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Abstract. This paper presents an iterative, structured knowledge-acquisition pro-
cess for extracting human understanding of relationships between a natural
resource and its environment. This understanding car then be used to map natural
resources as spatial continua. The knowledge acquisition process is based on
personal construct theory and consists of several iterations. Each iteration has
five structured interview sessions: preparation, key development, description, com-
parison, and quantification. The knowledge derived from each iteration is repres-
ented as a set of membership functions that describes the degree to which a given
environmental condition impacts the status of the given resource. The final set of
membership functions, which is the final version of knowledge, is derived through
the comparison and ‘fusion’ of the membership functions from each iteration. The
comparison of the membership functions among different iterations is also used
to measure the consistency (integrity) of an expert’s understanding of the relation-
ships. In a soil mapping case study, knowledge on soil-environment relationships
was acquired from a local soil scientist using the knowledge acquisition process.
The case study shows that knowledge sets extracted a year apart were consistent
with each other. The study also shows that the soil expert was more familiar with
the relationships between soils and some environmental variables than with other
environmental variables. The expert’s understanding about soil-environmental
relationships also differed among soil series. Although it was designed to extract
expert knowledge for mapping natural resources as spatial continua under a GIS
environment, this knowledge elicitation process can be easily adapted to extract
expert knowledge for other knowledge-based applications.

1. Introduction i

Environmental decision making requires knowledge about the spatial distribu-
tion, quantity and quality of environmental resources. Current mapping practice
often employs the ‘discrete spatial model’ (as described in Bregt 1992), the ‘object
model’ (as described in Goodchild 1989 and 1992), and the ‘area-class map’ concept
(as in Mark and Csillag 1989). In each of these cases the spatial continuum of a
given natural resource is discretized into discrete and distinct spatial units. This
discretization limits the portrayal of details about the spatial variation of natural
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resources that are needed for many environmental management applications (Band
and Moore 1995, Zhu 1997a).

Many researchers have investigated the use of fuzzy logic for representing spatial
phenomena (Robinson 1988, Burrough 1989, Fisher and Pathirana 1990, Wang 1990,
Burrough et al. 1992, McBratney and De Gruijter 1992, Odeh et al. 1992, McBratney
and Odeh 1997). In particular, Zhu (1997a) developed a similarity model based on
fuzzy logic for mapping soil as a spatial continuum. In general, the similarity model
consists of two components: a similarity vector for representing soil in its parameter
space and a raster scheme for representing the variation of these similarity vectors
in geographical space. Using a similarity vector, the soil at a given point (i, j) is
represented by an n-element similarity vector, S;; =(S};, $%, ..., 8%, .., S%;), where S¥;
is the similarity value (membership value) of the soil at point (i, j) to soil type k; and
n is the number of prescribed soil types. This representation allows the local soil at
point (i, j) to be represented as intermediate to the prototypes of prescribed classes,
and thus the local conditions of the soil can be preserved. Details on the spatial
variation of soils can be accommodated by a raster data model which is capable of
representing spatial phenomena at a very fine spatial resolution. Under the raster
data model, soil over an area is presented as an array of pixels with the soil at each
pixel being represented as a similarity vector. The spatial variation of soil is then
represented as the variation of membership values in these similarity vectors over
space (Zhu 1997a).

Mapping natural resources under this similarity model is a process of deriving
membership values of the given resource at each location (pixel) to a set of prescribed
resource categories (classes). Some natural resources (such as forests, or water bodies)
are directly observable using remote sensing techniques and membership values for
these resources over space can be derived through fuzzy classifications (Bezdek et
al. 1984, Wang 1990, McBratney and De Gruijter 1992). Other natural resources
(such as soils, and some wetlands) cannot be easily observed due to obscuring
overstories and the high cost of collecting information about these resources at many
locations across landscapes. However, the distribution of these resources may be
inferred (or indirectly mapped) from other easily observable environmental condi-
tions (Coulson et al. 1991, Skye and Naia 1993, Zhu and Band 1994, Mulder and
Corns 1996, Skidmore et al. 1996, Zhu et al. 1996).

Indirect mapping of natural resources is based on the assumption that a relation-
ship exists between a given resource and its environment, which can be expressed as

Rij=f(Eij) (D

According to the similarity model, R;; in equation (1) is the similarity vector that
represents the similarity of the resource at location (i, j) to a set of prescribed resource
classes. The kth element in R;;, R¥;, is the similarity of the resource at (i, j) to resource
category k. The collection of R¥; over the entire area forms a membership map, R¥,
representing the spatial distribution of similarity to the prescribed resource category
k over-the area (Zhu 1997a). The assemblage of these membership maps (R) forms
the similarity representation of the given resource over the area. E;; in equation (1)
is the environmental conditions at location (i, j), which can be derived from a GIS
database. fis a set of membership functions each describing the relationship between
a given resource category and its environmental conditions (Zhu et al. 1996).

