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A KNOWLEDGE-BASED
APPROACH TO DATA
INTEGRATION FOR SOIL
MAPPING

RESUME

L’intégration de données spatiales provenant de sources
multiples est une méthode trés courante pour une foule
d’analyses géographiques. Cette méthode peut étre
divisée en deux étapes fondamentales : I'intégration des
données sur le plan syntaxique et 'intégration des
données sur le plan sémantique. L’intégration des
données sur le plan syntaxique concerne I'alignment et
la structuration des données spatiales provenant de
différentes sources, tandis que l'intégration sur le plan
sémantique s’attache a I’analyse et a I'interpretation des
données spatiales de sources multiples utilisées pour
répondre a des questions précises. Cet article présente
une méthode d’intégration de données de sources
multiples fondée sur les connaissances, dans un contexte
sémantique. Cette méthode fait appel a une
méthodologie propre aux systémes experts pour intégrer
des connaissances empiriques a d’autres données
environnementales afin d’en tirer de I'information sur un
phénoméne spatial donné. La méthode incorpore
également la logique floue au processus d'intégration des
données afin de tenir compte de la nature continue dans
’espace des phénomeénes géographique. L’utilisation de
cette méthode d’intégration des données est illustrée a
["aide d’un exemple d’inférence des sols. Les résultats
d’un relevé de terrain effectué dans le cadre de cette
étude ont démontré que la méthode fournissait de
I'information sur les sols de meilleure qualité que
I'information tirée de la carte des sols produite & partir
d’un relevé de terrain classique. "

by A-XING ZHU ¢ LAWRENCE E. BAND

SUMMARY

Multi-source spatial data integration is a very comman
process in many geographic analyses. Integration of
multi-source spatial data can be divided into two basic
steps: syntax data integration and semantic data
integration. Syntax data integration is concerned with the
alignment and formatting of spatial data from different
sources, while semantic data integration deals with the
analysis and interpretation of multi-source spatial data
when they are used to answer specific questions. This
paper presents a knowledge-based approach for
integrating multi-source spatial data in a semantic
context. The approach employs an expert system
methodology for integrating empirical knowledge with
other environmental data for the derivation of
information about a given spatial phenomenon. The
approach also incorporates fuzzy logic into the data
integration process to accommodate the spatially
continuous nature of geographic phenomena. The use of
this knowledge-based semantic data integration is
illustrated through a soil inference example. Results from
a field survey in the soil inference example have shown
that the approach produces higher-quality soil
information than the soil map produced from a
conventional soil survey.
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INTRODUCTION

ntegration of multi-source spatial data has been the ulti

mate tool for many geographical analyses. Geographica
analysis and a considerable number of management deci
sions require the use of data from field surveys, paper maps
and human knowledge about the phenomenon in questior
These data are often in different forms (digital or analog
different storage formats (different raster or vector formats.
and have different meanings for different analyses. There
fore, they must be aligned, formatted, and integrated t
support management decisions and research conclusion:
With the development of remote sensing technology, th
increasing availability of remotely sensed data, the develor
ment of Global Positioning Systems (GPS), and the develog
ment of inter-disciplinary research, the integration of spatic
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data from different sources becomes an increasingly impor-
tant issue.

Integration of multi-source data can be divided into two
major parts: syntax integration and semantic integration.
Syntax integration is concerned with the alignment of spa-
tial data in terms of their format and geographic registration
(georeference). The tasks of syntax integration include
analog-to-digital conversion (A /D), format transformation,
and map transformation (including georeference). Paper
maps have been the ultimate data source for geographic
information. Often these paper maps need to be converted
into digital forms (digital data layers) through digitizing or
scanning processes (see Chapter 4 in Aronoff, 1989; Chapter
4in Burrough, 1986). This process of converting paper maps
into digital maps (data layers) is referred to as analog-to-
digital conversion (A/D). Sometimes, the required data
may be in different digital forms (such as different raster or
vector formats). These data may have to be transformed into
the format (data structure) that is being employed in the
system currently used for the project. This process of con-
verting existing digital data from one format (data struc-
ture) to another is called format transformation (Chapter 7
in Aronoff, 1989; Chapter 10 in Clarke, 1990; Nichols, 1981;
Pavlidis, 1979; Peuquet, 1981a, Peuquet, 1981b; Piwowar et
al., 1990; Van Der Knaap, 1992; Van Roessel, 1985). Once the
needed data layers are converted into the useable digital
forms, the user must check if these data layers are correctly
aligned. In other words, a point on one data layer should
have the same coordinates as on the other data layers. If not,
these data layers have to be registered to either a common
universal coordinate system (such as the Universal Trans-
verse Mercator (UTM)) or a same local coordinate system.
This registration process is called map transformation (geo-
registration) (Chapter 7 in Aronoff, 1989; Chapter 9 in
Clarke, 1990; Maling, 1991). Once these data layers are
georegistered, they are ready to be processed, which is done
through the semantic integration.

Semantic data integration deals with the meaning of
these multi-source data when they are added (overlaid)
together to answer a specific question. In the past, two basic
approaches have been taken for data integration: the classi-
fication approach and the constraint approach. Under the
classification approach, different data layers (input data
layers) are overlaid together. In a vector data model, poly-
gon boundaries on the input data layers are intersected to
form a set of new polygons and then a new data layer is
produced. The newly formed polygons are then classified
(using supervized or unsupervized classification tech-
niques) based on the attribute values that are carried over
from the input data layers. Each class of polygons is then
given a specific meaning and serves as an answer to the
problem under concern. In a raster data model, the area is
dissected into numerous small cells or pixels. Since these
cells (pixels) have the same geometric shape, correspondent
cells at different data layers match each other very well after
georegistration. Therefore, the integration of these data lay-
ers simply becomes a classification problem of the pixel
attributes. Pixels with a similar configuration of attribute
values are assigned to the same class. Each of these resultant
classes is then given a specific meaning with respect to the
problem under concern.

