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Abstract
Classical topological relation expressions and computations are primarily based on abstract algebra. In

this article, the representation and computation of geometry-oriented topological relations (GOTR) are

developed. GOTR is the integration of geometry and topology. The geometries are represented by blades,

which contain both algebraic expressions and construction structures of the geometries in the conformal

geometric algebra space. With the meet, inner, and outer products, two topology operators, the MeetOp

and BoundOp operators, are developed to reveal the disjoint/intersection and inside/on-surface/outside

relations, respectively. A theoretical framework is then formulated to compute the topological relations

between any pair of elementary geometries using the two operators. A multidimensional, unified and

geometry-oriented algorithm is developed to compute topological relations between geometries. With this

framework, the internal results of the topological relations computation are geometries. The topological

relations can be illustrated with clear geometric meanings; at the same time, it can also be modified and

updated parametrically. Case studies evaluating the topological relations between 3D objects are per-

formed. The result suggests that our model can express and compute the topological relations between

objects in a symbolic and geometry-oriented way. The method can also support topological relation series

computation between objects with location or shape changes.

1 Introduction

Topological relations, which represent the invariable relations between objects to topological

transformations, play a key role in the workflow in GIS. Computation of topological relations

is indispensable for spatial cognition (Klippel 2012), spatial queries (Clementini et al. 1994; Hu

et al. 2013), spatial data visualizations (Clark et al. 1997; Agugiaro and Kolbe 2012), and

many other geographical analysis tasks (e.g. Ledoux and Meijers 2011; Shiode and Shiode

2011; Siejka et al. 2014).

In current GIS, the representation and computation of topological relations are separated.

Most representation models of topological relations are geometry-oriented. GIS data represen-

tation, geometric measurements, spatial queries and transformations are all based on
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geometries (Penninga and Van Oosterom 2008; Zawadzki et al. 2012; Robles-Ortega et al.

2012; Kumar 2013, 2014). However, topological relation expression and computation are

mostly based on pure algebra (e.g. set algebra with binary operators) (Duckham et al. 2011;

Formica et al. 2013; Zhou et al. 2013). The results during the computational processes are

purely algebraic relations that have no explicit correlation with the geometric properties (e.g.

shapes, distances, directions) of original objects (Chen et al. 2011; Stoter et al. 2011; Gr€oger

and Pl€umer 2011). Since most geometric properties are abstracted to achieve high-level invari-

ance to certain topological transformations for algebraic expression and computation (Li et al.

2013; Wang et al. 2014), additional components (e.g. boundary, interior, and exterior) are

required and the geometric properties of the original geographical objects (e.g. dimension, dis-

tance and directions) are lost. When the dimension of the objects arises, it could produce

numerous different topological relations that exceed human cognition or even produce mean-

ingless topological relations (Bhatt et al. 2011). All of these problems not only increase the

complexity of GIS software, but also lead to separation of topological representation and calcu-

lation. These further affect the performance of data organization, dynamical data update, as

well as spatial operations and analysis.

Recent studies have paid more attention to the integration of topology and geometric

information (Clementini and Di Felice 1996; Egenhofer and Shariff 1998; Li et al. 2013). How-

ever, due to a lack of tools that can link geometric representation with algebraic computation,

none of these works succeed in integrating the topological and geometric information seam-

lessly. In the topology-predominant solutions, geometric characteristics, measures and lan-

guage terms are used to restrict the topological relations (Shariff et al. 1998). However,

without a symbolic integration of the geometric characteristics, these geometric constraints can

only be pre-computed or used externally to restrict the computational results but not make

sense during the computation. In other geometric-predominant solutions, topological relations

are used as supporting information. For example, in some CAD applications, the topological

relations are integrated in the geometric construction (Peachavanish et al. 2006). Most of these

solutions use parametric geometric curves for representation and computation. Although these

solutions can increase the accuracy of specific geometric operations (e.g. overlap), the perform-

ance of a discrete spatial query and complex spatial analysis is unsatisfactory.

The integration of topological and geometric information can be performed from two

aspects: representation and computation. From the representation perspective, a symbolic rep-

resentation framework that can represent relations between objects at different dimensions will

be useful for computing topological relations seamlessly and consistently. From the computa-

tion perspective, geometry-oriented and multidimensional operators are useful to fulfill the

powerful computation. If the operators can reveal the geometric properties and relations during

the entire computing process (e.g. the intersection operator applied to two objects cannot only

judge whether they are intersected but also provide the information of what the resulting

shapes of their intersection are), it can keep the consistency between the geometric information

and topological information. Since geometric objects with different dimensions should be con-

sidered simultaneously, a unified dimensional-hierarchy-based computation model for topolog-

ical relations representation and computation will also be very helpful.