The success of populating R;; using equation (1) for a given resource depends on
the accuracy of data on the environmental conditions (E;;) and the validity of
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membership functions (f). Although remote sensing and GIS techniques are often
used to capture, derive, and represent the spatial distribution of environmental
conditions (E;;), detailed knowledge about the relationships between specific resource
types and their environment conditions is often not stored in a database, particularly
not in the form of membership functions. In order to define these membership
functions, two types of information are needed. The first is the typical environment
configurations under which resource category k exists. This knowledge is called Type
1 knowledge (Zhu et al. 1996), which may exist in forms such as global classification
systems (e.g. soil taxonomy) and resource descriptions (e.g. soil descriptions). The
second type of information needed to define the membership functions is the change
of membership in resource category k with regard to the deviation of environmental
conditions from the typical configuration. It is this second type of information,
referred to as Type 2 knowledge (Zhu et al. 1996), which is needed to map natural
resources as spatial continua under fuzzy logic. Type 2 knowledge may be approxi-
mated by general linear regression models. However, the general knowledge captured
in these regression models does not adequately predict local conditions, particularly
at the level of detail required by land managers and users interested in local condi-
tions. Furthermore, the relationships between changes in membership and changes
in environmental conditions may not be simply described using general regression
models since the relationships can be highly nonlinear. In many cases, more detailed
knowledge exists in the form of human expertise (Fisher 1989, Hudson 1990, 1992).
It is likely that after many years of field work local resource experts (such as soil
experts) understand well the typical environmental conditions for various resource
classes and how the resource may change when one moves away from these typical
environment configurations in a local area. It is therefore necessary to acquire the
two types of knowledge from human experts so that indirect resource mapping can
be possible and more detailed spatial information about resources can be obtained
for that area.

Acquiring knowledge from domain experts has been considered as a bottleneck
for the development of knowledge-based approaches and systems (Hayes-Roth et al.
1983, Robinson and Frank 1987, Molokova 1993, Weibel et al. 1995). The difficulty
of knowledge acquisition is due to several factors. First, knowledge is often neither
well formulated nor precisely defined. Second, there is a lack of understanding about
how human beings acquire, organize and process domain knowledge. This lack of
understanding leads to difficulty in communicating domain knowledge from the
domain expert (the person whose knowledge is to be extracted) to the knowledge
engineer during knowledge elicitation processes (Ford et al. 1991).

To overcome some of these difficulties, a knowledge acquisition process based
on Kelly’s personal construct theory was developed and is presented here. The next
section of this paper presents a brief introduction to personal construct theory (Kelly
1955, Kelly 1970, Adams-Webber 1984, Ford et al. 1991, Shaw and Gaines 1993).
The knowledge acquisition process itself is presented in §3 and further illustrated
through a soil mapping case study in §4. Section 5 provides a discussion of the
knowledge acquisition process and the experience gained through this case study.
The conclusions are given in §6.

2. Personal construct theory
In general, personal construct theory assumes that people typically use cognitive
dimensions (termed ‘constructs’) to learn and evaluate their experience (Kelly 1955).
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Each construct, by definition, represents a single bipolar distinction. For example, a
bird ecologist might use the construct ‘hot/cold’ to describe the temperature require-
ment of birds; a person may use the construct ‘wet/dry’, among others, to distinguish
climate types. The underlying relation between the alternative poles of any construct
is contrariety and no construct can be understood fully without considering the
meaning of both poles (Husain 1983). A construct is a basis for making a distinction
and is a dichotomous reference axis in a person’s psychological space (Kelly 1970).

Kelly (1955, p. 68) also posits that ‘Each construct is convenient for the anticipa-
tion of a finite range of events only’ and has a specific range of convenience, which
constitutes ‘all those things to which the user would find its application useful’. The
poles of a construct define the extremes of the range of convenience. This range can
be scaled or divided into intervals that each represents a specific level of convenience.
For example, students may use the construct ‘excellent/poor’ to summarize their
evaluation of a professor’s teaching performance. The range of convenience encapsul-
ated by this construct could be scaled from excellent (4), above average (3), average
(2), below average (1) to poor (0). Any particular construct may have a somewhat
different ‘context’ or meaning for each person who uses it. In the teaching evaluation
example, excellent teaching performance may have a different meaning to each
student. As a result, different ratings about a professor’s teaching may be reported
by different students using the same construct.

Kelly (1955) introduces the notion of psychological space as a term for a region
in which we may place and classify the elements of our experience. One’s psycholo-
gical space is made of different but overlapping (intersecting) constructs. It is the
overlap (intersection) between the constructs’ ranges of convenience that enables an
event to be anticipated, placed, or classified. The psychological space comes into
being through a process of construction; individuals create a space in which to place
elements as they come to construe them. The process of construction is the process
of forming relevant hypotheses that are tested against available evidence when one
seeks to predict and control events. In other words, one’s psychological space evolves
(expands) when more constructs are added.

Under Kelly’s personal construct theory, the accumulation of a resource expert’s
knowledge about the relationships between a resource and its environment can be
considered as a process of constructing that person’s psychological space about the
relationships. For example, a soil scientist may accumulate knowledge about the
relationship between a specific soil type and its environment by formulating con-
structs (such as ‘steep/flat’, ‘south facing/north facing’) and locating the intersections
of these constructs to define the environmental niche or niches under which the soil
exists. Under this notion, acquiring knowledge about relationships between a
resource and its environment becomes a process of defining relevant (proper) con-
structs (both poles and intervals) and locating the intersections of these constructs
for various classes of that resource.

3. The knowledge acquisition process

Based on the assumption that resource experts acquire and organize knowledge
in a way theorized by personal construct theory, a knowledge acquisition process
consisting of two phases was developed (figure 1). The first, or iteration phase,
consists of many knowledge acquisition iterations. Each iteration consists of five
sessions: (1) the preparation session, (2) the resource-environment key development
session, (3) the resource-environment description session, (4) the key and description
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Figure 1 An iterative knowledge acquisition process.

comparison session, and (5) the optimality curve definition session. These five sessions
are tightly connected and form a structured interview. In session 1, constructs are
defined. Session 2, 3 and 4 are used to define the intersections (Type I knowledge)
of these constructs. Session 5 is used to extract Type 2 knowledge and to integrate
Type 1 knowledge with Type 2 knowledge to form the complete version of the
knowledge for the iteration. Results from different iterations are then compared and
analysed in the second phase called the knowledge verification phase.

