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Mapping soil landséape as spatial continua:
The neural network approach

A.-Xing Zhu

Department of Geography, University of Wisconsin, Madison

Abstract. A neural network approach was developed to populate a soil similarity model
that was designed to represent soil landscape as spatial continua for hydroecological
modeling at watersheds of mesoscale size. The approach employs multilayer feed forward
neural networks. The input to the network was data on a set of soil formative
environmental factors; the output from the network was a set of similarity values to a set
of prescribed soil classes. The network was trained using a conjugate gradient algorithm in
combination with a simulated annealing technique to learn the relationships between a set
of prescribed soils and their environmental factors. Once trained, the network was used to
compute for every location in an area the similarity values of the soil to the set of
prescribed soil classes. The similarity values were then used to produce detailed soil
spatial information. The approach also included a Geographic Information Syster
procedure for selecting representative training and testing samples and a process of
determining the network internal structure. The approach was applied to soil mapping in a
watershed, the Lubrecht Experimental Forest, in western Montana. The case study showed
that the soil spatial information derived using the neural network approach reveais much
greater spatial detail and has a higher quality than that derived from the conventional soil
map. Implications of this detailed soil spatial information for hydroecological modeling at

the watershed scale are also discussed.

1. Introduction

Information on spatial variation of soil hydraulic and other
properties is required for modeling the spatial variability of
hydroecological processes over a watershed [Beven and Kirkby,
1979; Burrough, 1996; Corwin et al., 1997; Jury, 1985]. Cur-
rently, soil maps produced through conventional surveys are
the major source of soil spatial information for many modeling
and management activities. Yet soil spatial information" de-
rived from these conventional soil maps has been found to be
inadequate for hydroecological modeling at watersheds of me-
soscale size because of its incompatibility with other landscape
data derived from detailed digital terrain analyses and remote
sensing techniques [Band and Moore, 1995; Zhu, 1997, 1999a].
This inadequacy is largely due to the limitations of the discrete
data model and polygon-based mapping practice employed in
conventional soil map production (see section 2.1).

To overcome these limitations, Zhu [1997] developed a soil
similarity model to represent soil landscapes as continua. Zhu
et al. [1997] found that the soil spatial information represented
under this similarity model had higher quality both in terms of
spatial details and attribute accuracy. Although the model pro-
vides a greater flexibility in representing soil landscapes than
conventional soil maps, the challenge is how this similarity
model can be populated. Zhu and Band [1994] and Zhu et al.
[1996] employed a knowledge-based approach for determining
the soil similarity values. The knowledge-based approach is
only suitable for areas where there are experienced local soil
scientists from whom the needed knowledge on soil-environ-
mental relationships can be obtained [Zhu, 1999b). Experi-
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enced local soil scientists may exist for areas which have un-
dergone initial surveys or subsequent updates. However, some
of these experienced soil scientists may have retired, and re-
placements may still be in the training stage. For areas where
soil surveys have never been conducted, there are often no soil
scientists very familiar with the local soils. Under these circum-
stances, what is available are the soil maps produced in previ-
ous surveys or field samples collected while conducting the
initial survey. This paper presents a neural network approach
for determining. the soil similarity values under these circum-
stances. The paper also examines the potential impacts of
detailed soil spatial information on landscape characterization
for hydroecological modeling. °

The section 2 provides a background on the limitations of
conventional soil maps and an overview of the soil similarity
model. The conceptualization of using neural networks to pop-
ulate the soil similarity model is presented in section 3. Section
4 describes a case study illustrating the implementation of the
neural network approach for soil mapping over the Lubrecht
watershed in western Montana. The results of the case study
and the implications of the detailed soil spatial information for
modeling are discussed in section 5 and section 6, respectively.
Summaries are presented in section 7.

2. Background

2.1. Limitations of Conventional Soil Survey Maps

Conventional soil maps were mostly produced through aer-
ial photograph-interpretation. During a soil survey, soil scien-

tists first investigate the soils in an area to be mapped and

establish a set of soil classes. They also gain an understanding
of the relationships between soils and their environment
through their field activities. The spatial extents of the soil
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classes are then delineated as polygons on aerial photos
through the interpretation of aerial photography [Hudson,
1992; Zhu, 1997]. The compilation of these polygons (soil poly-
gons) forms the basis of a conventional soil map. -

The level of spatial detail represented in a conventional soil
map is largely limited by the spatial discrete model and poly-
gon-based mapping practice employed. Under the discrete spa-
tial data model [Bregt, 1992; Goodchild, 1992; Mark and Csillag,
1989), soil spatial distribution is represented through the de-
lineation of soil polygons, with each polygon depicting the
spatial extent of a particular soil type (class) or a group of
* commonly found classes (mixed-class mapping units). The
polygons represent only the distribution of a set of prescribed
soil classes (ideal concepts of soils), not individual soils in the
field that often differ from the prototypes of the prescribed soil
classes. In order to be mapped, individual soils in the field must
be classified based on some classification scheme. Each indi-
vidual soil is often assigned to one and only one class (referred
to as Boolean assignment). Once assigned to a class, the local
soil is said to have the typical properties of that class. As a
result, the varying soil continuum is represented by a few
distinct and discrete soil classes. The domain of a soil property
is thus approximated by some typical values of soil classes,
which are often discrete. This generalization of the entire do-
main of a soil property. into a few typical values is referred to
as “generalization of soils in the parameter domain” [Zhu,
1997, 1999a]. With the pelygon-based mapping practice this
generalization creates discrete soil polygon boundaries and
forces soil spatial variation to be represented as a step func-
tion, which means that within a soil polygon, soils are assumed
to be the same and differences between soils only occur at the
boundaries of soil polygons. This step function of soil spatial
variation can bias the estimation of spatial covariation between
soils and other landscape parameters. In addition, the discreti-
zation of the soil parameter domain creates attribute incom-

patibility between soil spatial information from soil maps and

data from digital terrain analysis and remote sensing tech-
niques [Zhu, 1997]. Attribute incompatibility can also intro-
duce bias into the estimation of spatial covariation between
soils and other landscape parameters for distributed hydroeco-
logical modeling at the watershed scale [Zhu, 1999a].