There are four major problems with the classification
approach. The first problem is that all data layers are treated
with equal importance during the integration process re-
gardless of the nature of the spatial phenomenon under
study. In reality, information from some data layers are
more crucial and important than those from other data
layers with respect to a specific phenomenon. For example,
soil information has very different meanings if forest pro-
ductivity is being studied as opposed to the study of bird
habitats. Therefore, different data layers may have to be
treated differently in terms of their contribution to the spa-

tial distribution of a phenomenon under study. The second
weakness is that the influence of individual environmental
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factors (expressed as individual data layers) on a particular
geographic phenomenon was given at the time when the
resultant classes were assigned labels (meanings). There is
no information on how these environmental factors in-
fluence the phenomenon. For example, bird ecologists have
some knowledge about how forest types affect bird habitats
and soil scientists know generally how elevation affects soil
profile development through field observation and studies.
However, this type of knowledge is not incorporated into
the integration process. Instead, it is grossly assigned to the
final classes. The third potential drawbacks of the classifica-
tion approach is that the final results are expressed in the
form of categorical classes. In other words, the charac-
teristics of a phenomenon at a given location are categori-
cally said to be those of a specific class, when in reality, the
characteristics might well be between the characteristics of
two or more classes. The assignment of a phenomenon with
intermediate values to one of the predefined classes results
in a significant loss of information. The fourth potential

15111110 al oo O ARRIINAUIQA. 1€ I0UIT LT alias

problem is a result of the delineation of classes in the at-
tribute domain. When the ranges of attribute values are
grouped into categories, many areas with attribute differ-
ences smaller than the differences of two consecutive cate-
gories are grouped together to form a uniform region (rep-
resented by a polygon). In other words, the spatial variation
of a geographic phenomenon is assumed to occur only at
the boundaries of polygons. Within each of these polygons,
the property of the phenomenon is uniform. In reality, very
few geographic phenomena exhibit this type of spatial var-
iation. Most of the natural geographic features show at least
some spatial gradation in terms of their property values.
The constraint semantic data integration approach differ-
entiates itself from the classification approach by introduc-
ing the influence of a particular environmental factor on the
phenomenon under study (such as influence of elevation on
forest distribution and growth). The influence of each en-
vironmental factor on the phenomenon under study is ex-
pressed as a constraint, often as a binary function (such as
“at an elevation over 1500 m, there are Douglas fir forests;
below 1500 m, there are ponderosa pine forests”). Each of
the input data layers is then preprocessed using its respec-
tive constraint to generate its respective intermediate data
layer. Each of these intermediate data layers expresses the
limitation or predilection for a particular environmental
condition for the phenomenon under study. Finally, these
intermediate data layers are overlaid to produceafinal layer
about the distribution of the phenomenon under study. The
constraint approach has an advantage over the classifica-
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tion approach. In the constraint approach, knowledge of the
relationship between the phenomenon under study and its
environment is explicitly defined and incorporated into the
data integration process. A researcher has some controls on
the importance of each environmental factor in relation to
the phenomenon under study by relaxing or tightening the
respective constraints. However, the constraints are often
defined in a crisp fashion. In other words, the influence of
an environmental factor on the phenomenon is grouped
into categories and expressed as some type of step function.
Under the constraint approach, the final result is still ex-
pressed as uniform polygons, as it is under the classification
approach.

There is a need for developing a new data integration
approach that will allow the expression of the environmen-
tal influence in a continuous function and that will preserve
the spatial gradation of the phenomenon in the final results.
Such an approach, presented in this paper, is knowledge-
based semantic data integration, which combines expert
system techniques and fuzzy set theory for spatial data
integration. In a broader sense, this knowledge-based
semantic data integration approach (referred to as knowl-
edge-based data integration) is a special type of constraint-
based data integration. The difference between this knowl-
edge-based data integration and conventional constraint-
based data integration is the definition of the constraints
and the representation of the results. With the knowledge-
based data integration, the effects of environmental factors
on the physical processes of a spatial phenomenon are
expressed by a set of constraints. However, each constraint
is defined as a fuzzy membership function (more or less a
continuous function), which is based on the knowledge of
adomain concerned. The difference between the definitions
of “soil A occurs at middle elevation (2000 m to 4000 m)”
using a conventional crisp function and of a fuzzy member-
ship function is shown in Figure 1. The result from the
knowledge-based data integration is expressed in terms of
fuzzy membership values. For example, if we were to infer
the soil at a location, the result from the knowledge-based
data integration would express the membership for the soil
at the location being the prescribed soil type instead of
assigning or not assigning the soil type to the location. In
reality, the soil at the location may exhibit some charac-
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Figure 1.

Crisp and fuzzy definitions of “soil A occurs at middle elevation.”

teristics of the prescribed soil type but may not be exactly
the same. The fuzzy membership representation of integra-
tion results may be more realistic. In the next section we
discuss the knowledge-based data integration in depth,
which is followed by a case study using the described
method for soil inference.

KNOWLEDGE-BASED DATA INTEGRATION

In many management activities, the distribution of a geo-
graphic phenomenon is often derived from a set of avail-
able data on the environment that the phenomenon is very
tightly associated with or influenced by. This derivation
conforms to Equation 1,

O=f(E) (1)

where O is the spatial distribution of a geographic phenom-
enon, E is the environment associated with the phenome-
non, and f is the function that specifies how the en-
vironmental conditions influence the distribution of a given
geographic phenomenon.

In many cases, the exact form of f is unknown due to a
limited understanding and complicated relationships be-
tween a given phenomenon and its environmental condi-
tions. Different approaches of approximating f result in
different methods of semantic data integration. With a
knowledge-based data integration approach, f is approxi-
mated using the empirical knowledge of local experts who,
having studied the phenomenon and its distribution for
many years, have accumulated a great deal of information
on the relationships of the phenomenon and its en-
vironmental conditions. Knowledge about the phenome-

. non and its environment from existing reports and maps

can also be used to approximate f.