Conformal geometric algebra (CGA), which integrates the geometric representation and

algebraic computation (Parra Serra 2009; De Bie 2012; Hitzer et al. 2013), provides an ideal

tool for geometry-oriented topological relation (GOTR) computation. The geometries are rep-

resented as subspaces in the CGA framework, which makes coordinate-free and adaptive

expression and computation possible. The algebraic properties of subspaces also interlink the

geometric representation and algebraic computation. GA operators (e.g. meet) can be directly

2 Z Yu, W Luo, L Yuan, Y Hu, A-x Zhu and G L€u

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)



performed on geometries with different dimensions in a coordinate-free way (Hestenes 2003).
These operators not only are geometry-oriented (i.e. they represent geometries or geometric
measures/transformations) but also have powerful algebraic computing abilities. The CGA-based
GIS data model (Yuan et al 2011) and the computational framework (Yuan et al. 2012) can sup-
port the multi-dimensional unified object representation and operator-based computation (Yuan
et al. 2013). Most recently, a hierarchical framework that can support computation for topologi-
cal relations of simple geometries (e.g. triangles) in a simple way without referring to dimension,
has been developed on the foundation of the meet product in CGA (Yuan et al. 2014). However,
the generalization of the topological relation computation on complex objects and extraction of
the power of the geometric expressions of the CGA approaches are still lacking.

In this article, we introduce CGA into the construction of the GOTR representation and

computation model. The original CGA representation is first extended for GOTR calculation.

Then, the unified Topo operator as well as a GOTR calculation algorithm is developed. Finally,

we provide a case study to demonstrate how our method can be used to compute the topologi-

cal relations between objects in the 3D scenes symbolical and dynamically.

2 Theoretical Foundation and Basic Ideas

2.1 Geometric Products and Subspace Representation

The geometric product, the fundamental operator in geometric algebra, is defined in the follow-

ing form:

Definition 2.1: Let Vn be an n-dimensional linear space. a and b are within Vn. Then, the

geometric product of a and b, denoted by ab, is defined as:

ab 5 a�b 1 a � b 5 < ab>gradeðaÞ1gradeðbÞ1 < ab>gradeðaÞ2gradeðbÞ (1)

where � and � represent the outer and inner products, respectively. Grade is the dimension

of the subspace. Both the outer and inner products are the natural correspondence

between geometric entities and elements, indicating the orthogonal and co-linear relations,

respectively. The geometric product is a linear combination of the inner and outer prod-

ucts. It can be used to construct and deconstruct objects, and to reveal various kinds of

Euclidean relations in a parametric way. By introducing two additional coordinates e0 and

e1, the Grassmann structure of geometries is consistent with the outer product, while the

inner product inherits the Euclidean distance (Dorst et al. 2007).

In CGA, every geometry object is represented by subspace elements, while the geometric

transformation can be calculated with the transformation products such as rotor and translator

algebraically (Dorst et al. 2007). Any subspace can be expressed and defined by the blade in the

following form:

Definition 2.2: A non-zero blade B of grade k, which is the outer product of k vector

bases taken from a linearly independent set fvigk
i51, can be written as:

B5v1�v2� � � ��vk (2)

If given any basis fbigk
i51 other than fvigk

i51 for the vector sub-space represented by B,

there exists a scalar k 2 R, such that:

B5kb1�b2� � � ��bk (3)
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This means it is free to represent the subspace with any chosen factorization, which will

be the foundation of the coordinate-free expression and convenient for solving problems

algebraically and geometrically.

In CGA, the intersection defines the largest common subspace between two subspaces (Hit-

zer 2005). Assuming two objects Wr and Ws are r-blade and s-blade, respectively, the intersec-

tion part of the two objects meets the condition that X � Wr50 and X � Ws50. In other words,

X � hWrWsi2n2r2s50() X�f½hWrWsi2n2r2s�Ing50, where n is the minimal subspace that con-

tains both objects. Therefore, the meet operator can be defined with the dual operator as

follows:

Definition 2.3: Given two blades Wr and Ws, their meet operation can be defined as:

M5Mr \Ws5½hWrWsi2n2r2s�
� (4)

It is clear that the result of meet product is also a multivector. To expand the entire mul-

tivector with the coordinate and coefficients representation of the vector form, a linear

function can be used to interpret the meet operation. In Gð4;1Þ space, which directly cor-

responds to the three-dimensional Euclidean space R3 (Yuan et al 2011), the meet product

has a general form of:

M5b01be1
e11 � � � be1e2

e1e21 � � � be1e2e3e0e1e1e2e3e0e1 (5)

where bi is the coefficient of the result blade. Since the meet operator performs directly on sub-

spaces, it is independent of objects as well as the dimension of the computation space. There-

fore, it can be used to generalize the intersection between different objects. There is ample

evidence from prior studies that the meet product is also geometrically adaptive, i.e. the result

geometries depend only on the original geometries (Hitzer 2005; Yuan et al. 2014).

2.2 Basic Ideas

The goal of GOTR computation is to integrate the natural characteristics of hierarchy in geo-

metric cognition and abstraction, geometric properties of the objects, and the abstract algebraic

computations in a unified topological relations computation model. Since there are so many

different topological relations, we first hope to find a minimal set of operators that can be used

to deal with these relations (Agarwal 2005; Ligozat and Condotta 2005).

