et al., 2002).

5.1. Geostatistics

To account for complex spatial patterns in data, techniques like
Kriging (Burgess and Webster, 1980a,b; Webster and Burgess,

0 0.5 1 2 3 4 5 6 8 10 14 20

SOC (%)

Fig. 4. Map of soil organic carbon generated using GEE implementation of a Classification and Regression Tree algorithm.

0.25 0.3 0.36 0.41 0.47 0.53 0.58 0.64 0.69 0.75 0.8

Misclassification rate

Fig. 5. Misclassification rate for classification example, obtained using the fuzzy k-means with extragrades algorithm.
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1980) and its derivatives are used heavily in soil and other en-
vironmental sciences. They have the capability to make predic-
tions based on the spatial distribution of soil observations, where
the final estimate at a location corresponds to a weighted average
of known proximal observations. The estimation of these weights
is based on the semivariogram, which represents the (semi) var-
iance of a property as a function of the distance between any two
observations. Generally, if there is a spatial structure in the data,
the variance is low when the distance between two observations is
minimum, and increases with the distance, until it reaches a pla-
teau. In the regression example (Section 4.2) the CART algorithm
does not fully explain the spatial structure of the data. As a result,
the residuals of the model may have a spatial pattern. This is a
common outcome because CART and other algorithms are not
designed to deal with spatial autocorrelation of residuals. In a
conventional DSM routine, if the residuals present a spatial
structure, they can be modelled using kriging and added to the
model prediction (Odeh et al., 1994), which results in an improved
prediction (McBratney et al., 2003).

This technique is not implemented in GEE and there is no
straightforward way to program it at the current development
stage. Specially over large extents, a local regression kriging
technique, which takes the local relationship and spatial structure
(Sun et al., 2012), could be a powerful tool for GEE.

5.2. Uncertainty

A general method for uncertainty estimation is the boot-
strapping algorithm, originally proposed by Efron and Tibshirani
(1993). The algorithm iteratively takes a sample (with replace-
ment) of the training data before training the model. The final
prediction corresponds to the mean of the bootstrap iterations and
the uncertainty is assigned to a deviation measure of these itera-
tions. While the basic assumption of data independence in boot-
strap is not true, we can still use it as an assessment of model
uncertainty.

GEE offers a basic implementation of this technique, but so far
it is just for classification, and the computational limit (set for
security reasons) is rapidly reached when many training features
are used. However, GEE provides enough functionality to imple-
ment a quasi-automatic bootstrap by randomly selecting points,
training the classifiers, and combining the resulting images.

Another suggested method to estimate uncertainty, specially
for large extents (Padarian et al., 2014), is the use of an empirical
method that utilises the fuzzy k-means with extragrades algo-
rithm (FKM, Tranter et al., 2010). This method classifies the cov-
ariate values at the observed points (observations used in model
training) in clusters. Each cluster has a central value (centroid),
and an associated error. When a new value is predicted, the dis-
tances between values of its covariates and the centroids of the
clusters are estimated and a membership grade assigned (grade of
“belongingness” to each cluster). The final error corresponds to the
error weighted by the membership grades.

This technique is not implemented in GEE and there is no
straightforward way to program it at the current development
stage.

Uncertainty assessment is a critical component of DSM and its
implementation in GEE is indispensable for the soil community to
use the platform to perform a complete DSM exercise. To illustrate
a final DSM product (prediction and associated uncertainty) we
used a modification of the FKM algorithm for categorical data,
where the uncertainty measure is the misclassification rate of its

observations. The uncertainty map (Fig. 5), generated using a
desktop workstation, shows how in the central area of the US,
dominated by Mollisols, the classification is more successful when
compared with more heterogeneous areas on the west coast. It
also makes evident that making predictions along more complex
landscapes is less satisfactory due to a poor fitting caused in part
by the limited number of observations. In consequence, the un-
sampled areas (e.g. Florida) had a much higher error.

6. Conclusions

Google Earth Engine (GEE) is an interesting new platform
which could be implemented in a routine digital soil mapping
(DSM) workflow. It is specifically designed to manage large vo-
lumes of information in raster format, which are used in DSM to
represent soil-forming factors. The major advantage of using GEE
is that many rasters are already available, making easier the pro-
cess of collecting data, and the parallel nature of its algorithms,
which considerably accelerates the computation times.

We successfully demonstrated part of two common DSM exercises,
namely regression to predict continuous data and classification for
categorical data. Both examples had a satisfactory numerical perfor-
mance, and the computation required to generate the maps (i.e. apply
the model to the whole extent) was 40–100 times faster compared
with conventional DSM using a desktop workstation.

Despite the reduction in computation time when applying the
fitted model to the whole extent, aspects like exploratory analysis
are rudimentary. Furthermore, to be able to use GEE as a complete
online DSM platform it is necessary to address two important
methodological gaps. The first is the need to improve the current
implementation to assess the uncertainty of the predictions. The
second, and more critical, is related to the use of the spatial in-
formation in the data through the implementation of geostatistical
techniques.

GEE is in active development, with room for improvement, but
not necessarily towards an online soil mapping platform. It is a
tool for general environmental mapping that presents big oppor-
tunities for the soil and environmental sciences community,
especially if we actively participate in the creation of ideas and
workflows around the current implementation, to help with the
development of a platform that fulfils our specific needs.

Acknowledgements

We thank the reviewers (Titia Mulder and Anonymous) for the
insightful comments and suggestions. We also thank David Thau
(Google) for his help in the early stages of the manuscript. Finally,
we thank Clara da Costa-Reidel for her help in the final stages of
the manuscript.

Appendix A. Example code of case study to predict a catego-
rical property
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Appendix B. Confusion matrix for classification exercise

See Table B1.
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