In the knowledge-based data integration, the = in Equa-
tion 1 is interpreted under fuzzy logic (referred to as fuzzy
inference). Under crisp logic, a geographic phenomenon at
a given point can belong to only one type. Therefore, the
phenomenon at a given point carries only the properties of
the assigned type. In reality, many geographic phenomena,
such as soils, often vary continuously. The phenomenon at
a given point might have some but not all of the property
values of the assigned type, and might also possess some
properties of other types or have the property values inter-
mediate to typical values of prescribed types. This gradation
of spatial phenomena cannot be represented with crisp
logic. Under fuzzy logic, the phenomena at a given point
can be classified as more than one type with different
degrees of assignment depending on the similarity between
the phenomenon at the site and the prescribed type (Figure
2). In other words, the phenomenon at a given point (i, /) can
berepresented as a vector of similarity values (Sj). Sijis also
referred to as a vector of membershlps or suknply as a mem-
bership vector and consists of 51] 31] yoenr Sif s Sl] withn
being the total number of prescribed types for the phenom-
enon. The similarity value Sjj" represents the similarity be-
tween the phenomenon at the point (7, j) and the prescribed
type k with a similarity value of 1 being exactly the
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Figure 2,
Representation of geographic phenomena under fuzzy logic.

same as the prescribed type k and 0 not being the prescribed
type k at all. Values between 1 and 0 represent different
degrees of similarity to the prescribed type k. It can be seen
that fuzzy logic is more appropriate than crisp logic for
representing the spatial variation of a geographical phe-
nomenon such as soils or wildlife habitats.

Once both the environmental conditions at a site and the
relationships betweena given phenomenon and its environ-
ment are known, the membership vector can then be ob-
tained for the site. This membership vector (5;j) shows the
degree of fit of the phenomenon (such as soil) at the site to
various types (such as different soil types). In other words,
the membership vector of a given site contains several
elements. Each element expresses the belonging of the phe-
nomenon at the site to a particular type. If an area is made
of M by N pixels (sites), we would have an M by N array (S)
of membership vectors. If we display the membership
values of the first element in each of the membership vectors
for the entire area, we would have an image of memberships
for type 1 phenomenon. This image is different from the
crisp logic-based image since the membership image shows
the degrees of occurrence of a particular type of phenome-
non over the area. In other words, the distribution of a given
type of phenomenon varies in degrees, not in a black/ white
fashion, as depicted in crisp logic-based images. It is these
varying degrees that provide information about the grada-
tion of spatial phenomena over space.

A CASE STUDY: SOIL INFERENCE

The Problem

nowledge of the distribution of soil properties over the
landscape is required for a number of hydrological,
ecological, and land management applications. In detailed
hydroecological and other environmental modelling appli-
cations, continuous soil properties over an area are very

much desired to approximate the resolution of other e
vironmental parameters gathered from remote sensing an
digital terrain analysis (Band et al., 1991, 1993).
Currently, soil maps produced from soil surveys a
digitized to provide the soil information required for
variety of land analyses and management activities. Hov
ever, soil maps often contain a great deal of uncertaini
since much of the quantitative and qualitative knowledg
of the soil scientist regarding the occurrence of given sc
categories (for example, series) or properties is not mail
tained in the map. There are some major problems regarc
ing the use of current soil maps in geographic analys
(Chapter 6 of Burrough, 1986). These problems incluc
limited coverage at a fixed scale, location errors, attribu
errors, and insufficient information in the mapping uni
due to the discrete spatial model (Bregt, 1992; Heuvelin
1993) with which soil maps are produced. The discre
spatial model is based on crisp logic. Under crisp logic, t
soil of an area belongs to one, and only one, soil categor
even if the soil might resemble more than one soil categos
since spatial variations of soil are more or less continuou
Under the discrete spatial model, soils of an area are tran
lated onto soil maps as discrete polygons. Areas within eac
of the polygons are assumed to have the same type of so
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Soil property on soil maps and in reality; solid line for property
profile from soil map, dash line for real property profile along
L1-L2.
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Delineation of soil continuum into discrete polygons also
assumes that soil properties change dramatically at the
boundaries of these polygons (Figure 3). As shown in Fig-
ure 3, the actual value of the continuous soil property ()
might exhibit variation outlined by the dashed curve,

Studies have shown that even soil maps produced from
systematic surveys might contain large amounts of “im-
purities” (errors) within the units delineated ( Beckett, 1971
Beckett and Burrough, 1971; and Wilding et al., 1965). These
“impurities” might propagate through geographical analy-
gis in a GIS and make the results from these analyses,
particularly Gl5-based simulation modelling, unpre-
dictable.

While the soil scientists conducting the survey and map-
ping process may be aware of the degree of uncertainty in
the mapping and may be able to infer more details on
expected soil properties at a given location on the map from
their knowledge of soil /landscape relations, this informa-
tion is generally not translated onto soil maps. It is feasible
to use the knowledge-based data integration approach to
incorporate this information into the soil information
generation processes.,

Study Site

The study area for testing the knowledge-based data
integration is the south part of the Lubrecht Experimental
Forest, located about 50 km northeast of Missoula, Montana,
USA. The forest was established in 1937 to foster research
on natural respurces. The study area is centred on the North
Forkof Elk Creek, and is 4.8 km in the north /south direction
and 7.5 km in the cast/west direction (160 rows and 250
columns with a pixel size of 30 m by 30 m).

The elevation in the area ranges from 1,160 m to 1,930 m
with high elevation in the east and southwest and low
elevation in the northwest (Figure 4). The majority of areas
are at an elevation between 1,200 m to 1,510 m. There is no
evidence of glaciation in the study area (Brenner, 1968). Ross

and Hunter (1976) estimated that the mean annual precipi
tation at 1,830 m is between 50 cm and 76 om. Annual
precipitation at lower elevations is lower. Annual precipi-
tation at 1,200 m is between 37 cm and 56 cm. Approxi-
mately 44% of the precipitation falls during the winter
(November through March) and 24 percent falls during the
summer (June through August) (Nimlos, 1986). The mean
annual air temperature at 1,200 m is about 4°C. The mean
winter air temperature (December through February) is
about -6°C, while the mean summer air temperature (June
through August) is about 15°C. The study area can be con-
sidered as semi-humid to semi-arid.

