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Derivation of Soil Properties Using a Soil Land Inference Model (SoLIM)
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ABSTRACT

SoLIM (Soil Land Inference Model) is a fuzzy inference scheme
for estimating and representing the spatial distribution of soil types
in a landscape. This study developed the inference method a step
further to derive continuous soil property maps through two case
studies. The first case illustrates the derivation of soil A horizon depth
in a mountainous area in western Montana. It was found that the
inferred depths are a closer fit to observed depths than those derived
from the conventional soil map at both spatial and attribute levels.
The second case shows the derivation of soil transmissivity values
across a small catchment with a gentle environmental variation in
Tumut, NSW, Australia. This case shows that the derived soil transmis-
sivity map is comparable to the results from systematic field survey
over a small area. SOLIM works well in an area where there is a good
understanding of the relationships between soils and their formative
environment and where the soil formative environment can be charac-
terised using current geographical information system techmiques.
However, we experienced difficulty with the methodology when it was
applied in an area where the environmental gradient is gentle and the
soil formative environment cannot be very well described using the
primitive environmental indices currently employed in SoLIM.

WE DEVELOPED A METHODOLOGY for deriving contin-
uous soil property maps. The methodology builds
on the approach given by Zhu et al: (1996), Zhu (1996),
and Zhu and Band (1994), a model (Soil Land Inference
Model, referred to as SoLIM) for acquiring and repre-
senting soil spatial information. SOLIM consists of three
basic components: a knowledge acquisition process, a
set of GIS techniques, and a fuzzy inference engine. The
knowledge acquisition process is used to extract the
relationships between soils and their environmental con-
ditions from a soil expert (soil scientist). The GIS tech-
niques are used to characterize soil formative environ-
mental conditions. The fuzzy inference engine combines
the extracted relationships with the soil environmental
conditions to produce soil spatial information. The infer-
ence engine was constructed under fuzzy logic so that
the resultant soil information is not represented as con-
ventional soil maps but as fuzzy membership maps. We
show how these fuzzy membership maps can be used to
produce continuous soil property maps.

Many environmental modeling and land management
applications require detailed soil spatial and attribute
information in order to match other detailed environmen-
tal data obtained from remote sensing and digital terrain
analysis (Band et al., 1991, 1993). Currently, soil maps
produced from standard soxl surveys are the major source
of soil information for a variety of land analyses, ecologi-

A.X. Zhu, Dep. of Geography, Univ. of Wisconsin, 550 North Park
Street, Madison, WI 53706-1491; L.E. Band, Dep. of Geography, Univ.
of Toronto, 100 St. George Street, Toronto, ON, Canada M5S 1Al; R.
Vertessy, CRC for Catchment Hydrology, CSIRO Division of Water
Resources, Canberra, ACT 2601, Australia; and B. Dutton, Land & Water
Consulting Inc., P.O. Box 8254, Missoula, MT 59807. Received 31 July
1995. *Corresponding author (azhu@geography.wisc.edu).

Published in Soil Sci. Soc. Am. J. 61:523-533 (1997).

523

cal modeling, and management applications. However,
standard soil surveys were not designed to provide the
detailed (high-resolution) soil information required by
some environmental modeling applications (Moore et
al., 1993) and crop management (Petersen, 1991). The
major limitations of soil information derived from con-
ventional soil maps for environmental modeling and land
management applications are: (i) low spatial resolution;
and (ii) uniform attribute value within the unit delineated
(low attribute resolution).

These two limitations are due to the fixed map scale
and the cartographic model used in the map production
processes (Zhu, 1996). Only soil bodies larger than a
certain size (minimum mapping size, scale dependent)
can be shown on a soil map. Soil bodies smaller than
this minimum mapping size are merged or lumped into the
surrounding or neighboring soil bodies. The cartographic
model used in conventional soil mapping further degrades
the quality of the information contained in soil maps.
Under the cartographic model, the soil continuum is
discretized into discrete spatial objects (Flg la) and
the spatial variation of soil information is implicitly
considered as a step function (the solid line of Fig. 1b).
In other words, all spatial variation of soil information
occurs at the boundaries of delineated soil polygons, and
soil properties have uniform values within each soil
polygon In reality, soil often varles gradually and the
boundaries between different soils are often diffuse rather
than sharp (Mark and Csillag, 1990), and a soil property
within a soil polygon is often not uniform (the dashed
line in Fig. 1b).

The SoLIM approach (Zhu et al., 1996; Zhu and
Band, 1994) is different from conventional soil mapping
in the way the soil landscape is perceived and how soil
information is represented. Under the SoLIM approach,
soil is considered a result of the interaction among its
formative environmental factors with time (Jenny; 1941,
1980). In other words, there exists a relation between
soil and the formative environment, which can be qualita-
tively expressed as

S = f(E,1)

where S is soil, E represents a vector of environmental
conditions, ¢ is time, and fi represents the interaction
between soil and the formative environment. It is very
difficult at this stage to determine the length of time of
interaction among the soil-forming factors. Sometimes,
the time information is embedded in the environmental
conditions, such as topographic position, vegetation
cover, and substrate. Therefore, the relation is simplified
to be

S =f(E)

Abbreviations: GIS, geographical information system; DEM, digital ele-
vation model; MAE, mean absolute error; RMSE, root mean square error;
AC, agreement coefficient.
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L1 ® L2

Fig. 1. (a) Soil map showing location of Transect L1-L2; (b) property
values along Transect L1-1.2.

The soil formation environment (E) of an area can be
characterized using GIS techniques and local soil scien-
tists’ expertise on soil-environment relationships can be
used to approximate the interaction (f) between soil
and its environment in an area (Fig. 2). Soil spatial
information across an area can then be inferred by com-
bining information on the soil formative environment
(E) with soil scientists’ expertise (f).

Soil landscape is considered a continuum under SoLIM
and change of soil properties across space is often grad-
ual. Soil classes are ideal concepts of soils and soils in
fields are usually intermediate to these concepts. Under
this perception, the soil (S) at any point or location is
assumed, in SoLIM, to be similar in varying degrees to
a prescribed set of soil taxonomic units (such as soil
series) or central concepts (Zhu, 1996). Soil at any point
or location (i, ) can then be expressed by an n-element
vector (soil similarity vector), S; = (S}, S} ... % ...
S§7%), where S% is a membership value that measures the
similarity between the soil at point (i, ) and prescribed

Local Soil Scientists’ Expertise
Relationships between Soils and Environment

Guse>—S <= f(E)

8|3
2
Soil Similarity Maps Cl, Pm, Og, Tp
Inference
(under fuzzy logic)

Fig. 2. The theoretical basis of SoLIM: Soil (S) is a function of
its environmental factors. Cl: climate, Pm: parent materials, Og:
organism, Tp: topography. Reproduced from Zhu and Band (1994)
with permission from the publisher.
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Fig. 3. Fuzzy representation of soil information using soil similarity
vector. St oy

soil taxonomic unit k (Fig. 3) and n is the number of
prescribed soil taxonomic units in the area (Zhu, 1996).