The conceptual neighborhood graph (CNG), a hierarchically layered structure of the

topological relations (Egenhofer and Mark 1995; Dube and Egenhofer 2012), is an ideal

tool to express the hierarchical structure of topological relations. A CNG has one node for

each relation and an edge between two nodes if the corresponding relations are conceptual

neighbors. Figure 1 illustrates the CNG structure of RCC-8 and the 9-Intersection model

(Dube and Egenhofer 2012). The CNG structure of the topological relations can be sepa-

rated neatly into two parts. In the left part, the Disjoint, Meet and Overlaps express the

intersection relations. The only difference among the three relations is the amount they are

intersected. In the right part, the relations, including CoveredBy, Equal, Covers, Contained
By and Contains, are based on the inside/outside relations. The differences can be identi-

fied through the oriented distance between the boundaries of the two objects. Since the

intersection and the inside/outside relations can be solved with the meet product and the

inner and outer product, it is possible to define a unified topological relation between

different elements.
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With the CNG structure of the topological relations, the overall framework of the GOTR

calculation model can be constructed (Figure 2). Firstly, the CGA data model can be extended

with new objects, definitions, and more powerful object expressions. By defining a geometric

characteristic-preserved object abstraction structure, multidimensional objects can then be repre-

sented with the multivector structure hierarchically. Two topological operators, the MeetOp and

the BoundOp, are developed on the foundation of the meet and inner/outer products to compute

the intersection and inner/outer relations, respectively. Then a generalized operator TopoOp is

defined by integrating the MeetOp and the BoundOp. With the TopoOp, a GOTR computation

algorithm can be developed. The key procedures of the model are: (1) multivector-based multidi-

mensional-unified definitions and abstractions for real geometric object representation with sub-

spaces; (2) the intersection and inside/outside relations that are computed and unified with the

meet operator and the inner/outer products, respectively; and (3) the Topo operator that com-

putes basic topological relations directly from the intersection and inside/outside relations.

3 Multi-dimensional Representation Framework for GOTR Computation

3.1 Conceptual Modeling and Definitions

The representation framework for GOTR is different from existing solutions in the following

ways: (1) the representation framework of objects should be abstracted correctly to support both

complex object representation and topological relations computation; (2) a flexible structure of

the object representation and organization should be constructed to support both the representa-

tion and computation; (3) the geometric semantics should be contained and preserved in the repre-

sentation. The CGA-based multidimensional-unified data model by Yuan et al (2011) integrates

the dimensional construction structures (Grassmann structure) with a single algebraic structure

(Multivector). This data model can be extended to meet the above requirements. To achieve the

hierarchal and semantic object representation, the following concepts are first defined:

3.1.1 GeoBase

The GeoBase represents the fundamental atom that can be expressed directly in CGA. To be

compatible with existing GIS representation, it is important to maintain the dimensional

Figure 1 CNG structure of RCC-8 and the 9-Intersection model (Dube and Egenhofer 2012)
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structure (i.e. the Grassmann structure). Therefore, we use the outer product to express the

GeoBase. The formal definition of GeoBase is:

Definition 3.1: A GeoBase is defined as the basic geometric object that can be directly

expressed by the outer product of k null vectors (always representing conformal points) in

the CGA space Cl4;1:

GeoBaseðkÞ5p1�p2� � � ��pk (6)

where k is the dimension and pi is the i-th point (vector) components of GeoBaseðkÞ. A

k-dimension GeoBase can also be seen as a k-blade, which is the basic expression and

computation subspace in geometric algebra.

3.1.2 GeoObj

For objects such as segments, planes and volumes, the traditional CGA representation has no

clear boundaries. For complete and accurate representation, the boundary information with

point coordinate constraints should be added to the CGA data model (Yuan et al. 2011).

Definition 3.2: GeoObj is defined as the geometric object with a boundary that should

add an additional point set to restrict its extent, and can be written as:

GeoObjk5 �k
i51
ðb1; b2; � � � ;bk11Þfp1;p1; � � � ; png (7)

where k is the dimension, �k11
i51 ðb1;b2; � � � ;bk11Þ is the CGA representation of the GeoObj,

and fp1;p1; � � � ;png is the point set that constructs the object boundary.

3.1.3 GeoCarrier

Real geometries are irregular and have finite boundaries. Thus, it is not easy to directly

construct the CGA representation with the outer or inner product. Since the partial sur-

face of an infinite plane or sphere can be used to represent the boundaries of the objects,

we can use it to form the GeoCarrier, i.e. the objects that contain or carry the other

objects.

Figure 2 The framework of the GOTR computation model
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Definition 3.3: GeoCarrier is defined as the container or carrier of a GeoObj, which has

no fixed boundary. So it cannot be directly expressed by blade. In CGA space, it can be

written as:

GeoCarrierk5CGAfp1;p1; � � � ;png (8)

where k is the dimension and p1; p2; � � � ;pk11 are the boundary feature points. CGAf:::g
means the geometric representation function in CGA. In CGA, according to whether the

infinity point is included, the GeoCarrier can be divided into round GeoCarrier and

flat GeoCarrier. The round GeoCarrier has no e1 component, which suggests the object

has finite area/volume/hypervolume, while the flat GeoCarrier can express lines and

planes. The inclusion of e1 means it can stretch to infinity. There exists:

GeoCarrierk5

�
p1�p2� � � ��pk11; round GeoCarrier

p1�p2� � � ��pk11�e1; flat GeoCarrier
(9)

In our data model, the GeoCarrier includes point, circle, sphere, line and surface. The

integration of the finite and infinite expressions provides a solid background for unified

expression and computation.

With Definition 3.3, GeoObj can be rewritten as:

GeoObjk5fGeoCarrierk; fp1;p1; � � � ;pngg (10)

where fp1; p1; � � � ;png is the boundary points set, and GeoCarrierk can be constructed by

the linearly independent feature points extracted from the boundary point set. Based on

the modified expression, geometric objects can be commutated as CGA objects and the

boundary characteristic is concurrently maintained.