3.1. Iteration phase

The five interview sessions should not be considered as separate meetings with
the expert. An interview session can very well consist of many iterative meetings
over a period of a few days. A check should be performed at the end of each interview
session to improve the chance that the knowledge extracted is a ‘good’ representation
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of the expert’s understanding. At the end of each session the knowledge engineer
should always ask the expert to review the results and determine if changes need to
be made. Before starting the next interview session, the knowledge engineer should
again ask the expert to review the results produced in the previous interview session.
This stepwise refinement technique allows the expert to examine over time the results
produced in each interview session and to correct or update them. In this way, the
knowledge extraction would not be limited to just a few interview sessions but
becomes a long elicitation process for the expert.

Preparation Session: This preliminary interview session is designed to help a
knowledge engineer and a resource expert formulate constructs and determine classes
for a given resource. For this process, the term ‘construct’ will be replaced by
‘variable’ since domain experts are more familiar with that term. In fact, the term
‘construct’ should not be used in the communication between the knowledge engineer
and the domain expert since it may confuse the expert. The application of personal
construct theory is only to assist and guide the knowledge engineer during the
knowledge elicitation process.

To begin, the knowledge engineer presents the following two questions to the
domain expert(s): (1) How many different classes of the resource are there in the
area to be mapped? (2) What environmental variables do you need to distinguish
these different classes of resources? The first question establishes the events to be
anticipated and the second question outlines the constructs of the resource environ-
ment (environmental constructs). Answering the first question may be relatively
easier since existing classification systems can be used as a template. In some cases,
project requirements may already specify the classes to be mapped or the classification
system to be used. Knowledge engineers must have some basic understanding of the
domain so that they can assist the expert in defining constructs. Knowledge engineers
need to consider the following three aspects in this process: (a) the exhaustiveness of
these constructs in describing the expert’s psychological space; (b) the comfort of the
expert in using the construct; (c) the feasibility of deriving spatial data about the
construct from a GIS. One way to lead the domain expert is to start with common
environmental variables (such as elevation, slope). The domain expert may then wish
to add additional variables to the list.

Once constructs are determined, the poles and the intervals for each construct
must be defined. The knowledge engineer may ask the domain expert to find the
~ ‘natural breaks’ in the range of values for a given variable in the context of mapping
the given resource so that the poles and the intervals for that construct may be
defined. The breaks will not necessarily be numerical. Sometimes, the domain expert
may prefer qualitative terms over quantitative intervals. The knowledge engineer
may need to use examples to illustrate the meaning of natural breaks in the range.
Defining the constructs is a process that enables a knowledge engineer to establish
a coordinate system which is similar to that used to reference the expert’s psycholo-
. gical space for ‘placing’ the knowledge. A domain expert may never consciously

organize knowledge in this way but sub-consciously may use this system for placing
~ and acquiring knowledge.

Key Development Session: Once the coordinate system is established, in the next
step it is used to locate or extract the intersections of the constructs. The key
development session was designed for the domain expert to develop a dichotomous
key that differentiates different classes of resources using the constructs defined in
session 1. For example, a forester may know that there are three types of forests in
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an area: one on south-facing slopes at low elevations (Forest Type A); one on south-
facing, high elevation slopes and also at low elevation, north-facing slopes (Forest
Type B); the third (Forest Type C) on north-facing slopes at high elevations. Given
that we have two constructs: ‘north-facing/south-facing’ and ‘high elevation/low
elevation’, the key for representing the forester’s knowledge would then be:

North-facing
High elevation
Low elevation
South-facing
High elevation ... Forest Type B
Low elevation ....cceninnn. Forest Type A

Forest Type C
Forest Type B

In the key, the environmental constructs are listed on the left and the forest types
(the events or classes) are listed on the right. The path leading to each forest type
from the constructs identifies the intersection of these constructs. This intersection
characterizes the environmental niche under which a given forest type can be found.
For example, the path to Forest Type A is ‘south-facing via low elevation” and the
environmental niche for this forest type is ‘areas with south-facing slopes at low
elevation’. For Forest Type B, there are two paths to it, or two environmental
configurations (‘horth-facing at low elevations’ and ‘south-facing at high elevation’),
under which Forest Type B exists. The designation of different instances in the key
compensates for multimodality which may destroy relationships that many statistical
techniques were designed to seek.

The dichotomous key development allows both the engineer and the domain
expert to traverse the psychological space using constructs. This traversing through
the expert’s psychological space helps the expert to organize knowledge and eases
communication between the knowledge engineer and the domain expert. The end
product of this session is a key that can be used to differentiate resource classes.

Environment Description Session: Unfortunately, knowledge acquisition is often
complicated because of various psychological factors that limit the ability of an
expert to express knowledge. Consequently, the environment description session is
designed to extract Type 1 knowledge via other means. During this session, the
expert is asked to describe the environmental niche(s) for a given resource class using
defined constructs without reference to the key developed earlier. In the forest type
example, a description for Forest Type A would be:

Forest Type A:
Elevation: Low
Aspect: South

This describes the environmental niche under which Forest Type A exists. For
Forest Type B, there are two descriptions, each corresponding to one of the instances.
The result from this session is a set of environmental descriptions for the resource
classes. There is an apparent relationship between this description and the key from
the previous session. If one travels in the reverse order through the key, which is
from the right (the Forest Type) to the left (the constructs), and records the ratings
for constructs encountered, an environmental description of a given resource class
results. Since the expert does not have access to the key developed in the previous
session, the description from this session is independent of the key.