This representation of soil information is different
from the conventional representation. The similarity of
the soil at a location to a soil taxonomic unit is expressed
in terms of a membership value between 0.0 and 1.0
(that is, 0.0 < S} =< 1.0). It should be clarified that
S} is not a probability but a fuzzy membership expressing
the similarity of the soil at point (i,j) to the prescribed
taxonomic unit k. It is this membership value that can
be used to provide soil property values intermediate to
the typical values of the prescribed soil units.

We use two case studies to illustrate the usefulness
and limitations of SoLIM for deriving continuous soil
property maps. The first case is the derivation of soil
A horizon depth of the Lubrecht Experimental Forest,
Montana. The second case is the derivation of soil water
transmissivity (7T) of the Redhill Catchment, Tumut,
NSW, Australia.

METHODS AND STUDY AREAS
Deriving the Soil Similarity Vector

As discussed above, under SoLIM, soil at location (i, ) is
represented by membership (similarity) vector S;. The collec-
tion of S; across a region forms S, which represents a set of
fuzzy membership maps. Each of these maps represents the
spatial distribution of similarity (membership) to a particular
soil category. In other words, S consists of the following
elements: §', §,.... $, ... ", where $* represents the spatial
distribution of membership to soil category k. For example,
Fig. 4 shows the membership map for the Elkner soil series
(S®™") in the Lubrecht study area.

In order to obtain these fuzzy membership maps, the basic
element of the soil similarity vector, $%, must be determined
first. The details of deriving each S%, as well as the process
of knowledge acquisition, are beyond the scope of this study
and are extensively discussed in Zhu et al..(1996) and Zhu
(1994). In general, the knowledge of the relationships between
the environment and soil are stored in a knowledge base in
the form of a knowledge frame (Fig. 5). Each soil category
would have its own knowledge frame. Each: slot in the knowl-
edge frame contains an optimality function (curve), which
quantitatively describes the relationship between a given soil
and a particular environmental factor. This optimality function
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L1 & L2

Fig. L. (a) Soil map showing location of Transect L1-1.2; (b) property
valees along Transect L1-1.2,

The soil formation environment (E) of an area can be
characterized using GIS technigues and local soil scien-
tists" expertise on soil-environment relationships can be
used to approximate the interaction (f) between soil
and its environment in an area (Fig. 2). Soil spatial
information across an area can then be inferred by com-
bining information on the soil formative environment
(E) with soil scientists' expertise (f).

Soil landscape is considered a continuum under SoLIM
and change of soil properties across space is often grad-
ual. Soil classes are ideal concepts of soils and soils in
fields are usually intermediate to these concepts. Under
this perception, the soil (S) at any point or location is
assumed. in SoLIM, to be similar in varying degrees to
a prescribed set of soil taxonomic units (such as soil
series) or central concepts (Zhu, 1996). Soil at any point
or location (i, j) can then be expressed by an n-element
vector (soil similarity vector), 8; = (S}, §§ ... §} ...
57), where §§ is a membership value that measures the
similarity between the soil at point (i, /) and prescribed
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Fig. 2. The theoretical bosis of SoLIM: Sofl (S) is a function of
its environmental factors. Cl: climate, Pm: parent materials, Og:
organism, Tp: topography. Reproduced from Zhu and Band (1994)
with permission from the publisher,

Soil Series 1, Soil Series 2, ..., Soil Series k, ..., Soil Series n

Soil at point (i)

Soil Similarity Vector (§)
L PR R

54" Sail similarity vitun hetween the soll at paint (7.} and soil series &

Fig. 3. Fuzzy representation of soil information using soil similarity
vector, i b

soil taxonomic unit k (Fig. 3) and n is the number of
prescribed soil taxonomic units in the area (Zhu, 1996).

This representation of soil information is different
from the conventional representation. The similarity of
the soil ata location 0 a soil taxonomic unit is expressed
in terms of a membership value between 0.0 and 1.0
(that is, 0.0 = §% = 1.0). It should be clarified that
57 is not a probability but a fuzzy membership expressing
the similarity of the soil at point (i, ) to the prescribed
taxonomic unit k. It is this membership value that can
be used to provide soil property values intermediate to
the typical values of the prescribed soil units.

We use two case smudies o illustrate the usefulness
and limitations of SoLIM for deriving continuous soil
property maps. The first case 1s the derivation of soil
A horizon depth of the Lubrecht Experimental Forest,
Montana. The second case is the derivation of soil water
transmissivity (7) of the Redhill Catchment, Tumut,
NSW, Australia.

METHODS AND STUDY AREAS
Deriving the Soil Similarity Vector

As discussed above, under SoLIM., soil at location (i, j) is
represented by membership (similarity) vector 8§,. The collec-
tion of 8; across a region forms 8, which represenis a set of
fuzzy membership maps. Each of these maps represents the
spatial distribution of similarity (membership) o a particular
soil catcgory. In other words, S consists of the following
clements: 8', §°,.... 8, ... 8, where §' represents the spatial
distribution of membership to soil category &. For example,
Fig. 4 shows the membership map for the Elkner soil series
(8"} in the Lubrecht study area.

In order to obtain these fuzzy membership maps, the basic
element of the soil similarity vector, 8%, must be determined
first. The details of deriving cach 5}, as well as the process
of knowledge acquisition, are beyond the scope of this siudy
and are extensively discussed in Zhu et al. [1996) and Zhu
{1994). In general, the knowledge of the relationships between
the environment and soil are stored in a knowledge base in
the form of a knowledge frame (Fig. 5). Each soil catepory
would have its own knowledge frame. Each slot in the knowl-
edge frame contains an optimality function (curve), which
quantitatively describes the relationship between a given soil
and a particular environmental factor. This optimality function
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Fig. 4. Membership map (similarity map) of the Elkner soil series (light tone indicates a high membership value).