3.1.4 GeoSema

Since semantics are clear and important in the CGA data model, we also define the sematic

components for expressing rich information and accelerating calculation of topological rela-

tions. Semantic information is rich, although only a little of it is used here for the most neces-

sary semantic components. The formal definition of the GeoSema is:

Definition 3.4: A GeoSema is defined as the CGA object, which serves as characters of

objects, and may be written as:

GeoSema5fn;bladesg (11)

where n are the number of elements of semantics, GeoCarriers are the geometric elements

and containers, and blades are the geometric algebra representation of sematic relations.

Besides GeoCarriers, GeoSema is another form of Geobase, which is the computation

result of CGA operators. The GeoSema also supports CGA calculation.

3.2 Basic Geometric Elements for the Geometric-oriented Representation

In 3D CGA space, there are total 32 subspace elements (Table 1). These blades contain

the representation of geometries, metrics, normals and tangents, in both direct and dual
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representation. There is more information that can be revealed from the CGA space. In

addition, with the powerful CGA operators, objects can be constructed and represented

from different perspectives. For example, the outer product of two points according to

the Grassmann structure, a dual to its normal vector, and an intersection of two planes,

etc., can represent a straight line. All these expressions are parametrical and can be trans-

formed from one to another. It may be a little more complex, yet it provides a more

flexible representational method than traditional Euclidean geometry for geometric

objects.

As is shown in Table 1, six types of components that simplify the expression are selected as

follows:

1. Rounds: rounds suggest that the objects have finite areas/volumes/hypervolumes. In

CGA, they can be constructed by the outer product. Points, within the 32 blades, are the

most basic round objects. Higher dimensional round objects can be obtained by the

outer product of points (e.g. point pair, circle, sphere, hypersphere, etc.). The expression

of a k-dimensional round is:

round : rk5p1�p2� � � ��pk (12)

2. Flats: flats are the rounds containing the point at infinity e1 in its formula. The inclusion

of e1 means it can stretch to infinity. There exist flat points, lines and planes. Flats can

be extended to higher dimensions, where we have hyperplanes. The expression of a k-

dimensional flat is:

flat : fk5p1�p2� � � ��pk�e1 (13)

3. Euclidean blades: In CGA there still exists Euclidean blades (e.g. vectors, bivectors, triv-

ectors), which can be used to represent metric characteristics of geometrical objects (e.g.

area, volume). The expression of k-dimensional Euclidean blades is:

Euclidean blades : vk5ke1�e2� � � ��ek (14)

4. Free Blades: These are elements without position but indicating the direction (e.g. free

vectors, free bivectors, free trivectors). From the definition of CGA, we know the blades

Table 1 Fundamental 32 blades in CGA Clð3; 2Þ

Objects Subspace Objects Subspace Objects Subspace

Scalar 1.0, e1 Flat point e01 Trivector e123

Vector e1, e2, e3 Bivector e12, e13, e23 Tangent trivector e1230

Point e0 Tangent bivector e120, e130, e230 Free trivector e1231
Tangent

vector
e10, e20, e30 Free bivector e121, e131, e231 Plane e1201, e1301, e2301

Free
vector

e11, e21, e31 Line e101, e201, e301 Pseudoscalar e12301
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have no position, which means there is no e0 component in their formula. So, the

expression is:

free blades : fbk5vk�e1 (15)

5. Tangent Blades: compared with the Free Blades, Tangent Blades have a clear point of

tangent, including tangent vectors, tangent bivectors, tangent trivectors. So, these blades

have the e0 component. The expression of k-dimensional Tangent Blades is:

tangent blades : tbk5vk�e0 (16)

6. Others: The scalar and pseudoscalar are not used directly in CGA representation,

because the above blades, which are used to represent geometry in CGA, are all null-

blades (i.e. their norms are zero), and the weight-independent characteristic just make

no sense to representation. The pseudoscalars indicate the whole space of CGA, which

can be used in the computation of dual operator.

Six types of basic geometries (point, point pair,1 line, plane, circle, and sphere) are used

for object expression in our previous multidimensional-unified data model (Yuan et al.

2011). Although the six basic geometric objects are suitable for expressing complex objects,

more information should be extracted for topological relation computation. Since the dual

representations have more abundant semantic meanings (e.g. orthogonality between the origi-

nal space and the dual space), we further integrate their dual representations (Table 2). The

other types (Euclidean blades, Free Blades and Tangent Blades) are integrated as components

of GeoSema.

With the introduction of the null vector e0, e1 in CGA, the expression of the round

objects is generalized. In addition, the directions and center locations of objects can be

directly reproduced with the cross ratio. The dual of a round object R encodes the center c

and radius r, while the dual of a flat object is F52p � ne1, where p is a certain point in the

flat object F, and n is the normal blade. e1�F50 also exists, as does F2 6¼ 0. Importantly,

these characteristics are generalized for object relation calculation (Dorst and Mann 2002).

Other elements, such as the free blades and tangent blades, have similar properties: d250 is

for free blades and g250 for tangent blades. These properties will be helpful in the topologi-

cal relation computation.