A second problem with polygon-based mapping practice is
that it limits the minimum mapping size of “soil bodies” (scale
dependent). “Soil bodies” smaller than the established mini-
mum size are either ignored or merged into the larger enclos-
ing soil bodies. The existence of these smaller “soil bodies”
(components) may or may not be reported in the map legend.
In any case, the spatial extent of these components is not
shown in the map. This filtering of small soil bodies due to the
limitation of the polygon-based mapping technique is referred
to as “generalization of soils in the spatial domain.” This spa-
tial generalization can be very significant, and the soil bodies
that are filtered out can range from a few hectares on some
large-scale (small area) maps to hundreds of hectares on some
small-scale (large area) maps. The generalization of soil in the
spatial domain can create spatial incompatibility between con-
ventional soil maps and data derived from digital terrain anal-
ysis and remote sensing techniques. Spatial incompatibility re-
fers to the difference in spatial resolution between two data
sets. Spatial resolution here refers to the level of spatial detail
. at which the spatial variation is represented. Simply converting
a soil map into a raster layer and reducing the pixel size do not
increase the spatial resolution of the data layer at all since the
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process adds no details to the spatial variation of the soils
being portrayed. Therefore the spatial resolution of a soil map
is the minimum mapping size, which can range from a few
hectares to hundreds of hectares. In contrast, data derived
from digital terrain analysis and remote sensing techniques
often have a spatial resolution of 30 m by 30 m or even finer. -
Spatially small but potentially important environmental niches
can be described using these data sets. Soil information on
these niches is often not available from conventional soil maps
but could be critical to many detailed hydroecological model-
ing activities, such as studies on preferential flow paths through
which water and chemicals move much more quickly than in
the soil as a whole [Jury et al., 1991].

22. Overview of Soil Similarity Model

The two generalizations imposed by the discrete spatial data
model and the polygon-based mapping technique are the main
causes of the inadequacy of conventional soil maps for detailed
hydroecological modeling. To reduce the generalization of
soils in the spatial domain, the soil similarity model employs a
raster Geographic Information System (GIS) representation
concept. Under the raster GIS representation an area can be
represented by many small squares (pixels). The pixel size can
be very small; it is often 30 m on each side, although much finer
pixel sizes are possible. The spatial resolution of soil informa-
tion is then the size of a pixel, not the minimum mapping size
defined at a given map scale. With the raster representation,
spatial generalization in producing soil spatial information can
be largely reduced, and spatial details of soil variation can be
represented at-a resolution compatible with the detailed ter-
rain and remotely sensed data. This resolves the spatial incom-
patibility between soil spatial information and other detailed
environmental data. '

To overcome the generalization of soils in the parameter
domain, a similarity representation based on fuzzy logic is
developed [Zhu, 1997]. With fuzzy logic the soil pedon at a
givén pixel can be assigned to more than one soil class with
varying degrees of class assignment [Burrough et al., 1992, 1997,
McBratney and De Gruijter, 1992; McBratney and Odeh, 1997,
Odeh et al., 1992; Zhu, 1997]. These degrees of class assign-
ment are referred to as fuzzy memberships. Each can be re-

-garded as a similarity measure between the local soil and the

typical case of the given class. All of these fuzzy memberships
are retained in this similarity representation, which forms an
n-element vector (soil similarity vector or fuzzy membership
vector), 8;; (S5, Sz, +++, 8%, +++, 87), where n is the number
of prescribed classes and the kth element S% in the vector
represents the similarity value between the soil at pixel (i, j)

and soil class k [Zhu, 1997]. With this similarity representation

‘a local entity such as a soil pedon at a given pixel is no longer

necessarily approximated by the typical case of a particular
class but can be represented as an intergrade to the set of
prescribed classes. This mode of representation, which allows
the local soil to take property values intermediate to the typical
values of the prescribed classes, overcomes the attribute in-
compatibility between the soil spatial information represented
under the similarity model and the other detailed environmen-
tal data. By coupling this similarity representation with a raster
GIS data model, soils in an area are represented as an array of
pixels with soil at each pixel being represented as a soil simi-
larity vector (Figure 1). In this way, soil spatial variation can be
represented as a continuum in both the spatial and parameter
domains.
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,Figure 1. The soil similarity model. Soils are represented as

pixels in spatial domain and as soil similarity vectors in param-

eter domain.

3. Populating the Similarity Model:
The Neural Network Approach

The similarity model provides only the flexibility of repre-

senting soil spatial variation. The degree of success in using .

this model depends on how the model is populated or how the
soil similarity values in the vector at each pixel are determined.
This section presents a basic background on artificial neural
networks (ANNs) and the conceptualization of using neural
networks to populate the similarity model.
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Figure 2. The structure of the neural network used in this study for the limestone area, with environmental
variables as inputs, six hidden neurons, and three output neurons representing the three soil series in the area
(section 3.2).
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3.1. Basics of ANNs

" Artificial neural networks are a form of computing moti-
vated by the functioning of biological neural networks. An
ANN solves a problem by first developing a memory associat-
ing a large number of input patterns with a set of resulting
outputs through training on examples and then by applying this
association to produce an output when given an input pattern,
A detailed discussion of ANNs and their applications is beyond
the scope of this paper. Readers are referred to the following
review articles and books for discussion on the structure, func-

. tioning, and operation of ANNs [Aleksander and Morton, 1990;

Caudill and Butler, 1990; Dayhoff, 1990; Haykin, 1994; Hechi-
Nielsen, 1990; Hertz et al., 1991; Lippman, 1987; Maren et al.,
1990; Masters, 1993; McClelland et al., 1986; NeuralWare, Inc.,

'1991; Rumelhart et al., 1986; Simpson, 1990; Vermuri, 1988]. A

number of studies on the application of ANNs in water re-
source research areas have been reported [e.g., Clair and Ehr-
man, 1998;. French et al., 1992; Hsu et al., 1995; Maier and
Dandy, 1996; Morshed and Kaluarachchi, 1998; Pachepsky et al.,
1996; Ranjithan et al., 1993; Rizzo and Dougherty, 1994; Rogers
and Dowla, 1994; Schaap and Bouten, 1996; Schaap et al., 1998;
Shamseldin et al., 1997; Tamari et al., 1996; Wen and Lee, 1998).
These references provide further information on the applica-
tion of ANNs. Sections 3.1.1 and 3.1.2 provide a background
on multilayer feed forward networks (MFN), the type of ANN
used in this study, and a brief discussion on the training algo--
rithms employed. . i
3.1.1. Structure.. A MFN is made of many processing el-
ements (neurons). These neurons are usually arranged in lay-
ers: an input layer, an output layer, and one or more layers in
between called hidden layers (Figure 2).- The neurons in one -
layer are connected to the neurons in the next layer with
different strengths of connection. The strength of connection is
referred to as a weight. '

Output Layer
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The structure of a MFN (the numbers of layers and the
number of neurons in each layer) is problem specific. Masters
[1993, pp. 85-88] reports that for most problems a three-layer
model should be sufficient unless the problem domain is highly
discontinuous. The number of input neurons should be the
number of inputs, and the number of output neurons should be
the number of attributes defining the output. The number of
hidden neurons depends on the complexity of the problem
[Masters, 1993, pp. 176-177). The simpler the problem is, the
fewer the number of hidden neurons are needed. The exact
number of hidden neurons for a given problem is often deter-
mined by trial and error [Masters, 1993, p. 178].