1 A

was derived from a soil expert through the knowledge acquisi- .

tion process (Zhu et al., 1996). Forgexample, the s?ot la(ll)eled Knowledge Frame Envnronn}ental Data
Elevation in Fig. 5 contains the optimality function (“elevation (Elkner) )
function”) describing the relationship between elevation and . — e el >
the soil series Elkner. To derive S%, the inference engine takes Pmaterial: [ pmatril |

asetof env1ronmentql data for' plxe! (i,j) from the GIS database Elevation: W
and uses the respective functions in the knowledge frame for

soil category k to calculate a set of optimality values. An Aspect: W aspect >
optimality value is defined as the propensity for a soil to =

develop under one given environmental condition (Zhu et al., Gradient: [ gradient function | gradient >
1996). Since each of the functions in the frame will produce =

its own optimality value, the soil membership value (soil Canopy: [ canopy_function | canopy coverage >
similarity value), 8%, is the minimum of these optimality values

(Zhu et al., 1996). Once this process of generating soil similar- Curvature:| curvare_function | profile curvature >
ity values for all locations (pixels) in an area is completed, —J

S* (the membership map for soil category k) is then derived. l

The entire process of deriving a soil membership map would

R
be repeated for all other soil categories in the region to generate Ome@ OPteanpy @ Optupen @ @
all other membership maps.
At the completion of the above inference process, a soil l
'

similarity vector is created for each location in the area. The ‘ ﬂ
soil similarity vectors for some field sites in the Lubrecht study —
area are listed in Table 1. For example, the soil at location Fuzzy Minimum Operator

Lub06 —03 does not resemble any of the soil series developed
on metamorphosed sedimentary (the Belt rocks) and limestone
parent materials. The soil at that point, however, bears different
degrees of similarities to the soil series (Ambrant, Rochester,
Elkner, and Ovando) developed on the granite parent materials.
These different degrees of similarities express that the soil at
location Lub06—03 is intermediate to these soil series. It is Pmaterial: - parent material

these different degrees of similarities in the vectors that aliow Opt: optimality value

us to derive soil property values intermediate to the typical Fig. 5. Derivation of soil similarity value for soil series Elkner.

Soil Similarity Value
( si .Elkner)
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Fig. 4. Membership map (similurity map) of the Elkner soil series (light tone indicates a high membership value.

was derived from a soil expert through the knowledge acquisi-
tion process (Zhu et al., 1996). For example, the slot labeled
Elevation in Fig, 3 contains the optimality function (“elevation
function”) describing the relationship between elevation and
the soil series Elkner. To derive §!, the inference engine takes
a set of environmental data for pixel (i, j) from the GIS database
and uses the respective functions in the knowledge frame for
soil category k to calculate a set of optimality values. An
optimality value is defined as the propensity for a soil to
develop under one given environmental condition (Zhu et al.,
1996). Since cach of the functions in the frame will produce
its own optimality value, the soil membership value (soil
similarity value), 8}, is the minimum of these optimality values
(Zhu et al., 1996). Once this process of generating soil similar-
ity values for all locations (pixels) in an area is completed,
§* (the membership map for soil category k) is then derived.
The entire process of deriving a soil membership map would
be repeated for all other soil categories in the region to generate
all other membership maps.

Al the completion of the above infercnce process, a soil
similarity vector is created for each location in the area. The
soil similarity vectors for some field sites in the Lubrecht study
area are listed in Table 1. For example, the soil at location
Lub06—03 does not resemble any of the soil series developed
on metamorphosed sedimentary (the Belt rocks) and limestone
parent materials. The soil at that point, however, bears different
degrees of similarities to the soil series (Ambrant, Rochester,
Elkner, and Ovando) developed on the granite parent materials.
These different degrees of similarities express that the soil at
location Lub06~03 is intermediate to these soil series. It is
these different degrees of similarities in the vectors that allow
us to derive soil property values intermediate to the typical
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Fig, 5. Derivation of soil similarity value for soil series Elkner,
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Table 1. Soil similarity values for some selective points in the Lubrecht area.
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Belt rock parent materials

Granite parent materials: Limestone parent materials
Point Ambrant Rochester Elkner Ovando  Repp  Trapps. Whitore - Evaro Tevis ~ Winkler Cool . Winkler Sharrott
lub04 ~ 01 0.00% 0.00 0.00 0.00 0.00 - 0.00 - .0.00 45.07 79.18 - 3401 7.98 1.88
lub04 - 03 0.00 0.00 0.00 0.00 2.01 18.79- - 55.50 0.00 0.00 +. 000 0.00 0.00
ub06-03  29.37 29.23 16.25 - - 45.81 0.00 0.00 0.00 0.00 - .0.00 0.00 0.00 0.00
lub07 - 01 0.00 0.00 0.00 0.00 13.96 65.03 48.91 0.00 0.00 0.00 0.00 ~ 0.00
lub07-02  26.62 30.36 0:19 1.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lub10 - 03 7.63 1.55 0.00 47.49 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00
9103 16.54 14.47 69.23 . 39.79 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 -0.00

+ Membership values. range from 0 to 100.

property values of the prescribed soil series. The ability to

produce these intermediate values enables us to estimate the
spatial gradation of soil properties. '

Derivation of Soil Pfoperty Maps

In this study, the soil A horizon depth and soil water transmis-
sivity were chosen to demonstrate how the membership maps
can be used to derive soil property maps. It was assumed that
the more the local soil formative environment characterised
by a GIS resembles the environment of a given soil category,
the closer the property values of the local soil to the property
values of that candidate soil category. The resemblance between

the environment for soil at (i,j) and the environment for soil -

category k can be expressed as Sf, which can be used as an

index to measure the level of resemblance between the soil -
property values of the local soil and those of soil category k.

In this sense, if we know Sj [the soil similarity vector at (i, )]
and the typical value of a given soil property (such as A
horizon depth) for each of the prescribed soil categories, we
would be able to derive an estimation of the soil property
value at (i, j). This estimated soil property value would better
approximate the local value at (i,j) than that of any single
prescribed soil category. The estimation of the soil property
value at a given point (i, j) can take some form of combination of
the typical soil property values of the prescribed soil categories
weighted by S;. While it is understood that the relationship
between the similarity values of two soils and their property
values may not be linear, for simplicity and as a first approxima-
tion we use the following linear and additive weighting func

tion: .

> st v+
k=1
> 8
k=1

to estimate the local soil property value in this study and to
demonstrate one possible way of deriving detailed soil property

Vi= (1]

Table 2. Soil series in the Lubrecht study area.

*values across space. In Eq. [1], Vj;is the estimated soil property

value at site (i,j), V* is the typical value (often’the mean
value) of a given soil property of soil category k, and # is the
total number of prescribed soil categories in the area. The
typical A horizon depths for soil series in the Labrecht study
area (Table 2) were extracted from the soil series descriptions

. (Missoula County Soil Survey, 1983) and the prescribed soil

transmissivity values for the soil types inthe Redhill Catchment
(Table 3) were obtained fromn a field report (Vertessy, 1990).
This report defines soil transmissivity as.the depth-integrated
saturated hydraulic conductivity measured using the well per-
mearneter method described in Talsma and Hallam (1980).