Key and Description Comparison Session: The purpose of this session is to
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compare the results of the description session with those derived from the key and
to correct inconsistencies between the two. Before the session starts, the knowledge
engineer must convert the key into descriptions. Once the two sets of descriptions
have been compiled, the knowledge engineer and the domain expert compare them
and check for inconsistencies. If an inconsistency is found, the domain expert is
asked to study this inconsistency and decide which version is correct or to provide
a new version if both are incorrect. The knowledge engineer normally asks the
domain expert to explain decisions in resolving inconsistencies so that the knowledge
engineer can record which inconsistency is resolved after careful deliberation and
which is resolved in an ad hoc fashion. The process continues until all inconsistencies
between the key and the descriptions are resolved.

The final result after this comparison session is Type 1 knowledge that describes
the typical environmental conditions under which different resource classes exist.
Type 1 knowledge is a type of descriptive knowledge (declarative knowledge) that
can be best represented (organized) using a knowledge frame (Bench-Capon 1990,
Georgiyev 1993, Moody et al. 1996). A frame consists of an identification tag, an
instance ID, and a set of slots. The number of slots in a frame depends on the
number of constructs (environmental variables) used. Each slot has a slot ID and a
filler. A slot ID would be the name of a construct and the filler is the rating on that
construct. The structure of a frame and an example of Type 1 knowledge for Forest
Type B are shown in figure 2.

Optimality Curve Definition Session: Type 2 knowledge defines quantitatively the
relationship between a given resource and its environment. The question the domain
expert needs to answer is ‘how does the status of a given resource class change as
environmental conditions deviate from the optimal configuration in the parameter
space? It is almost impossible for any expert to answer this question in a multi-
dimensional space. However, it might be possible to have an expert answer this
question one variable at a time. In the forest type example, the expert may be able
to tell how Forest Type A might respond when one moves along the elevation
gradient. The term ‘optimality’ is introduced to help experts measure a response.

Frame ID

Resource: Forest Type B 4———\

— Instance: 7
Elevation: High
Instance IDs Aspect: Saﬁth
-—— Instance: 2
Frame Slots Elevation: Low
Aspect: North
Slot IDs Fillers

Figure 2. Frames used to represent Type I knowledge.
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Optimality is defined as the degree to which an environmental condition favors the
development of a given resource class assuming that all other environmental factors
are most favourable. An optimality value of unity means that the given environmental
condition is most favourable to the development of the given resource class, and an
optimality value of zero means that the condition prohibits the development of the
given resource class. For a given resource class, there should be an optimality value
with respect to every condition of a given environmental variable. If one plots these
optimality values with respect to the values of that environmental variable, one gets
a curve (optimality curve, also referred to as membership function) that portrays the
change of optimality for the given resource class with respect to the environmental
variable. Since an optimality curve is defined with respect to a specific environmental
variable and is specific to a given resource class, there would be n optimality curves
for a given resource class when n environmental variables are involved.

Each of the optimality curves is defined by the domain expert with the use of a
graphical user interface (GUI) (figure 3) which was developed to incorporate type 1
knowledge and to assist the domain expert in defining optimality curves. The GUI
consists of three sections: the title area, the plotting area and the control area. The
domain expert expresses his/her knowledge by specifying critical points for the
optimality curve in the plotting area of the GUIL. It is impossible for an expert to
specify all points for the curve since the expert may not know the optimality for
every environmental condition. However, it may be possible to ask the expert to
specify critical points that are joined together to form a curve. The critical points
are determined by performing the following tasks: (1) Indicate the environmental

OPTIMALITY OF Repp OVER Curvature FOR straight-to-convex

3 ¢ 5 6

) I
t t t
-100 -85 -70 -55 -40 -25 -10 1 20 35 50 65 80 95 110
Curvature (-100.00 - 100.00)

_guit W rrev Qi soline [ save QN (206 2.29) W yoxt M Resot M Print QN Done |

Figure 3. A graphical user interface (GUI) for optimality definition and an optimality curve
for soil series Repp with respect to slope profile curvature. The profile curvature values
are normalized to a range between — 100 and 100 with — 100 being concave, 0 being
straight and 100 being convex. This curve shows the expert’s understanding on the
relationship between soil series Repp and the slope profile curvature.
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conditions where the optimality values change to or move away from unity, (2)
Indicate where the optimality values become zero or increase from zero, (3) Locate
the points where the optimality values are at half of unity’. The formulation of these
tasks is again based on personal construct theory which emphasizes that one organ-
izes knowledge (distinguishes events) using distinctions and that the knowledge
associated with extreme values is most likely well retained in human minds. For
example, a forest ecologist may know the environmental conditions that most favour
the growth of a given forest type and what environmental conditions would prohibit
the development of that forest type. By associating the critical points with these
extreme scenarios, the success of obtaining true knowledge from the expert would
increase.

The critical points are joined using a spline function to form the optimality curve.
There are two reasons for using a spline function. First, a spline curve passes through
every critical point, which is very much desired for the optimality curve. Secondly,
a spline passes through every critical point with a smooth transition from one side
of a point to the other. After a spline has be fitted to the critical points, the expert
inspects the curve and is allowed to change it by adding/deleting/moving the critical
points and to refit a spline to these points. This process continues until the expert
is satisfied with the curve. Figure 3 shows an optimality curve for soil series Repp
with respect to environment variable Profile Curvature. The optimality curve is
drawn from a case study discussed later in this paper. Soil series Repp is a young
soil with little horizon development and occurs on straight-to-convex slope segments
where down-slope wash of parent materials prevents the development of soil horizons.
The soil expert defined the optimality curve with respect to slope profile curvature
by specifying four critical points (Points 1, 2, 3, and 6 in figure 3) where the optimality
values are 0, 0.5, 1.0, and 1.0, respectively. The -other points (Points 4 and 5) modify
the shape of the curve to the expert’s satisfaction.