3.3 The Overall Representation Structure of GIS Objects

As the foundation of the geometric representation, the data model needs to represent the

objects in CGA space and compute the geometric relations with CGA operators. These

clear and meaningful geometric relations are then abstracted and summarized to produce

the real topological relations between these objects. The overall structure of the data

model is depicted in Figure 3. First, all geographic elements, including points, lines and

polygons, are abstracted as point sets. Next, the geometric objects and boundaries are

defined to express both the blade covering the objects and the real boundary. Four funda-

mental elements/blades (GASphere, GAPoint, GALine and GAPlane) are then introduced

in this data model. In the infinity boundary model, we use these objects to fully express

the sphere and point object. With the restrictions of boundary points, we can express the

lines and segments, the flat plane objects, the triangle objects and polyhedron objects in

three dimensions.

Geometric Algebra Model for Geometry-oriented Topological Relation Computation 9

VC 2015 John Wiley & Sons Ltd Transactions in GIS, 2015, 00(00)



4 The Topological Relation Computation Framework

In this section, the hierarchical computation framework of the topological relations is devel-

oped according to the CNG structure. Firstly, two operators, the MeetOp and BoundOp are

defined to compute the intersection relation and the inside/outside relations. Then the TopoOp
is defined to compute the combination of the topological relations in a unified way. With these

operators, both the geometric properties and the topological relations are iteratively computed

according to the multidimensional hierarchy of objects representation.

4.1 The Unified Computation of the Intersection Relations

We first apply the meet product to compute the intersection relations between basic elements.

From Equations (12) and (13), we know that meet can be unified to compute the intersection of

the elements in G. However, it is not enough to compute the topological relations with the

meet product directly. The reasons are: (1) the result of the meet product is a real geometric ele-

ment; however, binary operations, which can determine whether the two objects are inter-
sected/touched/disjoined, are much more convenient for topological computation; (2) even if

the two objects are not intersected in R, their meet also exists, which will confuse the topologi-

cal relation inference; and (3) the “\” is computationally expensive, thus more efficient meth-

ods should be provided for computation of topological relations. Therefore, we define the

MeetOp operator of GeoObjs by applying the meet product to GeoCarrier to work out the

intersection relations of GeoObjs:

Definition 4.1: MeetOp is defined with the meet operator, which is used to calculate the

intersection relations of GeoObjs, and can be written as:

MeetOpðGeoObjA;GeoObjBÞ5GeoCarrierA \GeoCarrierB

5fRMeet;Tangent; IMeetg
(17)

Table 2 Representation of elements in dual space

Type Object Dual expression Geometric semantics

Rounds Round point P5e01p10:5p2e1 Direction : 2ðe1 � RÞ�e1

Location : Ak=e1 � Ak

Square :

Imaginary rounds R2 < 0

Point R250

Real rounds R2 > 0

9>>>>=
>>>>;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Point pair T5ðc2 1
2 q2e1Þ�

Q
�
Q

Circle K5ðc2 1
2 q2e1Þ�

Q
Sphere

P
5c1 1

2 q2e1

Flats Flat point W5k1�k2
Direction : e1 � R

Location : ðq � RÞ=R

Square : F2 6¼ 0

8>><
>>:Line K5ðp1ae1Þ�ðp1be1Þ

Plane
Q

5n1de1

p is the Euclidean vector, and Ak is the k blade in CGA space.
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Where RMeet;Tangent and IMeet mean the real intersection (i.e. the two objects inter-

sect at a certain geometry in the Euclidean space), touch intersection (i.e. the two objects

are tangent to each other) and imaginary intersection respectively (i.e. the two objects are

disjoint in the Euclidean space but interlinked in the CGA space. e.g. the meet of two dis-

jointed spheres results in an image circle; see Dorst (2007) for further explanations.) Since

we have defined the imaginary intersection, the MeetOp between two GeoObjs will always

be meaningful, and the result of MeetOp only depends on the relative location relations

between the two GeoObjs. We then have the following theorem:

Theorem 4.1: For any two GeoCarriers A;B 2 G, the meet operator B is closed and the

result must be GeoCarrier. Assuming A 6¼ B, we have:

A \ B5fGeoCarrier;GeoSemag (18)

Proof: Since the set of all blades in G is closed under the outer product of geometric alge-

bra, it can be easily proved that the meet always exists and is meaningful in G. In fact,

for any vector v 2 G, if A�B 6¼ 0, then v � A50 and v � B50 if and only if v � ðA�BÞ50,

and if v�A50 or v�B50, then v�ðA�BÞ50. So, we have:

A \ B5A��B� (19)

Clearly, the outer product can produce the dual representation of the intersection between the

two geometries. Since both the dual and outer products in G are closed, the result of the meet

product between blades always exists. Meanwhile, since the CGA system also includes a repre-

sentation of projective space (connected with the role of e0), every two elements are intersected

with each other. The elements that are not intersected in the Euclidean space will produce an

imaginary element, with the meet product applied in G. For example, two disjointed spheres

intersect at an imaginary circle in G, will keep the interrelationship between the two spheres.

This is important for computing the intersection relation in a more unified, general and

geometry-oriented way.

The meet operator between basic elements and the dimensional computation results are

listed in Table 3. Since in CGA, even two disjoint GeoCarriers can intersect at the infinite point

to form the imaginary objects, it is possible to determine the intersection relationship using

algebraic analysis (Roa et al. 2011). Here we have the following theorem:

Figure 3 Representing geometry model based on CGA
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Theorem 4.2: Given two GeoCarrier W and S, their meet B5W \ S, the W and S have no empty

intersection in R3 if and only if B2 � 0, and there are empty intersections if and only if B2 < 0.