Most of the mountain slopes in the study area are for-
ested, dominated by Douglas-fir (Psendotsuga menzigsii), al-
though lesser amounts of Western Larch (Larix occidentalis)
and Ponderosa Pine (Pinus ponderosa) are present. A small
portion of the study area (the northwest) is covered by
fescue/bluebunch wheatgrass. Only a few areas of virgin
forest remain, most having been logged, mainly during the
periods of 1904 to 1906, 1925 to 1935 (Cauvin, 1961), and
1961 to 1962 (Brenner, 1968). Much of the timber is second-
growth, There have been no large wild fires in the study area
since 1937,

Four major types of parent materials are in the area: belt
rocks, granite, limestone, and recent alluvium (Brenner,
1968; and Nimlos, 1986). The alluvium materials occur only
in limited areas along the North and South Forks of Elk
Creek. The first three parent materials make up the majority
of the study area, with belt rocks in the north, granite in the
south, and limestone through the central part.

50ils on these three materials are formed from a mantle
of colluvium. There are four soil orders in the general area
of the Lubrecht Experiment Forest: Alfisols, Entisols, Incep-
tisols, and Mollisols (Nimlos, 1986), and only two orders —
Entisol and Inceptisnl — are found in the study area. Enti-
sols are weakly developed soils with very little organic
matter accumulation and noilluvial clay or sesquioxides. In
Lubrecht, Entisols are usually found on ridge crests, Incep-
tisols are voung soils with little or no illuviated
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Figure 4.
A Digital Elevation Model of the study area.

clays but brown subsoil horizons that indicate
some translocations of sesquioxides. Aboul
9% of the soils (in terms of areal extent) in the
study area are Inceptisols. The 12 mapped soil
series in the study area are: Ambrant, Elkner,
Evaro, Ovando, Repp, Rochester, Sharrott,
Tevis, Trapps, Whitore, Winkler, and Winkler
Cool. Brief descriptions of these soil series are
given as follows,

Ambrant, Elkner, Ovando, and Rochester
are the soil series occurring on the granite
materials that are located in the southeast part
of the study area. Ambrant and Rochester are
low-elevation soil series and often occur inter-
mittently. Ambrant has a better developed and
a deeper profile, while Rochester has a poor
profile development and contains a large
amount of rock fragments. Rochester often oc-
curs at the dry sites where limited moisture
conditions restrict the development of the soil
profile. Elkner is a middle- to high-elevation
soil with a well-developed profile, while
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Delineation of soil continuum into discrete polygons also
assumes that soil properties change dramatically at the
boundaries of these polygons (Figure 3). As shown in Fig-
ure 3, the actual value of the continuous soil property (v)
might exhibit variation outlined by the dashed curve.

Studies have shown that even soil maps produced from
systematic surveys might contain large amounts of “im-
purities” (errors) within the units delineated (Beckett, 1971;
Beckett and Burrough, 1971; and Wilding et al., 1965). These
“impurities” might propagate through geographical analy-
sis in a GIS and make the results from these analyses,
particularly GIS-based simulation modelling, unpre-
dictable.

While the soil scientists conducting the survey and map-
ping process may be aware of the degree of uncertainty in
the mapping and may be able to infer more details on
expected soil properties at a given location on the map from
their knowledge of soil/landscape relations, this informa-
tion is generally not translated onto soil maps. It is feasible
to use the knowledge-based data integration approach to
incorporate this information into the soil information
generation processes.

Study Site

The study area for testing the knowledge-based data
integration is the south part of the Lubrecht Experimental
Forest, located about 50 km northeast of Missoula, Montana,
USA. The forest was established in 1937 to foster research
on natural resources. The study area is centred on the North
Fork of Elk Creek, and is 4.8 km in the north /south direction
and 7.5 km in the east/west direction (160 rows and 250
columns with a pixel size of 30 m by 30 m).

The elevation in the area ranges from 1,160 m to 1,930 m
with high elevation in the east and southwest and low
elevation in the northwest (Figure 4). The majority of areas
are at an elevation between 1,200 m to 1,510 m. There is no
evidence of glaciation in the study area (Brenner, 1968). Ross

and Hunter (1976) estimated that the mean annual precipi
tation at 1,830 m is between 50 cm and 76 cm. Annua
precipitation at lower elevations is lower. Annual precipi
tation at 1,200 m is between 37 cm and 56 cm. Approxi
mately 44% of the precipitation falls during the winte
(November through March) and 24 percent falls during the
summer (June through August) (Nimlos, 1986). The mear
annual air temperature at 1,200 m is about 4°C. The mear
winter air temperature (December through February) i
about -6°C, while the mean summer air temperature (June
through August) is about 15°C. The study area can be con:
sidered as semi-humid to semi-arid.

Most of the mountain slopes in the study area are for
ested, dominated by Douglas-fir (Pseudotsuga menziesii), al
though lesser amounts of Western Larch (Larix occidentalis,
and Ponderosa Pine (Pinus ponderosa) are present. A smal
portion of the study area (the northwest) is covered by
fescue/bluebunch wheatgrass. Only a few areas of virgir
forest remain, most having been logged, mainly during the
periods of 1904 to 1906, 1925 to 1935 (Cauvin, 1961), anc
1961 to 1962 (Brenner, 1968). Much of the timber is second:
growth. There have been no large wild fires in the study are:
since 1937.

Four major types of parent materials are in the area: bel
rocks, granite, limestone, and recent alluvium (Brenner
1968; and Nimlos, 1986). The alluvium materials occur only
in limited areas along the North and South Forks of Elk
Creek. The first three parent materials make up the majority
of the study area, with belt rocks in the north, granite in the
south, and limestone through the central part.