During this interview session the knowledge engineer must explain clearly to the
expert the meaning of optimality using the terms most familiar to the domain expert.
Performing the three tasks for locating critical points must be explained and demon-
strated to the expert so that the expert has an clear understanding of the meaning
of the critical points. Once the expert understands the procedure the task of defining
the optimality curve is much easier. '

The outcome of this session is a set of optimality curves. These optimality curves
are organized by resource class. In fact, the frame structure used for the Type 1
knowledge is used again to store these curves. Each filler in a frame for a resource
class is now occupied by an optimality curve for that resource class with respect to
the environmental variable designated to this slot (figure 4).

The entire iteration ends with the completion of the optimality definition session.
Although there are two sets of frames for storing knowledge (one for the Type 1
knowledge and the other for the optimality curves), the knowledge frames that
contain the optimality curves summarize all of the knowledge extracted from this
iteration. The optimal environmental conditions extracted as Type 1 knowledge are
now represented on the optimality curves as the environmental conditions where the
optimality values are at unity. Other optimality values on the curves are Type 2
knowledge.

3.2. Verification phase
The extracted knowledge may contain substantial amounts of ad hoc information,
which can be easily introduced in the optimality curve definition session. It is
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Resource: Forest Type B

Instance: 1

Elevation: Forest_B_Elevation High.rel

Aspect: Forest B Aspect South.rel
Instance: 2

Elevation: Forest B Elevation Low.rel

Aspect: Forest B Elevation_North.rel

Figure 4. Frames for storing optimality curves.

therefore difficult to know if the knowledge extracted from an iteration is a true
representation of the expert’s understanding of the subject matter even though the
extracted knowledge is derived from many well-structured interview sessions. There
is a need to verify the significance of the extracted knowledge. It is worth pointing
out that the term ‘significance’ here means how well the extracted knowledge approxi-
mates the expert’s true understanding. It must not be confused with the term
‘accuracy’ which tends to imply the agreement between resource-environmental
relationships in the extracted knowledge and those that exist in reality. The term
‘verification’ here means not only checking the significance of the extracted knowledge
but also, more importantly, the process of improving its significance. There are two
main tasks to be completed in the knowledge verification phase. The first is to
remove as much of the ad hoc information as possible from the extracted knowledge
(knowledge refinement). The second is to provide an index to measure the significance
of the extracted knowledge.

Knowledge refinement: Recent literature on verification and validation (V & V)
of knowledge-based systems (KBS) has suggested consistency checking as a means
of refining and verifying knowledge bases ( Mengshoel and Delab 1993, Craw 1996,
Gamble and Baughman 1996, Plant 1996). Consistency checking looks for contradic-
tions that occur in a knowledge set or inconsistency between two versions of know-
ledge provided by an expert. In this paper, consistency checking means the detection
and correction of inconsistencies between different versions of knowledge derived
from different iterations.

The knowledge acquisition iteration can be repeated at different times to obtain
versions of knowledge from the same expert. There should be a sufficient time lag
between successive iterations to allow the expert to forget what he did so that in the
following iteration he must recall knowledge from real understanding, not from an
impression of what was done in the last iteration. Once the iterations are completed,
the results can be used to check for inconsistencies and the expert can then correct
these inconsistencies. For the convenience of this discussion two iterations are
assumed to have been conducted. Since the results from each iteration are stored as
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optimality curves, the consistency check is performed by comparing optimality curves
from the first iteration with corresponding curves from the second iteration. The
comparison begins by displaying two corresponding optimality curves in a GUI
(figure 5). The expert is then asked to compare these two curves. If there are
inconsistencies between the two curves, the expert is asked to study the inconsistencies
and to provide a final optimality curve by choosing one of the two or defining a
new one (figure 5). The final version of the extracted knowledge is expected to
approximate the expert’s understanding better than either one of the original versions
since it is derived by comparing the two original versions and by studying the
inconsistencies between them.

Measuring consistency: The consistency between two versions of knowledge
extracted during different iterations is described by consistency measure (CM):

2(A1n2)
(4:+4,)

where A, is the area under optimality curve 1, 4, is the area under optimality curve
2, and A,., is the area under both optimality curve 1 and optimality curve 2
(figure 6(a)). It is apparent that the more coincident the two optimality curves are,
the larger A4, ., is, and therefore the higher CM is. CM ranges from 0 to 1. When
CM equals 1, there is a perfect match between the two optimality definitions
(figure 6(b), Top). If CM is 0, it means that there is no agreement between the two
optimality definitions (figure 6(b), Bottom). CM is sensitive to the spreads of two
corresponding curves. If the distance between the centres (such as modes) of the two
curves is fixed, the wider the spread, the bigger the overlap, and the higher is the

CM= )
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Figure 5. A graphical user interface for comparing optimality curves defined during different
knowledge acquisition iterations. The curve with diamond nodes (dutton92/header)
was defined in 1992 and the curve with star nodes (dutton93/header) was defined in
1993. The final version of the curve has nodes labelled as squares (current). Data were
drawn from the case study discussed later in the text.
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Figure 6. Definition of consistency measure (CM).