,S"tu‘&‘y ‘Areas and Environmental Variables

 The Lubrecht Study Area

Lubrecht Experimental Forest is located about 50 km north-
east of Missoula, MT. The soil expert (Mr. Barry Dutton, a
certified soil scientist) has extensive soil mapping experience
in the area. The study area is centered around the North Fork
of Elk Creek. The elevation in the area ranges from 1160 to
1930 m, with the highest elevations in the east and southwest
and the lowest elevations in the northwest. The area is consid-
ered semiarid to semihumid (Nimlos, 1986). Most of the
mountain slopes in the study area are forested, dominated by
Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco], although
lesser amounts of western larch (Larix occidentalis Nutt.) and
pondercsa pine (Pinus ponderosa Douglas ex P. Lawson &
Lawson) are present. A small portion of the study area (in
the northwest) is covered by Idaho fescue (Festuca idahoensis
Elmer) and bluebunch. wheatgrass [Elytrigia spicata (Pursh)
D.R. Dewey]. There are four types of soil parent materials
in the area: Belt rocks (metamorphosed sedimentary rocks),

sanite, limestone, and recent alluvium (Nimlos, 1986). The
alluvial materials occur only in limited areas along the North
Fork gnd.South Fork of Elk Creek. The first three soil parent
materials make up the majority of the study area with Belt
recks in the north, granite in the south, and limestone through
the center part: of the area.

Table 3. Variation in hydraulic conductivity (K) and transmissiv-

Parent
Soil series material Soil subgroup depth - ity (T within soil types at Redhifl.
cm T U.s. K, K, ,
Ambrant Granite Udic Ustochiepts 10 U ~iqh“ﬁiivﬁ;::;“ (0-50 cm) (50-80 cm) T+ (0-80 cm)
Elkner Granite Typic Cryochrepts 20 : (IS s
Evaro Belt Typic Cryochrepts 30 Soil type Great groups Mean SD Mean SD - Mean SD
Ovando Granite Typic Cryorthents 15 : IR em d-* e d —
Limest ic Ustochr: : -8 T I, S
Rophester mestone  TyPke Ustorthents 5 Mithlope duplex * Paleustalfs 1631 7871649 77613102 69385
harrott Belt Lithic Ustoch 5 Sandy. lower slope " :
il Belt Dystric Butrochrepts 2 Cgolls. - Paleustalfs 28.6713.54 5.34 3.151593.7 759.93
Trapps Limestone Typic Eutroboralfs 15 Shiallow red earths  Paleustalfs . 9.40 1.68 8.85 13.65 735.5 493.63
Whitore Limestone Typic Cryochrepts 20 Upsiope red earths w 55.1828.3119.69 7.51 3349.7 1559.80
Winkler Belt Udic Ustochrepts 10 -Valley floor soils ~ “Albaquults 7.25 5.41 1.01 2.62 392.8 328.91
Winkler (Cool) Belt Udic Ustochrepts 15

tT = Kq-50-0) + Kun-mi80-50).
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There are 14 soil series in the soil map of the study area.
Aquepts is the only soil suborder on the recent alluvium and
it was not included in this study. According to the soil expert,
soil series Mitten does not actually occur in the study area,

although it was included on the soil map (this soil expert did

not make the soil map). Therefore, soil series Mitten was not
included in the study. The remaining 12 soil series are listed
in Table 2 and the descriptions of these soil series can be
found in the Missoula County soil survey report (Missoula
County Soil Survey, 1983). It should be noted that the reason
for using soil series as the basic soil taxonomic unit for the
soil similarity vectors is that soil series is the taxonomic unit
that has been extensively used in soil surveys and soil mapping
in the USA. Local soil experts feel more comfortable with soil
series than any other taxonomic units. There has accumulated a
good deal of knowledge about the relationships between soil
series and their environments. This knowledge can be used to
produce soil similarity vectors (Zhu and ‘Band, 1994; Zhu et
al., 1996).

Six environmental variables (elevation, slope aspect, slope
gradient, tree canopy coverage, profile curvature, and parent
materials) were used to characterize the soil formative environ-
ment. The inclusion of these variables was determined through
the discussion between the knowledge engineer (the person
who performs the knowledge acquisition; in our study, it was
the senior author) and the soil expert in the light of data
availability and the importance of the variables for delineating
the soil formative environment. Note that there are no data
variables in the list that directly measure climatic factors.
Although the study was conducted on a small drainage basin,
great differences in terms of microclimate do exist within the
basin. However, these differences in microclimate are well
expressed by variations in elevation, slope aspect, and slope
gradient.

Information on elevation, slope aspect, slope gradient, and
profile curvature were derived from a DEM of the study area.
The accuracy of the DEM is comparable with the accuracy
of the Level 1 USGS 7.5-minute DEMs (U.S. Geological
Survey, 1990). The tree canopy coverage data was approxi-
mated with an index derived from remotely sensed data (The-
matic Mapper) (Nemani et al., 1993). Information on parent
material was obtained from a bedrock geology map of the
study area (Brenner, 1968). It is recognized: that the inclusion
of a bedrock geology map as the soil parent material map
would affect the quality of the results because geological maps
were produced in the same way as soil maps and potentially
contain human errors. The other limitation of using bedrock
geology as soil parent material is that the bedrock geology

cannot sufficiently represent surficial geology from which soils
were developed. However, the propemes of soils in the region
exhibit a great dependence on the properties of their respective
parent materials and the bedrock geology was the only geologi-
cal information available for the area at the time of this study.
Therefore, it was necessary to use the bedrock geology to
approximate the parent material information.

These data variables have by no means exhausted the soil
formation factors and the interaction of these factors on soil

development. They were used to demonstrate the potential of

the new methodology of gathering and representing soil spatial
information.

The Redhill Catchment

The Redhill catchment is located near Tumut, NSW, about
100 km west of Canberra (35.1°S, 148.4°E). The test area
is about 2.2 km (north-south) by 2.5 km (east-west). The
catchment was cleared of its eucalypt vegetation and planted

to pasture >100 yr ago (Vertessy, 1990). In April 1989
catchment was planted to Monterey pine (Pinus radiat
Don). Elevations range from 650 to 780 m with a gent
moderate relief. The two major parent materials are gr
in the center area and basalt around the granite.

The soil expert for the study area is Dr. Rob Vertes:
hydrologist and ecological modeler. The soils in the catch:
were classified and mapped for the specific purpose of ¢
ment water yield research. As a result, the classification
not conform to any of the existing soil classification syst
The soil expert identified five major soil types in the
(Table 3) (Vertessy, 1990). The soils were separated .
each other mainly by their distinct topographic positi
Within each soil type, the saturated hydraulic conductivity
and soil water transmissivity (7)) values vary substan
(Table 3).