3.1.2. Training. Network training (network learning) is a
process of determining a set of weights that will produce the
best possible input/output mapping. Most network training
employs a supervised approach under which the network is
presented with a set of input patterns and a set of correspond-
ing desired outputs (together referred to as training data). The
training process starts by initializing all weights to small non-
zero values. Then, training samples are presented to the net-
work one at a time to produce corresponding results. A mea-
sure of error bétween the network outputs and the desired
outputs is computed, and weights are updated to reduce error.
Many iterations or epochs (from presenting training samples to
measuring error and to updating weights) may be required
before a network reaches a given level of accuracy.

Apparently, the magnitude of error is determined by the
combination of weights for a given network. There exists an
error surface that can be described as a function of weights.
The objective of network training is to find a set of weights that
will minimize the error function. There are a number of net-
work learning algorithms for minimizing the network error
function [Masters, 1993, pp. 94-110; Rogers and Dowla, 1994].
The conjugate gradient method used in this study is briefly
described here.

The conjugate gradient method is an improvement over the
conventional back propagation method by using adaptive ap-
proaches to the determination of learning rate (u) and mo-
mentum (x) which control the convergence and the speed of
network training [Masters, 1993, pp. 105-111]. The learning
rate determines the rate at which the weights should be mod-
ified during each epoch. The momentum controls the direction
to search for a minimum. The conjugate gradient method first
employs the Polak-Ribiere algorithm [Polak, 1971] to deter-
mine the best direction to search for the minimum. It then uses
the directional minimizing process to determine the location of
the minimum, Johansson et al. [1992] compared a conjugate
gradient method with several other methods including the con-
ventional back propagation and found that the conjugate gra-
dient method speeded convergence by an order of magnitude
relative to the conventional back propagation. In addition, they
found that the conjugate gradient algorithm is less vulnerable

to instabilities and oscillatory difficulties than the conventional:

back propagation method.

The error surface with respect to weights for a neural net-
work can contain a large number of local minima as a result of
a large number of permutations of weights producing similar
input/output mapping. These local minima can make network
training even more complicated. Avoiding false minima con-
sists of two steps. The first is to avoid initiating weights in the

vicinity of these minima, and the second is to determine if the
" found minimum is local. If it is, try to escape from this local
minimum. Masters [1993] describes two techniques, simulated
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annealing and genetic algorithm, for both initially avoiding and
later escaping local minima. Interested readers are referred to
Masters [1993] for further reading on these two techniques.
The simulated annealing was employed in this study.

3.2, Computing Similarity Using Neural Networks

The ANN approach for populating the similarity model is
based on the soil-landscape relationship concept outlined by
V. V. Dokuchaeiv and E. W. Hilgard [see Hudson, 1992] and
further developed by Jenny [1941, 1980]. This concept contends
that soil is the result of the interaction of its formative envi-
ronmental factors over time as described in (1):

S=f fE) dt, Y

where § is soil, f is the relationship of soil development to the
soil formative environment (E), and ¢ is time. Since it is dif-
ficult, if not impossible, to explicitly describe the ¢ factor at
every location across landscape and sometimes information on -
t is implicitly expressed in other formative environmental fac-
tors such as topographic positions, (1) is simplified to

S = f(E). 2

Under the soil similarity model, S represents soil similarity
vectors. Soil formative environmental conditions E generally
include variables describing climate (Cl), topography (Tp),
parent materials (Pm), and vegetation factors (Og) (Figure 3).

- It is understood that current environmental conditions may not

reflect the conditions under which a soil was formed. Because -
of the difficulty of obtaining spatial data on soil paleoenviron-
ment conditions, current environment conditions of soils are
used as surrogates to E and can be characterlzed usmg GIS
and remote sensing techniques.

The exact relationships f between soil development and for-
mative environmental conditions are often very complicated
and, in many cases, are unknown for a specific area. These
relationships may not be sufficiently characterized by general
regression models because of their nonlinear and nonstation-

_ ary nature. Artificial neural networks have been shown to be

capable of ‘approximating virtually any function as long. as
sufficient representation is available [Homnik et al., 1989]. It is
possible then to use neural networks to approximate f for a
given study area. The input to the network is a set of environ-
mental conditions characterizing the soil formative environ-
ment, with each input neuron representing an environmental
variable. The output represents a set of prescribed soil types
with each output neuron representing a soil type (Figure 2).
The activation level of each output neuron is perceived as the
degree to which the input environmental conditions at point
(i, ) are similar to the typical environmental conditions of the
soil type that neuron represents; thus it is used to approximate
the similarity of the soil at (i, j) to the soil type of the output
neuron. ‘

A training sample consists of a set of environmental condi-
tions at a sample site and a set of desired membership values
expressing the similarity of the local soil to the list of pre-
scribed soil types. Each similarity value is used as the activation
level of an output neuron representing the soil type. The neu-
ral network can be trained on a set of representative samples
to learn the mapping between the input environmental condi-
tions and the set of prescribed soil types for that area by
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Figure 3. ‘Soil inference based on the neﬁral network approach.

minimizing the difference (sum of squared residuéis) betwéeﬁ o
surface horizons (E) and subsurface horizons with accumula-
“tions of illuvial clay:(Bt). Alﬁsols are found on high-elevation

the predicted and desired activation levels.. This méapping can
then be used to approximate f for the area. Once trained, the.
network can be used to produce a set of actlvatlon levels with
respect to a set of environmental conditions for a given loca-
tion (pixel). This set of activation levels can be used to approx-
imate the similarity values and used to populate the s1m11ar1ty
vector for that location (Figure 3).

4. Case Study
4.1, Study Site and Environmental Variables

A case study was conducted to evaluate the usefulness of the
neural network approach for populating the similarity model.
The study area is the Lubrecht Experimental Forest, which was
established in 1937 to foster research on natural resources
[Nimlos, 1986]. The area is about 50 km northeast of Missoula
and is in the mountainous terrain of western Montana with a
moderate to strong relief. High elevations are in the east and
southwest. Low elevations run from southeast through north-
west. The climate is considered to be semiarid to semihimid.
There is a strong contrast in terms of moisture conditions
between north and south facing slopes and between low and
high elevations. Slopes facing south at low elevations have poor
moisture conditions, while the moisture conditions on north
facing slopes at high elevations are better. Soils on slopes with
poor moisture conditions have a shallower soil profile than
soils on slopes with better moisture conditions.