CM. Figure 7 shows three different degrees of matches between optimality curves
along with their respective CM values (taken from the case study described below).
The match in figure 7(a) is very good but that in figure 7(c) is poor. The match in
figure 7(b) lies between the two. It is difficult to obtain a perfect match between two
corresponding curves since a subtle difference between the two curves will result in
a CM value less than 1. In practice, the consistency between corresponding optimality
curves from two different iterations is good if the CM value between the two curves
is greater than 0.8. ,

The consistency measure is not designed to remove or identify bias in the expert’s
knowledge but serves as an indirect measure of the significance of the final version
of knowledge. It is assumed that if the different versions of knowledge extracted
from different iterations are consistent then the final version is a good representation
of the expert’s understanding of the relationships.

4. Case study and results

A case study was conducted to illustrate the use and demonstrate the potential
of the above knowledge acquisition process for resource mapping under the similarity
model. The resource to be mapped is soil. The study area is the Lubrecht
Experimental Forest which was established in 1937 to foster research on natural
resources (Nimlos 1986). The area is about 50 km north-east of Missoula, Montana,
USA and is in the mountainous terrain of western Montana with a moderate to
strong relief. The climate is considered to be semi-arid to semi-humid. The soil expert
was Barry Dutton, a certified soil scientist and the president of Land and Water
Consulting, Inc. Mr. Dutton has conducted several soil field camps over a number
of years in the Lubrecht Forest and is regarded as the expert in the soils of the area.
The knowledge engineer was the author of this paper. The extracted knowledge was
used to map the soil resources in this area under the similarity model using fuzzy
inference (Zhu et al. 1996).
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4.1. Knowledge acquisition

Two knowledge acquisition iterations were conducted a year apart. During the
second ijteration the expert did not have access to the information derived from the
first iteration. During the preparation session, the soil category used for mapping
was determined to be soil series since most soil maps are mapped at the soil series
level and the expert was most comfortable working with soils at that level. Twelve
soil series were identified for the area, and these are listed in table 1. Descriptions
for these soil series can be found in Soil Series Description (MCSS 1983). These series
were separated into three groups based on parent materials (table 1). The list of
environment variables used in this case study resulted from a discussion between the
expert and the engineer. Five environment variables were identified and used to
distinguish the soil series within each of the three parent materials and served as the
constructs for this knowledge acquisition exercise. These variables are: elevation,
slope gradient, slope aspect, canopy coverage and profile curvature. The discussion
also included measurement units for the environmental data and the standard units
(e.g. feet) were chosen since they made more sense than the metric units to the soil
expert. The unit for elevation was feet and the slope gradient was measured in
percent. The range of curvature values was scaled to —100 to 100 with — 100 being
concave, 0 being straight, and 100 being convex.

After the determination of these environmental variables as constructs, the expert
and the knowledge engineer defined the poles and the intermediate ratings (intervals)
for each construct. The expert used the extreme values of a variable over this study
area as the opposing poles of the corresponding construct. For example, if the
elevation range is 3000 ft to 6000ft, then one pole of the elevation construct would
be 30001t and the other would be 6000 ft. The natural breaks in the range of values
of the variable were used to define the intermediate ratings. Table 2 lists the constructs
and their respective poles with intermediate ratings.

In the key development session, the expert used the defined ratings for each of
the constructs to develop three keys (one for each of the three parent materials). To
assist the expert in developing the keys, the knowledge engineer suggested that the
expert use the most important environmental variable to first divide the environment
into two types, use the second most important variable to divide each of these two
types and, so on until the expert believed each of the resultant environmental types

Table 1. Soil series in the Lubrecht study area.

Soil series Parent material Soil subgroup
Evaro Belt Typic cryochrepts
Sharrott Belt Lithic ustochrepts
Tevis Belt Dystric eutrochrepts
Winkler Belt Udic ustochrepts
Winkler (cool) Belt Udic ustochrepts
Ambrant Granite Udic ustochrepts
Elkner Granite Typic cryochrepts
Ovando Granite Typic cryorthents
Rochester Granite Typic ustorthents
Repp Limestone Typic ustochrepts
Trapps Limestone Typic Eutroboralfs

Whitore Limestone Typic Cryochrepts
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Table 2. Constructs and their poles and intermediate ratings for the Lubrecht area.

Constructs Left pole Intermediate ratings Right pole
Elevation (ft) 3700 4000, 4500, 5000, 5500, 6000 6500
Aspect North South
Gradient (%) Flat 5, 10, 15, 30, 60 Steep
Canopy coverage Sparse Medium Dense
Profile curvature Concave Straight Convex

to be occupied just by one soil series. A key to the environments of the soil series
on the granite parent material is shown in figure 8.

During the environmental description session, the expert was asked to use the
defined ratings to describe the typical environmental conditions under which a given
soil series would exist. The soil expert was free to use descriptive terms compounded
from the basic ratings (such as gradient between 15-60%, elevation <4500 ft). The
typical environmental conditions for soil series Ambrant is listed in figure 9 as an
example. Once the description session was completed, the results from this session
were compared with the key developed earlier to check for consistency.

The optimality curves for parent materials were not defined by the expert but
rather approximated by step functions. The optimality was assumed to be 1.0 for
parent materials on which the series occurs and 0.0 for parent materials on which
the series does not occur. During the optimality definition session, the soil expert
was asked to define the optimality curves for the other five environmental variables.
A total of 80 optimality curves were defined by the expert for each iteration. A total
of 80 pairs of curves had been defined by the end of the second iteration. Two weeks
after the completion of the second iteration, the expert was asked to compare these
80 pairs and derive a final version of optimality curves. The knowledge acquisition
was complete when the final version was derived a week later.