Proof: According to Table 2, the geometric properties can be easily derived from the CGA

expression of GeoCarrier and GeoSema, which has great significance for spatial relation

calculations. The square properties, such as the module of blades, can be used to distin-

guish the type of GeoBase. When B2 � 0, the result must be a real round, point or flat

object, otherwise that must be imaginary round or GeoSema objects that indicate the

same directions or tangent points and directions of the meet operands. As a result of the

attributes described above, we discuss each relation between different GeoSema objects

separately (Table 3).

So the MeetOp operation has three possible results that are partly consistent with B2,

which:

MeetOpðW; SÞ5W \ S5

RMeet B2 > 0

Tangent B250

IMeet B2 < 0

8>><
>>: (20)

The exceptional case is that when the intersecting objects are two Flat GeoCarrier, there is no

Tangent result but an IMeet result for their parallel relation.

4.2 The Unified Computation of the Insider/outside Relations

Another important topological relation is whether an object is inside or outside another.

Since the conformal transformation projects the Euclidean space into the Riemann sphere,

some Euclidean objects, such as segments/lines and planes, have an infinite component,

while spherical objects, such as points (a sphere with zero radius in CGA), circles, and

spheres, do not have an infinite component. In other words, these objects should limit

their real boundaries with boundary objects that can be constructed by the coordinate con-

straints through a series of points. However, spherical objects have native boundaries that

are constrained by the distance of their center points and radii. Therefore, we separate

these two sets of objects and discuss the classification of the inside/outside relations with

different operators.

Definition 4.2: BoundOp is defined to work out the inclusion relation of point sets and

GeoCarrier, and can be written as:

BoundOpðPt;GeoObjÞ5fInside;Outsideg (21)

The results of BoundOp operation are inside or outside relations, and Equation (21) can

be generalized to GeoObj:

BoundOpðGeoObjA;GeoObjBÞ

5BoundOpðptsA;GeoObjBÞ&BoundOpðptsB;GeoObjAÞ

5ðnInsideB;nInsideAÞ

5ðma;mbÞ; ðna; nbÞ; ð1; 1Þ; ð1;nbÞ; ðna;1Þ; ð0;0Þ; ð0;nbÞ; ðna;0Þ

(22)
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where na and nb are the number of GeoObjs boundary points, nInsideA; nInsideB are the num-

ber of boundary points located in the interior of GeoObjs, ma;mb meet 0 � ma � na;

0 � mb � nb.

For the inside boundary points, two-tuples are used to represent the boundary relationship

of GeoObjs. Since the GeoCarrier of a GeoObj can be a round or flat object and the geometric

features of the round and the flat are much different from each other, the solution of BoundOP
should be considered in two different conditions:

1. BoundOpðPt; round GeoObjÞ: An important advantage of CGA is the identical meaning

of the inner product, which embeds the Euclidean distance metrics between two points/

circles/spheres (i.e. roundGeoCarrier) in the CGA space. Given two points A and B, we

have d522A•B. If the two points are the same, then d50, i.e. A•B50. So, if the inner

product of the two points equals zero, the two points coincide. Conversely, the two

points do not coincide if A•B 6¼ 0. Since the points are spheres with radii of zero, we

also have 22ðS1•S2Þ5r2
12r2

2 (Hildenbrand 2013). Therefore, to degenerate the sphere S1

to a point P1 with r150, we have:

P1 is inside S2 P1•S2 > 0

P1 is on S2 P1•S250

P1 is outside S2 P1•S2 < 0

8>><
>>: (23)

2. BoundOpðPt; flat GeoObjÞ: Since the GeoCarrier object is directly represented by the

outer product from point sets, the anti-symmetric characteristic allows the constructed

objects to have certain directions (e.g. the line L15A�B�e1 and L25B�A�e1 are in

opposite directions). Since any arbitrary object can be seen as an orderly construction

of a point series and any point p which meets the condition p�A50 on the object A,

the wedge between the uncertain point and the point series that has already been on

the object can be distinguished by the sign of the outer product. For a given point p

and a flat GeoCarrier A that has the expression of A5A1�A2� � � ��An�e1, where

Table 3 The intersection table of basic elements

Meet operands

Points
meet (point

with k-blade)

Flats meet
(m-flat with

n-flat)

Rounds
meet (sphere
with k-blade)

B2>0 B250 B250 B2>0 B2<0 B250 B2>0

k 5 3; m 5 3; n 5 3

k 5 4; m 5 3; n 5 4

k 5 4; m 5 4; n 5 4

IPoint pair and ICircle indicate the image point pair and image circle; TVector and TBivector indicate the
angent vector and tangent bivector; FVector and FBivector indicate the free vector and free bivector
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n < 5, we can replace p with the i2th point Ai to form an outer product computation

formula as:

ti5ðA1� � � ��Ai21�P� � � ��An�e1Þ (24)

So the BoundOp can be commutated by the following equations:

P is inside A ti < 0

P is outside A ti � 0

(
(25)

4.3 Composition of the Overall Topological Relations

Based on the MeetOp and BoundOp, we can define the final topological operator, TopoOp,

according to the CNG:

Definition 4.3: TopoOp is the combination of Definitions 4.1 and 4.2, which can classify

and identify the specific topological relations. It can be defined as:

TopoOpðGeoObiA;GeoObiBÞ

5MeetOpðGeoObiA;GeoObiBÞ&BoundOpðGeoObiA;GeoObiBÞ

5fPO;EQ;EC;TPPI;TPP;DC;NTPPI;NTPPg

(26)

According to the GNC structure of the topological relations, we can define eight basic top-

ological relations: PO, EQ, EC, TPPI, TPP, DC, NTPPI and NTPP. These relations can be

obtained by combining the MeetOp and BoundOp (Table 4).