Twelve soil series have been identified in the area belonging
to three soil orders: Entisol, Inceptisol, and Alfisol [Nimlos,
1986]. Entisols are weakly developed soils with very little or-
ganic matter accumulation and no illuvial clay or sesquioxides.
In Lubrecht, Entisols are usually found on ridge crests. Incep-
tisols are young soils with little to no illuvial clays but brown
subsoil horizons that indicate some translocation of sesqulox-
ides.. About 90% of the soils (in terms of areal extent) in the

study area are. Inceptlsols Alﬁsols are soils w1th leached gray

mountsin slopes in the study area.

There are three major bedrock types in the area: Belt rocks,
granite, and limestone. Each bedrock type is contiguous with
Belt rocks in the north, granite materials in the south, and
limestone in the middle (Figure 4). Soils on these three mate-
rials are formed from a mantle of colluvium. Belt rocks are the
oldest rock in the area and were deposited during the Precam-
brian period about one billion years ago. The sediments from
which they were formed were deposited in a shallow sea, sub-
sequently buried, and then metamorphosed into quartzites,
argillites, and siltites [Nimlos, 1986]. Soils are similar within
each of the three bedrock types, but they are significantly
different among the different bedrock types [Nimlos, 1986].
There are five different soil series on the Belt rock parent
materials (Evaro, Sharrot, Tevis, Winkler, ‘and Winkler Cool),
four soil series on the granite materials (Ambrant, Elkner,
Ovando, and Rochester), and three on the limestone materials
(Repp, Trapps, and Whitore).

A total of six environmental variables (elevatlon, slope as-
pect, slope gradient, tree canopy coverage, piofile curvature,
and bedrock geology) were used in this study to characterize
the soil formative environment. Elevation, slope aspect, slope
gradient, and profile curvature were used to approximate to-
pography. Tree canopy coverage was used to estimate vegeta-
tion conditions, and bedrock geology was used as a surrogate
for parent materials. This list does not contain variables that

_directly measure climatic factors. Although the-study area is a

small drainage basin (about 5 km by 8 km), great differences in
terms of microclimate do exist within the area. However, these
differences in microclimate are well expressed by variations.in
elevation and slopé aspect. The list also does not:contain vari-
ables relating to the time factor. This is-because it is ‘difficult,
if not impossible, to derive information on the time factor. at
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every location across the landscape. This variable list is by no
mean considered complete in terms of soil formation factors,
but it does contain the major vanables for which GIS data can
be derived to characterize the soil formative environment. The
selection of these six variables was also based on the consul-
Lation with the ocal soil scientists who believed these variables
captured the major driving foree of soil formation in the area
[Zhi eeal., 1997; Zhue, 1999b]. The other reason for using these
six variables was that these variables were originally used in a
knowledge-based approach [Zhe er al., 1997], In order Lo com-
pare this study with the knowledge-based approach, the author
believes it is better to use the same set of variables.

Information on elevation. slope aspect, slope gradient. and
profile eurvature were derived from a digital elevation model
(DEM) of the study area. The accuracy of the DEM is com-
parable with that of level | US. Geological Survey 7.5-min
DEMs. The tree canopy coverage data were approximated
with an index derived from the thematic mapper data of the
aren [Nemani et al.. 1993], Information on parent materials was
obtained from a bedrock geology map of the arca [Brermer,
1965]. The reason for using the bedrock geology map 1o ap-
proximate the soil parent materials is that the bedrock map is
the only geological information available for the area. vet the
soils exhibit a preat dependence on the parent materials in
terms of physical and chemical properigs.

Data on these variables (except the geology data layer ) were
preprocessed 1o facilitate the training process and simplify the
network structure, The slope aspect was converted into two
ariables (4 cosine and @ sine porton of aspect) to resolve the
discontinuity at 360°-0°, Although there are no theoretical
limits on the inputs of neural networks, stability of neural
networks is usually improved by using comparahle limits
among the input variables [Masiers, 1993, p. 262], All environ-
mental data were thus sealed to the range of 0.0-1{0 for the
numerical stability of neural networks. The reason for choosing
10 as the upper limit rather than the commonly used value of
| is that the values for elevation are in the thousands and
scaling them into the range of Gand 1 could cause a significant

Distribution of bedrock materials in the study area. Solid areas were not included in this study.

amount of rounding, By using an upper bound of 10, this
rounding could be reduced,

Soil properties are very different among the different bed-
rock areas, and sharp boundaries in terms of soil properties do
exist hetween the different bedrock areas in the region | Nim-
fos, 1986} It is assumed that the pedogenesis and the soil-
envitonment relationships are different among the different
bedrock areas but are similar within cach of them. On the basis
of this assumption the study area was divided into three sub-
regions based on bedrock type: Belt rock subregion in the
north, granite in the south, and limestone area in the middle
( Figure 4). The soil-environment relationship in cach subre-
gion was then approximated by a neural network, For the
entire study srea a total of three different networks were de-
signed. Since the relationship within each cubregion s ex-
pected o be more similar, the structure of the neural network
for 4 given subregion is expected 1o be less complex than the
structure of a neural network [or the entire study area. A
simpler network structure would reduce the complexity of the
weight space and thus would facilitate network traming.

4.2

Two sample sets (one for training and one for validation)
were coliceted for each bedrock subregion. The training se
was collected independently of the validation set. The numbe
of samples in a training set was related 1o the number of soil
serics in that bedrock arca. The assumption is that the more
sail series there are, the more complex the input/output map-
ping will be and, in turn, the more samples will be needed to
train the network. For this study the training sample size was
set 1o be at least 30 times the number of soil series (Table L)
The size of the validation set was at least 309 of the size of the
respective training set.

For collecting a sample set a GIS-based procedure was de
veloped. The procedure was designed 1o produce @ sample scl
in which samples were mostly randomly distributed over space,
and the attribute frequensy distributions approximated those
within the given bedrock area. The objective was to gather a

Collecting Training and Validation Sets
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Figure 4. Distribution of bedrock materials in the study area. Solid areas were not included in this study.

every location across the landscape. This variable list is by no
mean considered complete in terms of soil formation factors,
but it does contain the major variables for which GIS data can
be derived to characterize the soil formative environment. The
selection of these six variables was also based on the consul-
tation with the local soil scientists who believed these variables
captured the major driving force of soil formation in the area
[Zhu et al., 1997; Zhu, 1999b]. The other reason for using these
six variables was that these variables were originally used in a
knowledge-based approach [Zhu et al., 1997]. In order to com-
pare this study with the knowledge-based approach, the author
believes it is better to use the same set of variables.