For this study area, five environmental variables were 1
parent material, wetness index, planform curvature, slope
dient, and upstream drainage area. The selection of 1
environmental variables were based on the discussion bety
the knowledge engineer and the soil expert in the area,
most of the input coming from the soil expert. The soil e
felt that the slope aspect plays little role in the develop:
of the soils in the area because the illumination condi
among the different aspects are not very different due t
gentle relief and the low latitude of the area. Elevation
not included in the environmental variable list because
expert thought that elevation did not contribute much t
development of soils in the region due to its gentle to mod:
relief. Vegetation information was not used as well sinc
area was cleared of vegetation and planted to Monterey
very recently and the current vegetation conditions may
have a decisive role in the formation of the soiis in the s
area. The other reason for not including the vegetation info
tion is that such information was not available at the time
study was conducted. However, the inclusion of this veget:
information may provide additional information for identif
land units and soil conditions since the planted vegetation
exhibit different growth conditions on different land units
under different soil conditions.

Except for the parent material data layer all other
were derived from a DEM that was generated through s
fitting of the digitized elevation contour lines using TO!
(CSIRO Division of Water Resources, 1992, p. 4.1-4
The accuracy of the DEM is similar to that of USGS 1
1 DEMs. The planform curvature was calculated acco
to Zevenbergen and Thorne (1987). The upstream drai

area was calculated using a divergent flow method desc

. by Freeman (1991) and the wetness index was calcu

according to the following equation (Beven, 1986; Quii

al., 1991):
au
wy = In| —% >
! <tan By

where a; is the cumulative upslope area draining throu
point (per unit contour length), By is the slope gradient af
point, and w; reflects the ‘balance between the tendenc
water to accumulate at that point in the catchment anc
tendency for gravitational forces to move that water downs!
Therefore, w;.is used to express the wetness condition al
point.

Information on soil parent materials was created fron
digitization of a bedrock geology map of the area (Vem
1990). The soil parent material data would have the sit
limitations on the result as that in the Lubrecht study ar
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Field Sampling

In order to evaluate the results from SoLLIM, field observa-
tions of soil series distributions were made. Stratified point
sampling, systematic point sampling, and line sampling strate-
gies (Griffith and Amrhein, 1991) were employed for collecting
field data in the study areas.

Sampling the Lubrecht Study Area

For the Lubrecht case, the evaluation of the results from
SoLIM contains two aspects: the overall performance of the
system and the ability to infer spatial variation of soil informa-
tion. The point sampling strategy was used to obtain field data
for the assessment of the overall performance of the system
and the line sampling method was employed to evaluate how
well SoLIM was able to capture spatial variation of soil informa-
tion. For point sampling, a stratification technique was em-
ployed. First, the soil similarity vectors were hardened to
produce an inferred soil series map by assigning each pixel
to the soil series that has the highest membership value in the
similarity vector (Zhu et al., 1996; Zhu, 1994). The area was
then divided into two subsets based on the agreement between
the inferred soil series map and the conventional soil series
map of the study area. The first subset contains the areas
where the inferred soil map matches the conventional soil map
(matched areas) and the second contains the areas where the
inferred soil map disagrees with the conventional soil map
(mismatched areas). Within each of these subsets, samples
were drawn to cover the majority of different configurations
of environmental conditions. Field observations of the spatial
variation of soil information were conducted on a transect.

Inferred Depth

. no data
5 em

Fig. 6. Inferred soil A horizon depth of the Lubrecht area.

The transect was constructed in such a way that it cuts through
different types of parent materials and covers the major environ-
mental configurations in the shortest distance.

Field surveys were carried out during the summer of 1991,
1992, and 1993. A total of 64 sites were visited during these
field trips. Of the 64 sites, 18 were on the transect. Twenty-eight
of the remaining 46 sites were in the matched areas and 18
were in the mismatched regions. At each of the sites, several
pits were dug to reduce the influence of microvariation of soil.
Three types of information about each site were recorded: the
location, the environment, and the soil. The A horizon depths
at 33 sites were collected during the field trip of 1993.

Samples at the Redhill Catchment

Soil surveys were carried out extensively in the catchment
for studying hydrologic processes (Vertessy, 1990). Soils were
inspected using the augerhole method and auger sampling was
confined to the upper 140 cm of the profile, although further
information was obtained from a series of trenches, dug to
depths of 250 cm (Vertessy, 1990). The sampling was done
using a regular grid sampling strategy (systematic sampling).
In addition to the profile description at each sample site,
the K, was determined using the well permeameter method
described by Talsma and Hallam (1980). Measurements from
32 sites in the catchment were available for this study. At
each site, measurements of the K, at depth iniervals of O to
50 and 50 to 80 cm were used to calculate 7 (Table 3) according
to Dunne and Leopold (1978, p. 205):

T= iKsiDi 2]

i=1
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Field Sampling
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tions of soil series distributions were made. Stratified poimt
sampling, systematic point sampling, and line sampling strate-
gies (Griffith and Amrhein, 1991) were employed for collecting
field data in the study arcas.

Sampling the Lubrecht Study Area

For the Lubrecht case, the evaluation of the results from
Sol.IM contains two aspects: the overall performance of the
system and the ability to infer spatial variation of soil informa-
tion, The point sampling strategy was used 1o obtain field data
for the assessment of the overall performance of the system
and the line sampling method was employed to evaluate how
well Sol.IM was able to capture spatial variation of soil informa-
tion. For point sampling, a stratification technique was em-
ployed. First, the soil similarity vectors were hardened to
produce an inferred soil series map by assigning cach pixel
1o the soil series that has the highest membership value in the
similarity vector (Zhu et al., 1996; Zhu, 1994). The area was
then divided into two subsets based on the agreement between
the inferred soil series map and the conventional soil series
map of the stady arca. The first subset contains the areas
where the inferred soil map matches the conventional soil map
{matched areas) and the second containg the areas where the
inferred soil map disagrees with the conventional soil map
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Fig. 6. Inferred soil A horizon depth of the Lubrecht area.