The blade classification operators, such as :isGaFlatðÞ and :GaRoundðÞ, and topologi-

cal relation computation algorithm (Algorithm 1) are developed to obtain the topological

relations. In Algorithm 1, the GeoCarriers of two objects A and B are first constructed by

the boundary points A.pts and B.pts. The intersection relations are first computed by the

square of the meet product of A and B. The real and imaginary intersection relations are

determined by the sign of the square of meet. Then the inside and outside relations are

computed with the inner and outer product. Finally, the topological relation between A

and B is computed with the TopoOp. The structure of our algorithm is simpler and geo-

metrically clearer than most of the current topological computation algorithms. In addi-

tion, since all the operators used in the algorithm are multi-dimensional unified, the

computation of topological relations between objects with different dimensions can be per-

formed with the same algorithm structures and same operators. Thus, the algorithm is also

multidimensional-unified.

5 Case Study

We implemented the geometry-oriented multidimensional topology representation and com-

putation model in the Clifford algebra-based unified spatial-temporal analytic environment

(CAUSTA) (Yuan et al. 2010). The data we used to demonstrate the topology computation

is a 3D residential district (Figure 4). The buildings are first imported from the CityGML
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data and then represented by the CGA data model (Yuan et al. 2011). The buildings are

represented object-oriented in the unified multivector structure. Unlike classical 3D GIS,

which separates different dimensional objects into several different layers, the dimension

hierarchy of the buildings is also represented by the CGA subspace representation with a

multivector structure.

Two different buildings were selected from the scene to illustrate the topological repre-

sentation and computation. The symbolic representation of the geometries with the CGA

outer product representation, which can be adjusted and modified with a hierarchical tree

structure (Figure 4a), clearly distinguishes our approach from existing representation models.

Based on the symbolic representation, the computation parameters can be provided interac-

tively before the computation and dynamically updated during the computation. This pro-

vides a flexible and convincing way for continuous or dynamic topological relations

Table 4 The TopoOp operator

MeetOp(A,B) BoundOp(A,B) TopoOp(A,B) Topological Relations

Real meet (ma,mb) PO Overlaps
(1, nb) TPPI Covers
(0, nb) NTPPI Contains
(na,1) TPP CoveredBy
(na,0) NTPP ContainedBy

(na,nb) EQ Equal
Tangent meet (1,1) EC Meet
Image meet (0,0) DC Disjoin
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computation. By changing the shape and location of a building, the topological relations

changes are logged and represented. Figures 4b and d represent how the shape changes of

one building were reflected in the multivector representation and finally caused the topologi-

cal relations changes simultaneously.

Compared with existing topological relations computation methods, the geometrically

integrated topological computations are more compact and geometrically clearer. In addition,

the hierarchical tree structure not only clearly represents the geometric structures and the

dimensional hierarchy of the objects, but also provides a convincing way for multidimensional-

unified topological relations computation. The MeetOp, BoundOp and TopoOp can be

directly and recursively applied to the objects with different dimensions according to their

dimension hierarchy (Figures 4a and c). Since both representation and computation of objects

in the CGA model are based on the MVTree structure (Yuan et al. 2014), the representation

and computation model of multidimensional objects are simplified and unified. Since the com-

putation of the topological relations in our solution has algebraic and geometric representa-

tions, the MeetOp, BoundOp and TopoOp can be interactively applied to the whole

multidimensional objects or an individual object in the multivector tree (Figures 4a, c). Both

the algebraic and geometric representations are provided in the console box and scene, respec-

tively. As each component of the algebraic multivector representation is a real geometry, the

symbolic representation can also be visualized in the result windows (Figures 4b, d). This

Figure 4 Case study of topology analysis. The left side figures show the configuration of calculat-
ing paraments and operators; the right side figures are the analysis results based on the methods
proposed by this article. To enumerate the sequences of operations detail, the CGA expressions
and visualizations of MeetOp() and BoundOp() are presented in the result windows.
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provides a direct way for the user to interactively explore and verify the computation

procedure.

One of the key advantages of CGA representation is that each object in the scene is sym-

bolically represented using the geometric algebra expressions. When the symbolic expression of

the objects in the tree is modified or operated with certain operators, the geometric representa-

tion, as well as the relations between different dimensions, is changed adaptively according to

the CGA construction rules. Both the coefficients of the object expression multivectors and the

topological computation operators can be dynamically set and changed during the computation

(Figures 4a, c). Since all the computations are dimensional and shape independent, our model

will be helpful for interactive and dynamical topological relation computation and simulation.

This also provides a flexible and effective structure for developing complex multidimensional

spatial analysis algorithms.