Information on elevation, slope aspect, slope gradient, and
profile curvature were derived from a digital elevation model
(DEM) of the study area. The accuracy of the DEM is com-
parable with that of level 1 U.S. Geological Survey 7.5-min
DEMs. The tree canopy coverage data were approximated
with an index derived from the thematic mapper data of the
area [Nemani et al., 1993]. Information on parent materials was
obtained from a bedrock geology map of the area [Brenner,
1968]. The reason for using the bedrock geology map to ap-
proximate the soil parent materials is that the bedrock map is
the only geological information available for the area, yet the
soils exhibit a great dependence on the parent materials in
terms of physical and chemical properties.

Data on these variables (except the geology data layer) were
preprocessed to facilitate the training process and simplify the
network structure. The slope aspect was converted into two
variables (a cosine and a sine portion of aspect) to resolve the
discontinuity at 360°-0°. Although there are no theoretical
limits on the inputs of neural networks, stability of neural
networks is usually improved by using comparable limits
among the input variables [Masters; 1993, p. 262]. All environ-
mental data were thus scaled to the range of 0.0-10.0 for the
numerical stability of neural networks. The reason for choosing
10 as the upper limit rather than the commonly used value of
1 is that the values for elevation are in the thousands and
scaling them into the range of 0 and 1 could cause a significant

amount of rounding. By using an upper bound of 10, this
rounding could be reduced.

Soil properties are very different among the different bed-
rock areas, and sharp boundaries in terms of soil properties do
exist between the different bedrock areas in the region [Nim-
los, 1986]. It is assumed that the pedogenesis and the soil-
environment relationships are different among the different
bedrock areas but are similar within each of them. On the basis
of this assumption the study area was divided into three sub-
regions based on bedrock type: Belt rock subregion in the
north, granite in the south, and limestone area in the middle
(Figure 4). The soil-environment relationship in each subre-
gion was then approximated by a neural network. For the
entire study area a total of three different networks were de-
signed. Since the relationship within each subregion is ex-
pected to be more similar, the structure of the neural network
for a given subregion is expected to be less complex than the
structure of a neural network for the entire study area. A
simpler network structure would reduce the complexity of the
weight space and thus would facilitate network training.

4.2. Collecting Training and Validation Sets

Two sample sets (one for training and one for validation)
were collected for each bedrock subregion. The training set
was collected independently of the validation set. The number
of samples in a training set was related to the number of soil
series in that bedrock area. The assumption is that the more
soil series there are, the more complex the input/output map-
ping will be and, in turn, the more samples will be needed to
train the network. For this study the training sample size was
set to be at least 30 times the number of soil series (Table 1).
The size of the validation set was at least 50% of the size of the
respective training set. '

For collecting a sample set a GIS-based procedure was de-

‘veloped. The procedure was designed to produce a sample set

in which samples were mostly randomly distributed over space,
and the attribute frequency distributions approximated those
within the given bedrock area. The objective was to gather a
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Table 1. Sample Size for Each Bedrock Area

Bedrock _ Soil Series Training Validation

- Type Number Set Size Set Size
Belt 5 150 : 90
Granite v 4 140 - 80

Limestone 3. 90 60

sample set that represented as much as possible the character-
istics of the population in terms of environmental conditions.
Figure 5 displays the elevation and aspect frequency curves of
the entire population, the training set, and the validation set
for the granite bedrock area. Figure 5 shows that both the
training ‘and validation sets approximate the ‘attribute fre-
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quency distribution of the whole population well. Each of these
sample sets was thus considered here to be a good represen-
tative of the population in its respective bedrock area. At each

- sample site the soil type was determined from an existing soil

map, and the environmental conditions described by the six
variables were derived from a GIS database.

To train neural networks under the similarity model, the
local soil at each sample site must be represented as a similar-
ity vector with each membership being treated as the activation .
level for an output neuron. It is difficult, if not impossiblg, to
determine the soil similarity vector without introducing a great
deal of uncertainty at each sample site. Thus the soil at each
sample site was treated just as a typical case of the soil type
being assigned to the site and was represented by a vector that
contains a membership of 0.9 in the soil type to which the local
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Figure 5. Attribute frequency distributions of the whole population and.the training and validation sets for

the granite area.
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Figure 6. Network performance versus number of hldden neurons for the. Belt rock area. Test accuracy is

based on the validation set, while training error is based on the tralnlng set.

soil was labeled. Membership values in other soil types were set
to 0.1. The reason for choosing 0.9 and 0.1 as the membership
limits is that these values are the upper and lower bounds of
the output from the neural network program used in this study.
These limits are fairly typical for neural network outputs.

Treating every training sample as a typical case of a given.

soil type could introduce errors into the final results. There are
two scenarios under which this can happen. The first is that
when a training sample is at a transitional area and bears high
memberships in two or more soil categories. Assigning 0.9 in
one category and 0.1 in others would certainly exaggerate the
membership in the first category and bias the training of the
network. In order to avoid some of these points, the randomly
generated sample sites were inspected to remove points at or
close to boundaries of soil polygons where transitional soils
weré expected to exist. The second scenario is that the soil of

a sample is an inclusion in the soil polygon. By assigning the

local soil 0.9 membership in the soil category which-the soil
polygon is labeled will cause the sample to be mislabeled. Since
the existing soil map is the only source for obtaining samples in
this study and the map legend does not indicate. the spatial
distribution of inclusions, there is not an easy way to identify
these cases. However, the soil map units in the study area are
mostly single class units, and inclusions in these units are small
in terms of area coverage. It was assumed that these mislabeled
samples would not be too many and would not dramatically
alter the general patterns of soil-environment relationships
extracted by the networks.

4.3. Network Structure

All of the three networks were three-layer feed forward
networks. The number of input neurons equaled the number of

environmental variables (except the bedrock type variable that’
was used to divide the area into three subregions); thus all

three networks had six input neurons (the aspect variable was
split into two). The number of output neurons was the number
of soil series in each of the bedrock areas. There wete five

-output neurons (ﬁve soil series) for the Belt bedrock area, four
for the granite area, and three for the limestone area.