The transect was constructed in such a way that it cuts through
different types of parent materials and covers the major environ-
mental configurations in the shortest distance,

Field surveys were carried oul during the summer of 1991,
1992, and 1993 A total of 64 sites were visited during these
field trips. Of the 64 sites, 18 were on the transect. Twenty-eight
of the remaining 46 siles were in the matched areas and 18
were in the mismatched regions. At each of the sites, several
pits were dug w reduce the mfluence of microvariation of soil.
Three types of information about each site were recorded: the
location, the environment, and the soil. The A horizon depths
at 33 sites were collected during the field trip of 1993,

Samples at the Redhill Catchment

Soil surveys were carried out extensively in the catchment
for studying hydrologic processes (Vertessy, 1990}, Soils were
inspected using the augerhole method and auger sampling was
confined to the upper 140 cm of the profile, although further
information was obtained from a series of trenches, dug o
depths of 250 cm (Venessy, 1990). The sampling was done
using a regular grid sampling strategy (systematic sampling).
In addition to the profile descripiion at each sample site,
the K, was determined using the well permeameter method
described by Talsma and Hallam (1980). Measurements from
32 sites in the catchment were available for this study. At
each site, measurements of the K, al depih iniervals of 0 to
50 and 50 to B0 cm were used to calculate T(Table 3) according
to Dunne and Leopold (1978, p. 205):

]
T=3% Kil} 12]
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where K, and D; are the hydraulic conductivity and thickness
of the ith horizon.

RESULTS
The Lubrecht Area

The inferred and mapped depths of the A horizons of
the soils in the study area are shown in Fig. 6 and 7.
The image of mapped depth was generated by assigning
each pixel the typical depth of the soil series of that
pixel area. The map of inferred depth was generated by
applying Eq. [1] to every pixel in the area. The contrast
between the two maps (Fig. 6 and 7) is strong and clear.
The image of inferred depth shows a spatially continuous
pattern of the A horizon depth while the image of depths
from the soil map inherits the exact spatial pattern of
the soil map. Because the study area is in the semihumid
to semiarid area of western Montana, the soils on north-
facing slopes and at higher elevations are further devel-
oped than soils on south-facing slopes and at lower
elevations due to the limited moisture conditions at the
lower elevations and on south-facing slopes. The A hori-
zons are deeper for those soils on north-facing slopes
and at higher elevations than those of soils on south-facing
slopes and at lower elevations. The inferred depth map
shows this characteristic of the depth of the A horizon
in the area but the change of depth is gradual across
space and is not like the change depicted in the depth
image derived from the conventional soil map.

Mapped Depth
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Fig. 7. A horizon depth derived from the soil map of the Lubrecht area.

The changes in A horizon depth across space depicted
by SoLIM match the changes of depth observed in the
field better than the changes outlined in the soil map
(Fig. 8), although neither are good reproductions of the
strong local field variability. The spatial variation of soil
depths is shown as a step function on the soil map.
However, the field observations show that the spatial
variation of soil depths vary in a form very different
from a step function. The inferred soil depths along the
transect follow the values of field observations better,

The two scatter plots (Fig. 9 and 10) compare the
estimation of soil A horizon depths using SoLIM with
that derived from the soil map at the 33 sample sites
where observations on A horizon depths were made.
From these two plots, it can be seen that the inferred
depths at these sites are more closely associated with
the observed depths in the field than are the depths
derived from the soil map. Although both correlation
coeflicients are highly significant (at the 0.001 probability
level), the correlation between the inferred depths and
the observed depths is much stronger than that between
the depths from the soil map and the observed depths
(numbers in the white boxes in Fig. 9 and 10).

Willmott (1984) and Willmott et al. (1985) have dis-
cussed several measures (statistics) for comparing model
results. They suggested that certain differences or error
indices and an index of agreement should be used for
quantitative evaluations of model performance (Mayer
and Butler, 1993; Power, 1993; Willmott, 1984). Three
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where K, and I, are the hydraulic conductivity and thickness
of the ith horizon.

RESULTS
The Lubrecht Area

The inferred and mapped depths of the A horizons of
the soils in the study area are shown in Fig. 6 and 7.
The image of mapped depth was generated by assigning
each pixel the typical depth of the soil series of that
pixel area. The map of inferred depth was generated by
applying Eq. [1] to every pixel in the area. The contrast
between the two maps (Fig. 6 and 7) is strong and clear.
The image of inferred depth shows a spatially continuous
pattern of the A horizon depth while the image of depths
from the soil map inherits the exact spatial pattern of
the soil map. Because the study area is in the semihumid
to semiarid area of western Montana, the soils on north-
facing slopes and at higher elevations are further devel-
oped than soils on south-facing slopes and at lower
elevations due to the limited moisture conditions at the
lower elevations and on south-facing slopes. The A hori-
zons are deeper for those soils on north-facing slopes
and at higher elevations than those of soils on south-facing
slopes and at lower elevations. The inferred depth map
shows this characteristic of the depth of the A horizon
in the area but the change of depth is gradual across
space and is not like the change depicted in the depth
image derived from the conventional soil map.
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The changes in A horizon depth across space depicted
by SoLIM match the changes of depth observed in the
field better than the changes outlined in the soil map
(Fig. 8), although neither are good reproductions of the
strong local field variability. The spatial variation of soil
depths is shown as a step function on the soil map.
However, the ficld observations show that the spatial
variation of soil depths vary in a form very different
from a step function. The inferred soil depths along the
transect follow the values of field observations betier.

The two scatter plots (Fig. 9 and 10) compare the
estimation of soil A horizon depths using SoLIM with
that derived from the soil map at the 33 sample sites
where observations on A horizon depths were made.
From these two plots, it can be seen that the inferred
depths at these sites are more closely associated with
the observed depths in the field than are the depths
derived from the soil map. Although both correlation
coefficients are highly significant (at the 0.001 probability
level), the correlation between the inferred depths and
the observed depths is much stronger than that between
the depths from the soil map and the observed depths
{numbers in the white boxes in Fig. 9 and 10),

Willmott (1984) and Willmott et al. (1985) have dis-
cussed several measures (statistics) for comparing model
results. They suggested that certain differences or error
indices and an index of agreement should be used for
quantitative evaluations of model performance (Mayer
and Butler, 1993; Power, 1993; Willmott, 1984). Three

Fig. 7. A horizon depth derived from the soil map of the Lubrecht area.
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Fig. 8. Changes in soil A horizon depths along a transect in the Lubrecht area.

indices are used here to evaluate the performance of
SoLIM. The first index is the MAE and the second index
is the RMSE (Willmott, 1984). Both MAE and RMSE
are difference measures but RMSE is more sensitive to
extreme values. The smaller the values of MAE and
RMSE are, the better a model performs. The third index
is an AC, which is defined as (Willmott, 1984)

_ NRMSE?
PE

AC =1 3]

where N is the number of cases (sites or observations),

PE is the potential error variance and is defined as

PE=3(P-0|+|0,-0 [

j=1

given that O is the observed mean, and P; and O; are
the model predicted value and the observed (or reliable)
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Fig. 9. Scatter plot of observed vs. inferred A horizon depths in the
Lubrecht area.

value for the ith case, respectively. The agreement co-
efficient varies between 0.0 and 1.0, where a value of
1.0 expresses perfect agreement between O (observed)
and P (predicted) and 0.0 describes complete disagree-
ment (Willmott, 1984). Table 4 lists these statistics for
the evaluation of the performance of SoLIM vs. that of
the soil map. The MAE and RMSE statistics for SOLIM
are consistently lower than those for the soil map. The
AC is higher for SoLIM than that for the soil map.
These statistics support the hypothesis that the estimation
of the A horizon depth derived from SoLIM is more
- accurate than that from the soil map.