6 Discussion

The traditional topology calculations are mainly based on the point-set topology theory in

which all of the geometries, such as GSG, B-rep and GTP, are first abstracted into the topologi-

cal representations (Wu 2004; Lee and Kwan 2005; Cheng et al. 2008). Several complex algo-

rithms are developed to calculate the boundaries, the interior and exterior relations (Theobald

2001; Nedas et al. 2007; Du et al. 2008). Using the binary operators in topological computa-

tion models, the topological relation then can be calculated. However, calculating topological

relations in the CGA framework is simple, unified, and direct. The geometries, such as points,

lines and volumes, could be represented by subspaces and multivectors directly and integrated

in the CGA data model (Yuan et al. 2011, 2014). The geometries can also be directly computed

with the multidimensional-unified and coordinate-free CGA operators. These geometry opera-

tors (projection, intersection, etc.) can produce rich attribute and relation information and also

contribute to direct and meaningful representation. Therefore, this computing model in CGA

not only provides more meaningful topological relations, but also greatly reduces the complex-

ity of current GIS. The property comparisons of our solution and existing methods are shown

in Table 5.

GOTR computations can achieve the topological consistency with geometric transfor-

mations in a parametric way. The CGA-based topological relation computation can

extract the boundaries, interior, and exterior parts of multidimensional objects in a

geometry-oriented way with very few operators. The representation and computation in

CGA space, which integrates the Euclidean and Projective geometry in a coordinate-free

way, can very easily extract the topological equivalence relation (e.g. homeomorphism or

diffiomorphism).

Although we have only defined eight types of topological relations that are compatible

with the OGC standard, it can be easily extended to much more complex computations. The M

eetOp and BoundOp can be easily used in the computation of the traditional 9-IM model, the

CBM model, and in many other models. This characteristic will greatly improve the capability

of the multidimensionality unified GIS. In addition, because the operators are reduced to only

three basic fundamental products, the complexity of the algorithm construction is significantly

reduced. The symbolic and direct geometric computation also provides convenience for algo-

rithm optimization. Therefore, the theoretical analysis of topological relation changes will be

possible.
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Since the topological relation computation under the CGA framework is based on the

CNG, geometry-oriented topology is closer to human cognition. In our GOTR computations,

the intersection, insider/outside relations can be not only separated but also combined together.

There are clear and direct geometric representations during each computing step. All these

computations are geometric and cognizable. In our CAUSTA system, we visualized the internal

objects/relations and their geometric semantics interactively. In this way, users can not only

recognize how the coefficients and characteristics of the geometries influence their topological

relations, but can also dynamically change the coefficients of the representations and support

the computation of the spatial-temporal topologies.

Powerful CGA computation tools can be introduced to further extend the border of

topological relation computation. The extension can be provided in three ways: firstly,

more powerful CGA operators and complex relations can be integrated in the CGA frame-

work. In CGA, most of metrics and operators can be represented as certain products of

geometries (e.g. a Euclidean distance can be represented as the inner product of two points/

spheres). Relations such as distances, directions and even motions can be represented as

subspaces. They can be integrated into the GIS spatial relation in a similar way. There

exists great potential to build a unified model for geometry-oriented spatial relationship

representation and computation. Secondly, the computation space can be extended. In CGA

planes and spheres are isomorphic, so the Euclidean space and spherical space can be uni-

fied. Therefore, the topological relation computation model can easily be extended into the

spherical space. This will be helpful in global scale analysis. Thirdly, CGA has powerful

tools for representation of motions and transformations. It is possible to extend current

spatial analysis tools to spatial-temporal dimensions.

Due to the simplicity and directness of the model, more geometry-oriented operators, met-

ric relations, etc. can be integrated in a similar way. Thus, it provides the potential to be

extended to a unified framework for the geometry-oriented spatial relation representation and

computation. It also provides a possible way for adaptive and parametric temporal-spatial

topology computation. Suggestions for further research include: (1) to develop more general-

ized and complete topological relation computation algorithms for complex objects; (2) to infer

the minimal number of operators and meaningful topological relations that exist in certain sub-

spaces; (3) to develop efficient parallel algorithms and integrate a lattice-theoretic approach for

large-scale topological relation computing and updating; and (4) to study the dynamically

adaptive topological relation computation based on the symbolized CGA representation.

Table 5 The property comparison between different topological relation models

Model Direct Expression
Formulized
Expression Immanence

Multidimen-
sional-unified Adaptive

Point-Set - 111 - - 1

RCC Model 1 11 - - -
CBM Model 1 111 1 - -
Semantic Model 1 - - - -
Our Model 11 111 11 11 111

The “1” means advantage in this property, and the more “1” means more advantage. The “-” means
weakness in this property.
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7 Conclusions

In this article, an extended CGA data model and unified topological computation model are

proposed. We defined the unified MeetOp, BoundOp and TopoOp to extract the intersection,

inside/outside relations and other topological relations, respectively in a united way. Case stud-

ies proved that our method is not only geometrically meaningful, computationally direct, and

unified at different dimensions, but can also compute the topological relations in a simple and

compact way. The advantages of our model include: (1) linking the geometric properties with

the abstract algebraic relation computation; (2) providing a set of GA operators for topological

representation and computation; (3) supporting unified computation for objects of different

dimensions and types. All the above advantages suggest that our method provides a new foun-

dation for efficient and geometrically meaningful topological relation computation.

Note

1 In CGA, point pair can be used to express a line segment, but it can also represent two points that are linked

with certain relations or an intersection between two circles (Dorst et al. 2007).
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