The number of hidden neurons on the hidden layer differed
from one bedtock area to another and was determined through
a trial-errot approach modified from the method described by
Masters [1993, p. 178). First, the network training error and test
accuracy were used as criteria to assess network performance.
The training error (sum of squared residuals) measures the
difference between the levels of activation and the prescribed
similarity values for the training set. The test accuracy is mea-
sured using the kappa (KHAT) coefficient [Bishop et al., 1975; |
Cohen, 1960), which was estimated from the confusion matrix
(error matrlx) [Congalton, 1991] constructed from the results
of the validation set. It measures how well the results from the :
network match the observed for the validation set. The lower
the training error is and the higher the test accuracy is, the’
better the network performance will be. Starting with four

* hidden neurons which was considered too small a number for
the network, the network was trained and tested, and its per-
formance (training error and test accuracy) was recorded. The

‘number-of hidden neurons was then increased by 1, and the
network was trained and tested again. This process was re-
peated until the number of hidden neurons was 3 times the
number of output neurons or until the number of weights in
the network approached the total number of training samples.
Figure 6 shows the network performance versus the number of
hidden neurons for the Belt rock area. ‘ ;

The number of hidden neurons should be the number at
which the network performed well (with a high accuracy and

“low training error). There are several possible numbers of
hidden neturons as shown in Figure 6. The number of hidden
neurons could be 6 or 10. The final decision among these
possible numbers was made based on the test accuracy for
individual soil categories over the validation set. This is justi- -

fied because the networks were trained to learn from the train-
ing data set. It is possible that with some structures (defined by
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Table 2. Test Accuracy for the Belt Area With Six and
Ten Hidden Neurons

Hidden : Winkler
Neurons Evaro Sharrot Tevis Winkler Cool

6 0.75 0.67 0.81 0.00 0.92
10 0.75 0.80 0.50

0.81 0.95

the number of hidden neurons in this case) the network could
be tuned to the training data set too much (overfitting). As a
result, the network would not generalize well to a different
data set. Thus the selection of the number of hidden neurons
should be based more heavily on the test accuracy from the
validation data set while still considering the training error.
Table 2 shows the test accuracy for each soil series over the
Belt area. On the basis of Table 2 the number of hidden
neurons of the network for the Belt area was set to be 10 since
the test accuracy for soil series Winkler is much higher with 10
hidden neurons than with six. Similarly, the number of hidden
neurons was set to seven for the granite area and six for the

limestone area. The structure of the network used for the

limestone area is shown in Figure 2.

4.4. Network Learning

The above networks were implemented in the NEURAL
program developed by Masters [1993, p. 404]. Each of the
networks was first initialized using the simulated annealing
approach [Masters, 1993, pp. 118-134]. After initialization the
conjugate gradient algorithm was used to locate a nearest
minimum (Figure 7). When a minimum was found, simulated
annealing was used to attempt to break out of what might be a
local minimum. If annealing succeeded in reducing the error
(escaping from the local minimum), the conjugate gradient
method was used again to find a minimum in this new part of
the error surface. This alternation between conjugate gradient
minimrization and annealing escaping continued until several
iterations in a row produced only trivial improvement or no
improvement at all, and the minimum was then marked to be
a candidate for the global minimum. Annealing was again used
to find an entirely new set of starting weights to look for
another candidate. This process was repeated 10 times [Mas-
ters, 1993, p. 409]. All of the candidates were then compared,
and the best was chosen to be the global minimum.

5. Results and Discussion

Once a network for a given bedrock area was trained, it was
used to populate the soil similarity vectors over that bedrock
area. To compute the soil similarity vector for a given pixel, the
(GIS data on the environmental conditions for that pixel were
fed to the trained network as inputs. The network then com-
puted a corresponding output vector containing the activation
levels at the output neurons. This vector of activation levels
was taken as the similarity vector for the given pixel. Once all

pixels had been visited by the network, the similarity represen- -

tation of soil over the bedrock area was produced.

Soil similarity vectors derived from the ANN approach for a
few selected sites on the Belt area are listed in Table 3 to
illustrate the concept and the importance of the similarity
representation. For example, soil at Lub03_02 bears similarity
to all soil series found in the Belt area with the highest mem-
bership in Tevis and second highest membership in Winkler,

Initialize

Y

o Find the nearest minimum |«

i (Conjugate Gradient) h
y
Try to escape from the minimum
(Simulated Annealing)
yes
Reinitialize

Select the best from the candidates

Figure 7. Network training using conjugate gradient and

simulated annealing.

Soil at Lub04_01 also has the highest membership in Tevis, but
it has a very different membership distribution in the vector. It
bears a strong similarity to Evaro. Under the Boolean classi-
fication both soils would be assigned to soil series Tevis. Once

-50 assigned, the soils would be assumed to be no different from

cach other and no different from the typical type of Tevis.
Under the similarity representation it is the distribution of
membership in the entire vector that is important, not just the
lgrgest membership value. It is this membership vector that
allows us to record the subtlety of the soil at a given location
and its difference from its neighbors. It is this entire member-
ship vector that allows us to derive soil property values inter-
mediate to the typical values of the prescribed soil categories.

Zhu [1997] illustrated the uses of soil similarity values for

Table 3. Soil Similarity Vectors for a Few Selected Sites
on the Belt Materials

Winkler
Point Evaro Sharrot Tevis Winkler Cool
Lub03_02 4* 15 82 30 9
Lub04_01 36 12 61 5 11
T2_07 11 9 48 5 53
T1_18 10 8 8 10 . 88

*The membership value in a specific category ranges from 0 to 100
(stretched from the output range of 0.1-0.9), but the sum of the .
membership values in a vector need not to be 100 [Zku, 19971,
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(b) Soil Series Distribution on the Soil Map

Plate 1. Comparison of the detailed soil map from the (a) artificial neural network (ANN) approach with
the (b) conventional soil map. Solid areas were not included in this study.
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Table 4. Comparlson of Inferred; Mapped and Observed
Soil Series at 64 Sites

Correct Total Samples Percentage
Overall ‘
NN approach - 49 64 CT7
KB approach* 52 64 e 81
Soil map - 39 64 el
Mismatches ., :
NN approach : 13 29t i too 45
Soil map 4 29t 14
KB approach 17 24% 71
Soil map 4 . 24% o 17

*Knowledge-based (KB) approach was conducted in another study
[Zhu, 1997].

These are mismatches between the neural network (NN) inferred
soil series and those from the conventional soil map.