Soils on these three materials are formed from a mantle
of colluvium. There are four soil orders in the general are:
of the Lubrecht Experiment Forest: Alfisols, Entisols, Incep:
tisols, and Mollisols (Nimlos, 1986), and only two orders —
Entisol and Inceptisol — are found in the study area. Enti
sols are weakly developed soils with very little organi
matter accumulation and no illuvial clay or sesquioxides. Ir
Lubrecht, Entisols are usually found on ridge crests. Incep
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Figure 4.
A Digital Elevation Model of the study area.

tisols are young soils with little or no illuviatec
clays but brown subsoil horizons that indicate
some translocations of sesquioxides. Abou
90% of the soils (in terms of areal extent) in the
study area are Inceptisols. The 12 mapped soi
series in the study area are: Ambrant, Elkner
Evaro, Ovando, Repp, Rochester, Sharrott
Tevis, Trapps, Whitore, Winkler, and Winkle;
Cool. Brief descriptions of these soil series are
given as follows.

Ambrant, Elkner, Ovando, and Rocheste:
are the soil series occurring on the granite
materials that are located in the southeast par
of the study area. Ambrant and Rochester art
low-elevation soil series and often occur inter
mittently. Ambrant has a better developed anc
a deeper profile, while Rochester has a poo:
profile development and contains a large
amount of rock fragments. Rochester often oc
curs at the dry sites where limited moisture
conditions restrict the development of the soi
profile. Elkner is a middle- to high-elevatior
soil with a well-developed profile, while
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Ovando is located at high elevation where cool tempera-
tures limit the soil formation processes.

Soil series Evaro, Sharrott, Tevis, Winkler, and Winkler
Cool developed on the belt materials, which are located in
the north and west part of the study area. Evaro is a high-
elevation soil with a well-developed profile. Sharrott and
Winkler are low-elevation soils, which often occur intermit-
tently on the belt parent materials. They are the counterparts
of Rochester and Ambrant on belt materials. Tevis is a
mid-elevation soil with a reasonably deep profile. Winkler
Cool is a soil on north-, northeast-, and northwest-facing
slopes at low elevation. It has a better profile development
than Winkler. :

Repp, Trapps, and Whitore are limestone soils, which
occur in a narrow zone between the belt soils in the north
and the west and the granite soils in the southeast. Repp is
the least-developed soil on the limestone material and is
often found on the south- and southwest-facing slopes at
low elevations. Whitore is the best-developed soil on lime-
stone material and is found at high elevations. Trapps, a
mid-elevation soil, occurs on the north-facing slopes at low
elevations. Its profile development is between Repp and
Whitore.

Data Source

Six data variables (elevation, parent material, aspect,
canopy coverage, gradient, and surface profile curvature)
were employed in this study to characterize the soil-form-
ing environment. The inclusion of these variables in this
study was determined during the knowledge-acquisition
process where the knowledge engineer and the soil expert
discussed the importance and feasibility of each data varia-
ble and formed a list of variables to be used (Zhu, 1994). In
thedata variable list, there are no data variables that directly
measure climatic factors. Although the study was con-
ducted on a small drainage basin, great differences in terms
of micro-climate do exist within the basin. However, these
differences in micro-climate are well expressed by varia-
tions in elevation, aspect, and gradient. Therefore, climate
variables are not included in the data variable list.

Information on elevation, aspect, gradient, and surface
profile curvature were obtained from a Digital Elevation
Model (DEM) of the study area. The DEM was supplied by
the GIS laboratory of the School of Forestry, University of
Montana. The accuracy of the DEM is comparable with the
accuracy of the level-one USGS seven and one-half-minute
DEMs (USGS, 1990). The canopy coverage information was
approximated with an index derived from Landsat The-
matic Mapper (TM) (see next section for details). Informa-
tion on parent material was obtained from the geological
map of the study area (Brenner, 1968). The inclusion of soil
parent material from geological maps would also affect the
performance of the approach because geological maps were
produced in the same way as soil maps and therefore poten-
tially contain human errors. The bedrock geology cannot
truly represent the surficial geology from which the soils
were developed. However, the soil parent materials in the

study area play such an important role in the development

of soils in the area that the inclusion of this parent material
information is essential for soil inference. The other reason

for the use of bedrock geology as soil parent material infor-
mation is that the bedrock geology was the only geological
information available for the area to be used as soil parent
materials.

These data have by no means exhausted the soil forma-
tion factors and the interaction of these factors on soil
development. They were used to demonstrate the potential
of the new methodology of soil information-gathering and
representation. These environmental data are currently
feasible to be derived from a GIS data base or using some
GIS techniques, and are meaningful to the soil expert.

In this study, the knowledge of the relationships between
soils and the environment was drawn from a certified soil
scientist, Barry Dutton, President of Land & Water Consult-
ing Inc. Mr. Dutton was chosen as the domain expert for this
study because he has worked extensively in the study area
and understands the interaction between soil and the en-
vironment very well. The knowledge acquisition was per-
formed using interactive, stepwise-structured interviews.
The entire process of knowledge acquisition is fully dis-
cussed in Zhu (1994).

Syntax Data Integration

In this study, six environmental variables (parent mate-
rial, elevation, slope aspect, slope gradient, canopy cover-
age, and surface profile curvature) were employed to char-
acterize the soil-forming environment. These variables can
be grouped into three general categories: the geology vari-
able, terrain variables, and the vegetation variable.

Information on elevation, aspect, gradient, and surface
profile curvature were obtained from a Digital Elevation
Model (DEM) of the study area. The aspect and gradient
were calculated using a third-order finite difference method
(Horn, 1981) (see Chapter 3 of Burrough, 1986; Skidmore,
1989).

Canopy cover was approximated with an index derived
from the TM images of the study area. Recent research
suggests that reasonable estimates of canopy closure can be
gained with middle infrared wavelengths (MIR) (Baretet al.,
1988; Butera, 1986). Nemani et al. (1993) have used the
changes in MIR (TM band 5, 1.55-1.75 pm) response to
canopy closure in combination with red to infrared ratios to
estimate Leaf Area Index (LAI) in the study site. In this
study, the MIR was used to estimate an index of canopy
cover, where CC stands for canopy cover index, and MIRmin
and MIRmax are middle infrared radiance from completely

. MIR - MIR

CC=100 (1~ e rp

) 2

closed and completely open canopies in/around the study
area, respectively. Note that Equation 2 was not correlated
with actual ground estimates of canopy cover and therefore
should be considered as an index rather than an estimate of
actual percentage of canopy cover.