Ther Redhill Catchment

As in the Lubrecht case, the inferred transmissivity
(Fig. 11) was calculated according to Eq. [1] and the
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Fig. 10. Scatter plot of observed vs. mapped A horizon depths in the
Lubrecht area.
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indices are used here to evaluate the performance of
SoLIM. The first index is the MAE and the second index
is the RMSE (Willmott, 1984). Both MAE and RMSE
are difference measures but RMSE is more sensitive to
extreme values. The smaller the values of MAE and
RMSE are, the better a model performs. The third index
is an AC, which is defined as (Willmott, 1984)
2
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Fig. 9. Scatter plot of observed vs. inferred A horizon depths in the
Lubrecht area.

value for the ith case, respectively. The agreement co-
efficient varies between 0.0 and 1.0, where a value of
1.0 expresses perfect agreement between O (observed)
and P (predicted) and 0.0 describes complete disagree-
ment (Willmott, 1984). Table 4 lists these statistics for
the evaluation of the performance of SoLIM vs. that of
the soil map. The MAE and RMSE statistics for SoLIM
are consistently lower than those for the soil map. The
AC is higher for SoLIM than that for the soil map.
These statistics support the hypothesis that the estimation
of the A horizon depth derived from SoLIM is more
accurate than that from the soil map.

The Redhill Catchment

As in the Lubrecht case, the inferred transmissivity
(Fig. 11) was calculated according to Eq. [1] and the
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Table 4. Statistics on the performance of SoLIM vs. the soil map
in Lubrecht.

Quantitative Observed Predicted

measures mean mean MAE RMSE AC
SoLIM 15.49 15.58 3.04 4.00 0.85
Soil map 15.49 14.39 4.41 592 0.80

mapped transmissivity (Fig. 12) was derived by assigning
the typical transmissivity value of each soil type to the
pixels belonging to that soil type. From the comparison
of these two figures (Fig. 11 and 12), the inferred trans-
missivity map shows more spatial gradation of transmis-
sivity than the transmissivity map derived from the ex-
isting soil map.

The statistics on the transmissivity prediction using
SoLIM and using the existing soil map at the 32 field
sites in the Redhill Catchment are listed in Table 5. Of
the four indices, the predicted mean value from SoL.IM
is closer to the observed mean than that from the soil
map. The MAE produced from SoLIM is smaller than
that from the soil map. The RMSE produced from SoLIM
is greater than that from the soil map. The difference
between the two RMSEs is relatively small. However,
the AC value for the soil map is more than twice the
AC value for SoLIM. The AC is an index that measures
the agreement between the predicted and the observed
values. It may be concluded based on these statistics that
the soil water transmissivity map produced using SoLIM
did not provide additional accuracy over the transmis-
sivity map derived from the soil map of the Redhill
catchment.

Inferred Transmissivity

3349 (sq. cm/day)

392 (sq. cm/day)

A
Fig. 11. Inferred transmissivity map of the Redhill study area.

DISCUSSION

The SoLIM approach was able to provide more accu-
rate soil information than the soil map with respect to
both the spatial gradation and point accuracy in the
Lubrecht study area. In the Lubrecht case, the soil cate-
gory used was soil series. Soil series is a standard soil
classification category used as the basic unit during exten-
sive soil surveys. Therefore, a great deal of knowledge on
the relationships between soil series and their formative
environment was accumulated by soil experts during
these soil surveys. This knowledge was captured through
the knowledge acquisition process and was represented
in SoLIM. In addition, the Lubrecht area is a mountainous
region with a strong environmental gradient and the GIS
techniques employed were able to capture this environ-
mental gradient for characterizing the soil formative
environment. Therefore, SoLIM has many advantages
for soil information gathering and representation over
conventional soil maps in terms of spatial details and
attribute accuracy in the Lubrecht area.

In the Redhill case in Australia, SoLIM was less
successful in comparison with the existing soil map. In
the Redhill area, the soil units were created in an ad
hoc fashion for the specific use of hydrological modeling
and not for any standard soil classification. The under-
standing of the relationships between these soil units
and their formative environments is limited to very few
environmental variables such as topographic positions
and landforms. On the other hand, the GIS techniques
used were not able to successfully capture topographic
positions and landforms. Therefore, much of the knowl-
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pixels belonging to that soil type. From the comparison
of these two figures (Fig. 11 and 12), the inferred trans-
missivity map shows more spatial gradation of transmis-
sivity than the transmissivity map derived from the ex-
isting soil map.

The statistics on the transmissivity prediction using
SoLIM and using the existing soil map at the 32 field
sites in the Redhill Catchment are listed in Table 5. Of
the four indices, the predicted mean value from SoLIM
is closer to the observed mean than that from the soil
map. The MAE produced from SoLIM is smaller than
that from the soil map. The RMSE produced from SoLIM
is greater than that from the soil map. The difference
between the two RMSEs is relatively small. However,
the AC value for the soil map is more than twice the
AC value for SoLIM. The AC is an index that measures
the agreement between the predicted and the observed
values. It may be concluded based on these statistics that
the soil water transmissivity map produced using SoLIM
did not provide additional accuracy over the transmis-
sivity map derived from the soil map of the Redhill
catchment.
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Fig. 11. Inferred transmissivity map of the Redhill study area,

DISCUSSION

The SoLIM approach was able to provide more accu-
rate soil information than the soil map with respect to
both the spatial gradation and point accuracy in the
Lubrecht study area. In the Lubrechi case, the soil cate-
gory used was soil series. Soil series is a standard soil
classification category used as the basic unit during exten-
sive soil surveys. Therefore, a great deal of knowledge on
the relationships between soil series and their formative
environment was accumulated by soil experts during
these soil surveys. This knowledge was captured through
the knowledge acquisition process and was represented
in SoLIM. In addition, the Lubrecht area is a mountainous
region with a strong environmental gradient and the GIS
techniques employed were able to capture this environ-
mental gradient for characterizing the soil formative
environment. Therefore, SoLIM has many advantages
for soil information gathering and representation over
conventional soil maps in terms of spatial details and
attribute accuracy in the Lubrecht area.