$These are mismatches between the KB inferred soil series and
those from the conventional soil map.

producing detailed soil spatial information. Two of these uses
are employed here to examine the efficiency of this neural
network approach to the derivation of soil similarity values.
The first is the generation of a soil map for comparing with the
conventional soil map to determine if the NN approach pro-

duced meaningful similarity values. The soil map derived from

the similarity representation is referred to as the inferred soil
map, which was produced through the conversion of the sim-
ilarity representation to a Boolean representation. The con-
version was accomplished by assigning the local soil to the soil
series with the highest membership value [Zhu, 1997]. As
shown in Plate 1, the inferred map (Plate 1a) contains much
greater spatial detail than the conventional soil map (Plate 1b).
In this semiarid to semihumid area of Montana, soil develop-
ment is heavily influenced by slope moisture condition [Nimios,
1986]. Moisture’ conditions on the side slopes of small draws
(gullies) along a major south facing slope are significantly
better than on the area facing directly south. Therefore the
soils on these side slopes are expected to be better developed
than and thus different from those on the areas facing directly
south. These spatial details of soil spatial distribution do not
show on the conventional soil map. However, the inferred soil
map captures these spatial details.

To validate these spatial details, 64 s1tes were visited in the
field, and the soil series af these sites were identified over the
summers of 1991 through 1993. The inferred soil series and
mapped soil series at these sites were then obtained from the
inferred map and the conventional soil map, respectively. Ta-
ble 4 summarizes the comparison among the inferred soil se-
ries and mapped soil series for field observations at these sites.
Overall, the neural network (NN) approach inferred soil series

correctly at 49 sites, which accounts for 77%, while the soil .

series from soil map matched the field observed soil series at
only 39 sites. The knowledge-based (KB) approach conducted
in another study inferred the soil series correctly at ‘52 sites
[Zhu, 1997]. For a given site the NN inferred soil series may
differ from that of the soil map. This is referred to as a mis-
match. Whenever there was a mismatch, the field-observed soil
series was used to determine which (ANN approach or the soil
map) is correct.- There were mismatches at 29 sites. The ANN
approach inferred soil series correctly at 13 of these sites
(45%); while at only 4 of these 29 sites, the soil series from the
soil map were correct. With the KB approach, there were 24

- mismatches between the KB inferred soil series and the soil

series from the conventional soil map for these 64 field sites.
The KB approach inferred correctly at 17 of these 24 mis-"
matches (71%). These comparisons (both overall and through
mismatches) suggest that the NN inferred soil map possesses
much greater spatial detail than the conventional soil map,
although it is not-as good as the KB inferred soil map.

The other use of the soil similarity vector is for the deriva-

tion of detailed soil property maps [Zhu et al., 1997]. Figure 8a
 is the soil A horizon depth image (NN inferred depth image)
- derived from the soil similarity representation using a linearly

additive” function described by Zhu et al. [1997]. The soil A
horizon depth image derived from the KB approach is shown
in Figure 8b. Figure 9c depicts the soil A horizon depth image
derived from the conventional soil map. The differences be-
tween Figures 8a and 8b are much less than the difference
between Figures 8a and 8c. As mentioned in section 4.1, slope -
moisture condition plays an important role in soil development
in' this semiarid to semihumid region. Soils at high elevations
and on north facing slopes are better developed and have
deeper A horizons than those at low elevation and south facing
slopes, While all three images capture this general pattern of A
horizon depth, the images (Figures 8a and 8b) from both the
NN and KB approach portray the change of depth as a gradual
spatial variation and at'much greater spatial detail, Although

- abrupt changes of A hotizon depth in this area are possible

along the boundaries of the bedrock. types, a more gradual
change over space is more realistic, particularly within each
bedrock area. Also, the changes of A horizon depth along the
small draws on the major south facing slopes are clearly visible
on both Figures 8a and 8b but are not shown in Figure 8¢. This
suggests that the depth image produced from the NN approach

. is comparable to that from the KB approach but that it has

much greater spatial detail than what was portrayed in the soil
map.

To examine the validity of the A horizon depth image, the A
horizon depths at 33 field sites were measured in the summer
of 1993. Figure 9 shows the scatterplots of the observed depths
versus the NN inferred depths and the observed depths versus
the depths from the conventional soil map at these sites. The
distribution of dots in Figure 9a (the NN approach) is very
similar to that in Figure 9b (the KB approach); the distribution
aligns more closely along the 45° diagonal line than the distri-
bution of the dots in Figure 9c. The correlation between the
NN inferred and observed depths at these sites is similar to
that for the KB approach but is much stronger than that be-
tween the depths from the soil map and the observed depths.
In addition, the depths derived from the soil map are stratified
along some values (Figure 9c), which are actually the typical
values of the prescribed soil classes. Conversely, the inferred
depths often have values intermediate to these typical values.
From these -comparisons it can be concluded that the NN
inferred depths are as good as these from the KB approach and
that they approximate reality better than the depths derived
from the soil map.

The quality of soil information from the NN approach could
suffer from the potential errors in the selection of training and
validation samples under the two scenarios discussed in section
4.2, Since some caution was exercised to avoid selecting sam-
ples from transitional areas, it was expected that the impact on
results due to atypical samples (samples in the transitional
areas) is small. The small percentages of inclusions in single
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soil class units could downplay the chance that a sizcable por-
tion of the samples was selected from these inclusions. If a very
small portion of samples was, indeed, selected from these in-
clusions, they will have a negative impact on the results, but
they were not expected to hinder the ability of the network o
learn the overall pattern of soil-cnvironment relationships
from the samples. Nevertheless, refining training and valida-
ton samples will improve the quality of vesults, The first ap-
proach to refining samples is to inspect the locations of sam-
ples and eliminate samples with the possibility of being in

transitional arcas and/or in inclusions, This approach would be
useful when s0il maps are the only source for providing sam-
ples. However, identifving possible areas of inclusions is not a
simple task if soil maps are the only source, and research in this
area 18 needed. The second approach would be the combina-
tiom of samples from existing soil maps and samples from the
feld. The sumples from the soil maps are only those with a high
degree of typicality. The third approach is 1o use field samples
only. This approach would be very costly, but the quality of
resulis would be the highest,
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Figure 8. Compafison of A horizon depth images based on (a) the neural network (NN), (b) the knowledge-
based (KB) approach, and (c) the conventional soil map. Solid areas were not included in this study.

soil class units could downplay the chance that a sizeable por-
tion of the samples was selected from these inclusions. If a very
small portion of samples was, indeed, selected from these in-
clusions, they will have a negative impact on the results, but
they were not expected to hinder the ability of the network to
learn the overall pattern of soil-environment relationships
from the samples. Nevertheless, refining training and valida-
tion samples will improve the quality of results. The first ap-
proach to refining samples is to inspect the locations of sam-
ples and eliminate samples with the possibility of being in

transitional areas and/or in inclusions. This approach would be
useful when soil maps are the only source for providing sam-
ples. However, identifying possible areas of inclusions is not a
simple task if soil maps are the only source, and research in this
area is needed. The second approach would be the combina-
tion of samples from existing soil maps and samples from the
field. The samples from the soil maps are only those with a high
degree of typicality. The third approach is to use field samples
only. This approach would be very costly, but the quality of
results would be the highest.
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Figure 9. Scatterplots of (a and b) observed depths versus
inferred depths and (c) observed depths versus depths from the
conventional soil map.