Information on parent material was obtained by digitiz-
ing the bedrock geology map (with a scale of 1:50,000) of the
study area (Brenner, 1968). The digitized map was con-
verted to a raster image by overlaying a grid system on top
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of the vector map with each grid cell having a ground
resolution of 30 m by 30 m.

All of these data layers were registered to Universal
Transverse Mercator (UTM) coordinate systems (see Clarke,
1990, for details about UTM). The registration process was
done in GRASS (Geographical Resources Analysis Support
System) (U.S. Army Corps of Engineers, 1991). The data
layers are stored in a raster-based data base since the raster
model is more suitable for representing the continuous
spatial variation of geographic phenomenon (such as soil).
The pixel resolution is 30 m by 30 m. The values of each data
layer are stored as an n x m matrix, where 7 is the number
of rows (lines) and m is the number of columns of the grid
used in a study area.

Semantic Data Integration

The theoretical basis for soil inference is based on Jenny’s
(1941, 1980) classic concept that a soil is a product of inter-
action among its forming factors over time. Since the time
factor is often implicitly expressed by other environmental
conditions (such as landform positions and vegetation),
Jenny’s concept can be simplified to “soil is a product of the
interaction of physical environmental conditions.” This
simplified concept can be qualitatively expressed by

S=F(E) 3)

where § is soil information, E represents the vector of en-
vironmental conditions, and f represents the relationship
between soils and the formative environments. It is possible
to obtain information on the soil at a given location if the
local environmental conditions and the relationships be-
tween soils and the environment are known.

E in Equation 3 was perceived to be made up of parent
material, elevation, slope aspect, slope gradient, surface
profile curvature, and canopy coverage (Figure 5). These
data can be drawn from the raster GIS data base. However,

Local Soil Scientists' Expertise

Relations on Soils and Environment

f (E)

Pm, Elev, Asp, Grad, Prof, CC

Soil Series S =

Soil Similarity Vector
(SSV)

Pm:  Parent Material
Elev: Elevation

Asp: Aspect

Grad: Gradient

Prof:  Profile Curvature
CC:  Canopy Coverage

Inference
(Fuzzy Logic)

Figure 5.

Implementation of knowledge-based semantic data integration
for soil inference.

the details of the relationship (f) are different at different
places. Itis very difficult at this stage to derive a mathemati-
cal formula for the relationship because of the complexity
and limited understanding of both soil-forming processes
and the paleo-environment. It was believed that local soil
scientists who study and map soils in their respective re-
gions have accumulated a detailed knowledge of soil/en-
vironment relationships, and this empirical knowledge can
be used to approximate f in Equation 3 for soil inference.
This empirical knowledge can be obtained through the
application of some knowledge-acquisition techniques
(Zhu, 1994). Soils show a great deal of gradual change over
space, and the discrete spatial model (crisp logic) is not
appropriate for the representation of soil information. The
“=" in Equation 3 is perceived under fuzzy logic in this
study, and the inference processes and the presentation of
results were conducted under fuzzy logic. S in Equation 3
represents the membership vector (called Soil Similarity
Vector in this case) for a set of prescribed soil taxonomic
units, soil series.

The inference process is illustrated in Figure 6. At any
given point in the study area, the inference system retrieves
a set of environmental conditions (E) from the GIS data base
and corpbines these conditions with their respective func-
tions (f*) from the knowledge base for soil series k to calcu-
late a set of membership values (O*)

o= (E) @)

Environmental Data

I \‘ parent material )
ot
Elevation: I Elevation_function I
T D
Aspect: I Aspect_function I

Knowledge Frame

Pmaterial: I Pmaterial_function

L ¢ gradient >
‘ canopy agt )

Gradient: l Gradient_function

Canopy: I Canopy_function

Curvature: I Curvature_function

‘ curvature_opt > < canopy_opt ) aspect_opt elevation_opt ) Ematerial_opt )}

|

Fuzzy Minimum Operator

[ Soil Similarity Value )]
Figure 6.

The inference process.

opt: optimality
pmaterial: parent material
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where O i“- a vector of membership values and its ith
element, 0, represents the membership for soil series k to
develop Luu‘l;-r the ith envirommental condition (g) in en-
vironmental vector E. Therefore, oik is also called the partial
membership (optimality value}, and j'“ represents a vecltor
of membership functions defined in the knowledge base for
soil series k with respect to each of the environmental vari-
ables. Each (o) of the partial membership values was cal-
culated by substituting the environmental condition (g) into
its respective membership function (fi&). The resultant
value ik from this calculation is considered to be the simi-
larity between the soil at the site and soil series k with
respect to environmental condition ei. If there are m func-
tions in the knowledge base for soil series k, then there
wotld be m such optimality values (that is, 07k

. where 1 is the number of prescribed
w,] series. Element sijk of 54j represents the similarity of soil
at point (i, /) to a ]_'Il'f_"w_?"lbi'_"d soil series (k). This repre-
sentation of soil information is useful because the similari-
ties of soil information to different soil series can be main
tained and soil properties that are intermediate to the bypi-
cal values of the prescribed soil series may be derived from
the vector. The information in this vector also allows the
expression of soil gradation over space because the subtle
difference between soils at neighbouring pixels can be re-
flected in the changes of membership distribution in the
vector. This is significantly different from the information
in standard soil maps in which the difference between

« 0mk), The fuzzy minimum operator was used
to integrate these partial membership values
and to produce the final membership value for
the soil at the given point being soil series &

S =min(0}, 0, ..., 0" ....O) (5)
where s is the membership value (similarity
value) of the soil at a point being soil series k
and m i1s the number of environmental varia-
.I.?Il'ﬁ ]I:t"r'l.ﬂ 'i'l"l._]. Ti'lih 'I'I'Il.'_'['l'l.l'ﬂ.'l'ﬁhl]'l L 51 |_?'rl._"f|‘1k_“1 |.|"il_‘
degree of Himi]a'ih of the soil at the given
point to soil series k. The reason for using the
fuzzy minimum H[‘urﬂtur for the derivation of
lhc-m{*nﬂw:%]np value is that the development
of a soil is assumed tobe controlled by the least
favourable environmental factor (the limiting
factor), and the smallest optimality value from
the set of optimality values should be used to
represent the membership value. It is under-
stood that the interaction among the soil for-
mation factors may be more complicated than

can be modelled by the fuzzy minimum oper-

Figure 7.