In the Redhill case in Australia, SoLIM was less
successful in comparison with the existing soil map. In
the Redhill area, the soil units were created in an ad
hoc fashion for the specific use of hydrological modeling
and not for any standard soil classification. The under-
standing of the relationships between these soil units
and their formative environments is limited to very few
environmental variables such as topographic positions
and landforms. On the other hand, the GIS techniques
used were not able to successfully capture topographic
positions and landforms. Therefore, much of the knowl-
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Fig. 12. Mapped transmissivity of the Redhill study area.

edge on the soil-environmental relationships was not
utilized by SoLIM. In addition, the Redhill catchment
is a small basin, about 173 ha, and has a very gentle
environmental gradient. The GIS techniques were not
able to provide enough details on the soil formative
environment for SoLIM to utilize the knowledge ex-
tracted for soil inference. The soil property used in this
exercise is the soil water transmissivity, which is highly
variable across a very short distance and is difficult to
map accurately. Under these circumstances, the SoLIM
approach experienced difficulty in deriving an accurate
continuous transmissivity map for the Redhill catchment.
The result from SoLIM was only comparable to that
from the soil map produced through many soil observa-
tions across a small area. ‘

SUMMARY AND CONCLUSIONS

We derived soil property values across a region from
the soil similarity vectors derived using SoLIM and
demonstrated the usefulness of this fuzzy representation
of soil information. From the above illustrations, this
fuzzy representation of soil information does have some

Table 5. Statistics on the performance of SoLIM vs. the soil map
in Redhill.

Quantitative Observed Predicted

measures mean mean MAE RMSE AC
cm? d-!

SoLIM 1406 1383 838 1173 0.30

Soil map 1406 1622 902 1112 0.66

advantages over conventional representation of soil infor-
mation under crisp logic (such as conventional soil survey
maps). At the spatial level, the soil property map derived
using the soil similarity vectors shows more gradation
across space. This spatial gradation of soil property
values provides a more realistic representation of soil
information than the step-function type of variation,
which is often adopted in conventional soil maps. At the
attribute level, for the steep mountainous region, the
derived soil property values are more accurate than the
soil property values derived from conventional soil maps
but not as advantageous for more gentle landscapes.

Although the fuzzy representation of soil information
does have advantages, the accuracy of the final soil
property values depends on the accuracy of the soil
similarity vectors, which in turn depends on the process
generating these vectors. There are two key components
during the soil similarity vector generation process: the
precision of knowledge on soil-environment relation-
ships and the degree to which the environmental data
employed can be used to characterize the soil formative
environment. We showed that SoLIM worked well in
an area where there is a strong environmental gradient
and a rich understanding of soil-environment relation-
ships, and where the environmental data used can effec-
tively characterize the soil formative environment. How-
ever, SoLIM did not perform as successfully in an area
where the environmental gradient is gentle and the rela-
tionships between the gentle environmental gradients and
the soils were not well established.
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Fig. 12. Mapped transmissivity of the Redhill study area.

edge on the soil-environmental relationships was not
utilized by SoLIM. In addition, the Redhill catchment
is a small basin, about 173 ha, and has a very gentle
environmental gradient, The GIS techniques were not
able o provide enough details on the soil formative
environment for SoLIM to utilize the knowledge ex-
tracted for soil inference. The soil property used in this
exercise is the soil water transmissivity, which is highly
vanable across a very short distance and is difficult to
map accurately. Under these circumstances, the SoLIM
approach experienced difficulty in deriving an accurate
continuous transmissivity map for the Redhill catchment.
The result from SoLIM was only comparable to that
from the soil map produced through many soil observa-
tions across a small area.

SUMMARY AND CONCLUSIONS

We derived soil property values across a region from
the soil similarity vectors derived using SoLIM and
demonstrated the usefulness of this fuzzy representation
of soil information. From the above illustrations, this
fuzzy representation of soil information does have some

Table 5. Statistics on the performance of SoLIM vs. the sl map
in Redhill.

Caantitative Observed Predicted

MEASLTES mesn mean MAE HMSE AL
—_— emf d-!

SolIM 1400 1343 B1E 1173 0. 30

Sanil map 1404 1622 Q02 1112 .66

SOIL SCI. 80C. AM. 1., VOL. 61, MARCH-APRIL 1997

advantages over conventional representation of soil infor-
mation under crisp logic (such as conventional soil su rvey
maps). At the spatial level, the soil property map derived
using the soil similarity vectors shows more gradation
across space. This spatial gradation of soil property
values provides a more realistic representation of soil
information than the step-function type of variation,
which is often adopted in conventional soil maps. AL the
attribute level, for the steep mountainous region, the
derived soil property values are more accurate than the
soil property values derived from conventional soil maps
but not as advantageous for more gentle landscapes.

Although the fuzzy representation of soil information
does have advantages, the accuracy of the final soil
property values depends on the accuracy of the soil
similarity vectors, which in turn depends on the process
generating these vectors. There are two key components
during the soil similarity vector generation process: the
precision of knowledge on soil_environment relation-
ships and the degree to which the environmental data
employed can be used to characterize the soil formative
environment. We showed that SoLIM worked well in
an area where there is a strong environmental gradient
and a rich understanding of soil-environment relation-
ships, and where the environmental data used can effec-
tively characterize the soil formative environment. How-
ever, SoLIM did not perform as successfully in an area
where the environmental gradient is gentle and the rela-
tionships between the gentle environmental gradients and
the soils were not well established.
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Future development of SoLIM needs to be focused
on two major areas: the representation of soil-forming
factors, particularly geomorphic objects in the GIS data-
base, and extraction of knowledge from multiple sources
(such as human experts, existing soil maps, and research
reports). At this stage, SoLIM only employs primitive
topographic indices (such as slope gradient, slope aspect,

-curvature, and elevation). These indices can be used to

predict the general distribution of soils in an area where
environmental variation is very strong but would not
be enough to capture the detailed functional effects of
landform objects (such as mid-slope or floodplain) on
soil formation processes. It is necessary to incorporate
landform objects in SoLIM in order to provide more

accurate soil information. SoLLIM was only able to extract

the knowledge on soil-environment relationships from
a single expert. SOLIM would be easily applicable for
other areas and the extracted knowledge would be more
reliable if the knowledge were extracted from different
human experts and/or from different sources (such as
paper maps and survey reports). However, the knowl-
edge from different sources needs to be properly inte-
grated. The integration of knowledge from different
sources would be a challenging research topic since all
sources have inherent errors. Methodology needs to be
developed so that these inherent errors would be removed
during the knowledge integration (knowledge fusion)
stage.
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