6. Implications for Watershed-Based
Hydroecological Modeling

The sensitivity of hydroecological modeling to this detailed
soil spatial information is currently under investigation. In this
section the potential impacts of this detailed soil spatial infor-
mation on landscape parameter characterization for water-
shed-based modeling are discussed in the context of determin-
istic models. Two general groups of deterministic models
[Chow et al., 1988], distributed parameter and lumped param-
eter models, will be used to illustrate the potential impacts.

A distributed model is one in which the modeled process or
phenomenon is explicitly calculated as a function of location in
space [Maidment, 1993}, and the model output at one location
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will be one of the inputs for a neighboring location. It is not
only the overall outcome of the modeled process over the
entire watershed that is of concern but, more importantly, the
spatial variation of the modeled process within the watershed.
Therefore distributed models require model parameteis to be
estimated at every location across the landscape, particularly
the covariation of model parameters over space.

Suppose that a nonpoint source pollution model uses the
depth of top soil and other landscape parameters (such as
slope gradient and vegetation information) to model the pro-
cess of pollutant generation and transport. Let us assume that
the soil A horizon depth is used to approximate the depth of
top soil. The covariation of A horizon depth with other model
parameters (such as slope gradient and vegetation coverage)

‘will control the model behavior. The covariation of A horizon

depth with slope gradient along a transect in the Lubrecht area
is shown in Figure 10. On the basis of the depth from the soil
map a general pattern of A horizon depth along the transect is
revealed: The greatest depth is on the north facing slope (area
A), the shallowest depth is on the major south facing slope, and
medium depth is on the plateau (area C). However, the depth
does not seem to relate to the slope gradient. With the inferred
depth map, not only the above general pattern of spatial vari- .
ation of depth is depicted, but also an important covariation of
depth with slope gradient is revealed. On the north facing
slope the depth seems to be negatively related to the slope
gradient. This is easy to understand sirice the moisture condi-
tion would be very similar over the north facing slope and the
A horizon depth would depend on the erosion process. Slope
gradient is often the indicator of the strength of erosion if
other factors are the same. The greater the slope gradient is,

“the stronger the erosion would be and the thinner the soil A

horizon would be. On the south facing slope the covariation of

‘depth and slope gradient also follows this pattern at low ele-

vation where both poor moisture condition and steep gradient
prevent the development of a deep A horizon. However, this
pattern of covariation is no longer valid at high elevation (area
B) where the improved moisture condition permits the devel-
opment of deeper A horizon, even though the slope gradient is
high. On the plateau (area C) the covariation takes a very
different form. It seems that the depth is positively related to
the slope gradient. It is understandable that on a high-
elevation plateau the local drainage condition can play a very

" important role in soil development. It is expected that soils in

areas with better drainage (high slope gradient) would develop
better than soils in poorly drained areas. This author argues

. that the characterization of these different patterns of spatial

covariation of model parameters would be important to the
outputs of distributed models at the watershed scale.

A deterministic lumped parameter model is an abstract rep-
resentation of spatial features in which properties are averaged
over a watershed or stream segment or slope facet [Maidment,
1993]. The process over an area is modeled as a single point in
space without dimensions (or spatially averaged) [Chow et al.,
1988]. The parameters for these models are often the spatial
averages (means) for the area units. It is then important to
estimate as accurately as possible these means.

To illustrate the impacts on the characterization of means of
model parameters, the Lubrecht watershed was partitioned
into 42 area units (only 39 reported here, the other three fall
outside of the study area) using a method of landscape parti-
tioning from digital elevation data described by Band [1989].
For each partition (area unit), two mean A horizon depths
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Flgure 10. Covariation of A hOl‘lZOIl depth w1th slope grad1ent and elevation along a transect.

were calculated: one using the inferred depth and‘the qthef -

using the depth from the soil map. The difference between .
these two means was then computed. The differences for 17 of
39 partitions are greater than 30% of the mean computed from
the soil map. The largest difference reaches 110%. On average, -
the difference between the two sets of means is about 26%. A
t test was performed to see whether the difference between the’
two sets of means is statistically significant. The calculated ¢ is
8.72, and the critical ¢ at 95% confidence with a degree of
freedom of 38 is 1.69. The calculated ¢ is much larger than the
critical ¢. It can be concluded that the two groups of means are
statistically different from each other. Therefore the output
from a lumped parameter model using the means from the
inferred depths is expected to be different from that using the
means from the soil map.

7. Summaries

This paper presents a neural network approach to populat-
ing a soil similarity model for providing information on the
detailed spatial variation of soil properties for hydroecological
modeling at the watershed scale. Three multilayer feed for-
ward networks were constructed; the inputs to the networks
were data on 5011 formative environmental conditions, and the
outputs were a set of prescribed soil categories. Representative
samples were selected from a GIS database for training these
networks to learn the relationships between soils and their
formative environment over three different bedrock areas. The
approach employed conjugate gradient and simulated anneal-
ing algorithms for training these networks. GIS data on soil
formative environmental conditions for every location in each
of the bedrock areas were then fed to the trained network to
produce a similarity representatlon of soils over the bedrock
area. The advantage of using the ANN approach over the
knowledge-based approach [Zhu et al., 1996] is that the ANN
approach is not limited by the availability of experienced soil
scientists-in a local area.

A case study in the Lubrecht watershed in western Montana
was conducted to examine the neural network approach. The
case study shows that the soil map derived from the similarity
representation contains much greater spatial detail and is more
‘accurate than the conventional soil map. A soil A horizon

depth image was derived from the similarity representation,

‘and it was found that the spatial gradation of A horizon depth

was more realistically portrayed in the inferred depth image
than in that derived from the conventional soil map. Also, the
inferred depths more closely match the observed depths at 33
field sites than the depths derived from the conventional soil
map do.

Implications of this detalled soil spatial information for hy-
droecological modeling at the watershed scale were discussed.
For distributed parameter models it was found that the de-

tailed soil spatial information facilitates the characterization of

detailed patterns of. spatial covariation of model parameters.
The detailed soil spatial information also impacted the character-
ization of mean conditions of model parameters for lumped
parameter models. The sensitivity of hydroecological modeling
to this detailed soil spatial information is yet to be studied.
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