Membership map of Elkner-Ovando complex.

ator, However, little is known about the exact
forms of the interactions and the interactions
vary greatly from one environment to the
other. Therefore, for simplicity, the limiting
factor nx-m'nptmu was employed and the
fuzzy minimum U]:u_lﬂtm was used to model
the limiting factor interaction.

The inference process is rp;u_-;s['u_'d for the
next soil series until all soil series are ex-
hausted. At this point the inference system
stores the |111:;|]1t‘u:r'5hi]‘." vector and continues
on to the next pixel in the area. The process
stops when all pixels in the area are visited.

Soil information generated from the infer-
ence system is represented in the form of §
{50il Similarity Vector). Each element {s7) of 5
is an image of membership values that repre-
sent the similarities of the soils in the area to

the respective soil series (k). At any given point
(i, ) in the study area, the information about
the soil at this point is represented by 5y, that

Figure 8,
Soil map of Elkner-COvando complex.
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where OF is a vector of membership values and its ith
element, ok, represents the membership for soil series k to
develop under the ith environmental condition (e) in-en-
vironmental vector E. Therefore, oik is e,(lso called the partial
membership (optimality value), and f* represents a vector
of membership functions defined in the knowledge base for
soil series k with respect to each of the environmental vari-
ables. Each (0ik) of the partial membership values was cal-
culated by substituting the environmental condition (e;) into
its respective membership function (fik). The resultant
value oik from this calculation is considered to be the simi-
larity between the soil at the site and soil series k with
respect to environmental condition e;. If there are m func-
tions in the knowledge base for soil series k, then there
would be m such optimality values (that is, o1k

is, (sijl, si]'z si]k sij"), where 7 is the number of prescribed
soil series. Element sjjk of Sij represents the similarity of soil
at point (i, j) to a prescribed soil series (k). This repre-
sentation of soil information is useful because the similari-
ties of soil information to different soil series can be main-
tained and soil properties that are intermediate to the typi-
cal values of the prescribed soil series may be derived from
the vector. The information in this vector also allows the
expression of soil gradation over space because the subtle
difference between soils at neighbouring pixels can be re-
flected in the changes of membership distribution in the
vector. This is significantly different from the information
in standard soil maps in which the difference between

...0mk). The fuzzy minimum operator was used
to integrate these partial membership values
and to produce the final membership value for
the soil at the given point being soil series k

sk =min(O%, O, ..., O, ..., O%) 5)

where st is the membership value (similarity
value) of the soil at a point being soil series k
and m is the number of environmental varia-
bles involved. This membership expresses the
degree of similarity of the soil at the given
point to soil series k. The reason for using the
fuzzy minimum operator for the derivation of
the membership value is that the development
of a soil is assumed to be controlled by the least
favourable environmental factor (the limiting
factor), and the smallest optimality value from
the set of optimality values should be used to
represent the membership value. It is under-
stood that the interaction among the soil for-
mation factors may be more complicated than
can be modelled by the fuzzy minimum oper-

Figure 7.

Membership map of Elkner-Ovando complex.

ator. However, little is known about the exact
forms of the interactions and the interactions
vary greatly from one environment to the
other. Therefore, for simplicity, the limiting
factor assumption was employed and the
fuzzy minimum operator was used to model
the limiting factor interaction.

The inference process is repeated for the
next soil series until all soil series are ex-
hausted. At this point the inference system
stores the membership vector and continues
on to the next pixel in the area. The process
stops when all pixels in the area are visited.

Soil information generated from the infer-
ence system is represented in the form of S
(Soil Similarity Vector). Each element (s™) of S
is an image of membership values that repre-
sent the similarities of the soils in the area to
the respective soil series (k). At any given point
(i, j) in the study area, the information about
the soil at this point is represented by Sjj, that

Figure 8.

#
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Soil map of Elkner-Ovando complex.
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neighbouring pixels is either exaggerated to the difference
between two different soil series or is completely ignored.

Infererce Results and Discussion

The membership values over space for soil series com-
plex Elkner-Ovando are illustrated in Figure 7. The differ-
ence between Figure 7 and the soil map of Elkner-Ovando
(Figure 8) is clear. The membership image shows the grada-
tion of Elkner-Ovando over space, while there is no differ-
encein theareas where the soil is ma ppedas Elkner-Ovando
in Figure 8,

As 5 gives a set of similarity measures to a prescribed set
of soil series, it may be possible to approximate values of
specific soil properties for each pixel using the information
in 5. In other words, 5 can be used to derive

image of mapped depth inherits the exact spatial pattern o
the soil map. Since the study area is in the semi-humid tc
semi-arid area of western Montana, the soils on the north
tacing slopes and at high elevations develop better than the
soils on the south-facing slopes and at lower elevations dus
to limited moisture conditions at low elevations and or
south-facing slopes. The A horizons are deep for these bet
ter-developed soils. The inferred depth map shows thi:
characteristic of the depth of A horizon in this area, but the
change of depth is gradual over space and is not like the
change depicted in the depth image derived from the soi
map.

During the summer of 1993, 33 field observations on soi
A horizon depths were used to compare the results from the

other soil information at the values interme-

diate to the values assigned to each of the
prescribed soil series. In this demonstration,
the 5 values generated from the inference sys-
tem were used to derive depths of soil A hori-
zons for demonstrating the usetulness of S and
validating the presented semantic data inte-

gration approach.