Construct and Ratings Soil Series
North facing
>4,500 ft (1370 m)
Gradient > 60% .....ceovvnveeiniininnnionenn. Ovando
Gradient <60% ......eoeeiieirniininniinnien. Elkner
<4,500 ft (1370 m)
Gradient > 60% ....c.ooveeeniieieniennecnnes Rochester
Gradient <60% ......cceevriinnininnnianennes Ambrant
South facing
>6,000 ft (1820 m)
Gradient > 60% ....ccoveveiiiriieiniininnenee Ovando
Gradient <60% ...ccevevrriniiceriniionennnee Elkner
<6,000 ft (1820 m)
Gradient > 60% ......ccoevvenreninieniinnnnne Rochester
Gradient <60% ......ccovernruienieniennnnes Ambrant

Figure 8. A key to the soil series on the granite parent material.
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Soil Series: Ambrant

Instance: 1
Parent Material: Granite
_Elevation: 3,700 - 4,500 £t
Aspect: North Facing
Gradient: 15-60%
Canopy: Medium Coverage
Curvature: Straight to Convex

Instance: 2
Parent Material: Granite
Elevation: 3,700 - 6,000 £t
Aspect: South Facing
Gradient: 15-60%
Canopy: Medium Coverage
Curvature: Straight to Convex

Figure 9. Environmental descriptions for soil series Ambrant in the Lubrecht study area.

4.2. Knowledge consistency analysis

Measures of consistency (CM) between the two sets of optimality curves derived
from the two iterations were calculated and analysed to assess the significance of
the extracted knowledge. The mean of all 80 CM values is 0.836 with a standard
deviation of 0.112. The frequency distribution of these 80 CM values is shown in
figure 10 which shows that the distribution of CM values is heavily negatively skewed
and the CM values are heavily clustered at the high value end. These general statistics
for the CM values indicate that the two sets of optimality curves are generally
consistent with each other and therefore the final version of the extracted knowledge
is significant. However, this does not necessarily mean that the accuracy of the
extracted knowledge is high since it is possible that an expert can provide a consistent
answer that is incorrect or inaccurate.

Zhu (1997a,b) and Zhu et al. (1997) evaluated the quality of the final version of
the extracted knowledge by examining the quality of soil spatial information derived
from it. The extracted knowledge was used to populate the soil similarity model
(Zhu et al. 1996). The populated model was then used to produce a soil map and a

40

30 |
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Consistency Measure

Figure 10. The distribution of CM values.
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soil property map (Zhu et al. 1997). It was found that the soil map (inferred)
contained much more spatial detail and was of higher quality than the conventional
soil map (Zhu 1997a) and the derived soil property (4-horizon depth) information
was more accurate than that from the conventional soil map (Zhu et al. 1997). It
can be concluded from these study reports that the final version of the extracted
knowledge is of good quality.

The CM values can be summarized by variables to determine if there is any
relationship between the variables and the values of CM. Table 3 lists the statistics
for the CM values grouped by environmental variables; that is, the consistency
measures of all pairs of optimality curves related to a particular environmental
variable are grouped together for computing these statistics. Both Aspect and
Elevation have more pairs of optimality curves than the other variables because
different instances of a soil series are differentiated only on the basis of aspect and
elevation (figure 9). The average CM related to Elevation is high (0.89) and the
associated standard deviation is small (0.098). This high CM average associated with
a small standard deviation indicates a good overall consistency between the two sets
of optimality curves related to Elevation. The same can be said with regard to the
consistency between the two sets of optimality curves related to Aspect. However,
the consistency between the two sets of optimality curves for Curvature and that for
Canopy Coverage are both low as indicated by their respective low CM averages.
The CM average for Gradient lies between these two general groups. Aspect,
Elevation, and Gradient are the common variables used extensively to describe the
environment of soils in soil surveys, particularly in mountainous terrains. Therefore,
soil scientists often know more about the relationships between soils and these
environmental variables. Although Canopy Coverage is also often used in soil surveys
to describe the soil formative environment, the value for canopy coverage is normally
estimated in the field and varies a great deal from person to person. Knowledge
about soil-canopy coverage relationships is not as well defined as those for Aspect
and Elevation. 1t is clear that the soil expert was least confident about the relation-
ships between soils and profile curvature since profile curvature is hardly used in
conventional soil surveys.

The statistics about the CM values with respect to each soil series are listed in
table 4. The soil expert was able to provide consistent answers about soil series that
occur at high elevations (such as Evaro, Tevis, Ovando and Whitore) in terms of
their relationships to the environment (relative high CM averages with small standard
deviations within their respective groups). On the other hand, the expert had difficulty
in singling out the soil-environmental relationships for soil series occurring at low
elevations (such as Rochester, Repp and Winkler). It is true that at high elevations
the environment is less heterogeneous than at low elevations in this semi-arid to

Table 3. Statistics about the CM values with respect to environmental variables.

Environment variables Mean Minimum Maximum Standard Deviation No. of pairs

Aspect 0.8785 0.7471 0.9354 0.04243 22
Canopy 0.7649  0.4063 0.9641 0.16154 12
Curvature 0.7451 0.5777 0.8383 0.07336 12
Elevation 0.8928  0.6683 0.9899 0.09817 22

Gradient 0.8163  0.6432 0.9633 0.11103 12
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Table 4. Statistics about the CM values with respect to soil series.