For this demonstration, it was assumed the
depth of A horizon at a given point is “in-
fluenced” by all of the soil series in the area.

The degree of influence (contribution) de- 0 em
pends on the similarity of the soil at the site to
the given soil series. The more similar it is to
the soil series, the more contribution that soil
series has in the L‘IL"]:IH! of A horizon of the soil L 2009
! cm

at the site. It was also assumed, for a First
approximation, that the contribution from
different soil series in the depth of A horizon

Inferred Depth

at the site is linearly additive, which can be

i ;i Figure
expressed in Equation 6:

Inferred A horizon depth of the study area.

Yy s
_k=1
2.5
k=1

0 (6)

where Dy is the depth of A horizon at site (1, f),
sij 1s the similarity of the soil at site (i, ) to the
prescribed soil series k and is an element of S;,
r!’Rri:‘r the prescribed depth of A horizon of soil
series k, and n is the total number of prescribed
soil series in the area. The prescribed depth of
A horizon for the soil series in the study area
was extracted from the soil series descriptions
(Missoula County Soil Survey, 1983).

The inferred and the mapped depths of A
horizons of the soils in the study area are
shown in Figures 9 and 10. The contrast be-

Mapped Depth

30,48 cm

tween the two maps is strong and clear. The
image ol inferred depth shows a spatially con-
tinuous pattern of A horizon depth, while the

Figure 10.

A horizon depth derived from a conventional soil map of the study area.
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neighbouring pixels is either exaggerated to the difference
between two different soil series or is completely ignored.

Inference Results and Discussion

The membership values over space for soil series com-
plex Elkner-Ovando are illustrated in Figure 7. The differ-
ence between Figure 7 and the soil map of Elkner-Ovando
(Figure 8) is clear. The membership image shows the grada-
tion of Elkner-Ovando over space, while there is no differ-
encein the areas where the soil is mapped as Elkner-Ovando
in Figure 8.

As S gives a set of similarity measures to a prescribed set
of soil series, it may be possible to approximate values of
specific soil properties for each pixel using the information
in S. In other words, S can be used to derive

image of mapped depth inherits the exact spatial pattern o.
the soil map. Since the study area is in the semi-humid tc
semi-arid area of western Montana, the soils on the north:
facing slopes and at high elevations develop better than the
soils on the south-facing slopes and at lower elevations du¢
to limited moisture conditions at low elevations and or
south-facing slopes. The A horizons are deep for these bet
ter-developed soils. The inferred depth map shows thi
characteristic of the depth of A horizon in this area, but the
change of depth is gradual over space and is not like the
change depicted in the depth image derived from the soi
map.

During the summer of 1993, 33 field observations on soi
Ahorizon depths were used to compare the results from the

other soil information at the values interme-
diate to the values assigned to each of the
prescribed soil series. In this demonstration,
the S values generated from the inference sys-
tem were used to derive depths of soil A hori-
zons for demonstrating the usefulness of S and
validating the presented semantic data inte-
gration approach.

For this demonstration, it was assumed the
depth of A horizon at a given point is “in-
fluenced” by all of the soil series in the area.
The degree of influence (contribution) de-
pends on the similarity of the soil at the site to
the given soil series. The more similar it is to
the soil series, the more contribution that soil
series has in the depth of A horizon of the soil
at the site. It was also assumed, for a first
approximation, that the contribution from
different soil series in the depth of A horizon
at the site is linearly additive, which can be

. . Figure 9.
expressed in Equation 6: v

Inferred Depth

30.09 cm

Inferred A horizon depth of the study area.

n
s
k=1

D; ==L (6)
k
2. Si
k=1

y

where Djj is the depth of A horizon at site (i, j),
sij is the similarity of the soil at site (i, j) to the
prescribed soil series k and is an element of Sij,
d" is the prescribed depth of A horizon of soil
series k, and n is the total number of prescribed
soil series in the area. The prescribed depth of
A horizon for the soil series in the study area
was extracted from the soil series descriptions
(Missoula County Soil Survey, 1983).

The inferred and the mapped depths of A
horizons of the soils in the study area are
shown in Figures 9 and 10. The contrast be-
tween the two maps is strong and clear. The
image of inferred depth shows a spatially con-
tinuous pattern of A horizon depth, while the

Figure 10.

Mapped Depth

30.48 cm

A horizon depth derived from a conventional soil map of the study area.
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knowledge-based data integration approach. Three major
statistics, Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Agreement Coefficient (AC) (Willmott,
1984; Willmott et al., 1985) were used for the comparison.
Statistics for the evaluation of the performance of the data
integration method versus the soil map, listed in Table 1,
show that the prediction of A horizon depth derived using
the knowledge-based data integration approach is better
than using the soil map. In a subsequent paper, a detailed
discussion on the comparison between the results from the
knowledge-based integration approach and field observa-
tions will be presented. The result of this approach when
applied to an Australian watershed will also be presented
and discussed in detail in the upcoming paper.

Table 1.
Summary of performance measures for the data integration
method and the soil map.

Quantitative Measures MAE

RMSE AC

The Knowledge-based Approach| 3.0448 | 4.0024 | 0.8533
Soil Map 4.4064 | 59249 | 0.8033
SUMMARY

model for integrating multi-source spatial data for
geographical analysis is presented in this paper. The
model integrates the semantics of the data layers with the

data analveic nracege T rnarkictila Qaq ornisi e

data anaiysis process. in parvcuiar, the model uses enr ipiri-
cal knowledge about the relationships between en-
vironmental data and a given geographic phenomenon to
guide the integration of multi-source data. A soil inference
example has demonstrated that the approach is useful and
is capable of producing high-quality soil information. The
approach does rely heavily on empirical knowledge about
the relationships between a given phenomenon and en-
vironmental conditions. The success of this approach
largely depends on the quality of this empirical knowledge.
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