Soil series Mean Minimum Maximum Standard deviation
Belt soils
Evaro 0.8642 0.7471 0.9748 0.09022
Sharrott 0.8658 0.7404 0.9774 0.09361
Tevis 0.887 0.7907 0.9641 0.07016
Winkler 0.8009 0.4063 0.9766 0.23215
Winkler cool 0.8618 0.6705 0.9649 0.10192
Granite soils
Ambrant 0.823 0.6767 0.9003 0.09158
Elkner 0.8053 0.5777 0.9676 0.14119
Ovando 0.8293 0.6768 0.935 0.09038
Rochester 0.7374 0.589 0.8864 0.11852
Limestone soils
Repp 0.7932 0.6768 0.9496 0.12412
Trapps 0.8649 0.7521 0.9336 0.06212
Whitore 0.8773 0.7361 0.9899 0.09611

semi-humid region. In particular, the soil series at high elevations tend to be spatially
contiguous and the soil series at low elevations tend to be spatially intermittent.
Understanding the relationships between spatially contiguous soil series and their
environments would be easier than understanding the relationships between intermit-
tently distributed soil series and their environments. Also, the Rochester soil series
often occurs around small rock outcrops or along small spurious ridges and divides
which could not be described well with the environmental variables employed.
Therefore, it was difficult for the expert to establish the relationships between
Rochester and these environmental variables. This may help to explain the low
consistency measure between two sets of optimality curves related to the Rochester
soil series (table 4).

5. Discussion

It can be concluded through this case study that the knowledge acquisition
process was able to extract a good representation of a soil scientist’s understanding
about soil-environmental relationships in the Lubrecht area. The consistency meas-
ures between the knowledge sets obtained from different iterations also revealed the
characteristics of the soil expert’s understanding of soil-environmental relationships.
The expert tended to have a better understanding of the relationships for some soil
series than for others. The method also revealed that the expert was more knowledge-
able about the relationships of soils to some environmental variables than those to
other environmental variables.

The case study has demonstrated the use and potential of a personal construct
theory-based knowledge acquisition process. This section is intended to discuss its
scope of application and the key issues of the knowledge acquisition process.

This knowledge acquisition process was developed to extract knowledge about
relationships between natural resources and their environment. Even though this
knowledge is described as a set of membership functions, it is still considered as
declarative as opposed to procedural (McGraw and Harbison-Briggs 1989,
Armstrong 1991, Byrd et al. 1992). The knowledge acquisition process presented in
this paper may have limited use for extracting procedural knowledge since the
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techniques needed for extracting procedural knowledge may be very different from
those used to extract declarative knowledge (Moody et al. 1996). However, the
knowledge acquisition process can be easily adapted to applications that require
only descriptive knowledge from domain experts. In these cases, there would be no
need to define optimality curves since they are needed only to compute similarity
values under fuzzy logic.

Experience derived from the case study suggests that the knowledge engineer
should have a working knowledge of the subject domain to achieve maximum
efficiency in knowledge acquisition. This domain knowledge would expedite know-
ledge acquisition in several ways. First, it would help to clearly specify what know-
ledge would be required for mapping resources and help to clarify specifications for
the expert so that he/she understands exactly what is needed. In the soil mapping
example, the knowledge engineer used many examples in soil science to illustrate
and clarify the definitions of the two types of knowledge. Second, the knowledge
engineer’s basic understanding of the subject domain would help to translate the
personal construct concepts into the terminology of the subject domain and would
ensure the correct use of these concepts during the knowledge acquisition process.
Finally, the communication between a knowledge engineer and a domain expert in
an interview is a scientific engagement. Conversations should keep the experts
intellectually challenged and help them to reveal much of their understanding about
the subject. The knowledge engineer’s working knowledge of the domain would
enhance this engagement.

Knowledge acquisition interviews can be very tense. Retrieving knowledge is not
easy for any expert and experts are often frustrated by a knowledge engineer’s
questions. Agnew (1994) cites Marvin Minksy, one of the fathers of Al as saying
that ‘we teach our children not to ask too many whys in a row ... not to even think
of asking more than a few whys. And for good reason ... how many why’s in a row
can even a smart person handle? Particularly, when the knowledge engineer points
out inconsistencies in knowledge, the expert could feel embarrassed or even humili-
ated. Persistence is important in knowledge acquisition, but the knowledge engineer
must be resourceful and use different ways to communicate with the expert
and make the expert feel relaxed and comfortable during the entire knowledge
acquisition process.

6. Conclusions

This paper presents a process based on personal construct theory for acquiring
knowledge about resource-environment relationships and also presents a case study
that demonstrates the use and potential of this process for extracting expertise from
specialists. The case study shows that the process was successful not only in eliciting
knowledge from a soil expert but also in revealing the characteristics of the expert’s
understanding about the relationships between soils and their environment. Using
consistency analysis, it was found that the soil expert was more familiar with the
relationships between soils and some environmental variables than with other envir-
onmental variables. The expert’s knowledge on soil-environment relationships also
differed by soil series.

The implication is that this knowledge acquisition process would be useful in
acquiring knowledge about resource-environment relationships for mapping natural
resources using the similarity model. It is recommended that when it is used to
acquire knowledge from resource experts, this process should be performed by a

e
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knowledge engineer who has a working knowledge of the subject domain so that
personal construct concepts can be translated into the domain terminology, and the
communication between the knowledge engineer and the resource expert can be as
smooth as possible. It is also recommended that knowledge engineers use the concepts
of personal construct theory to guide themselves in the knowledge elicitation process,
such as in the design of questions and in the organization of the interviews. They
must not convey these concepts in their original forms to the expert since these
concepts may confuse the expert. In fact, these terms or concepts should be translated
into the terminology of the expert’s domain so that the expert can use these concepts
without being confused and the engineer can achieve maximum efficiency of
knowledge acquisition.
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