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1. Introduction 

SoLIM, a soil land inference model, was developed to address the limitations of conventional soil 

survey (Zhu, 1997; Zhu and Band, 1994; Zhu et al., 1996; Zhu et al., 1997; and Zhu et al,. 2001).  The 

SoLIM approach employs recent developments in geographic information science (GISc), artificial 

intelligence (AI), and information representation theory to overcome these limitations.  While the 

methods for deriving soils data are new, the model has its foundations in the soil factor equation of 

Dokuchaeiv (Glinka 1927) and Hilgard (Jenny 1961) and the soil-landscape model described by Hudson 

(1992) which contend that if one knows the relationship between a soil and its environment, one can 

predict the occurrence of that soil in other areas having the same environment. 

SoLIM uses a suite of GIS and remote sensing techniques to characterize environmental conditions and 

knowledge acquisition techniques to extract and document soil-landscape relationships from local soil 

experts.  Environmental conditions are integrated with the extracted soil-landscape relationships to infer 

the spatial distribution of soil types under fuzzy logic.   

 

This paper provides an overview of the SoLIM technology.  Subsections present the traditional soil 

survey process and associated challenges, the similarity model designed to address these limitations, the 

pedological basis and methods for populating the similarity model, and the derivation of soil information 

products from SoLIM. 
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2. Traditional Soil Mapping Process and Its Challenges 

2.1 Traditional Soil Mapping Process 

The primary repository of soil spatial information is a currently traditional, polygon-based soil survey 

(Zhu et al., 2001). The traditional soil survey is largely a manual based process and is conducted over 

the course of several years using a combination of field reconnaissance and airphoto interpretation 

techniques to determine the spatial distribution of different types of soil.  The theoretical foundation of 

traditional soil survey is that soil forms through the interaction among environmental factors (such as 

climate, parent material, vegetation, topography) over time.  In other words, one can predict that 

locations that share the same environmental conditions will likely have the same soils. This assumption 

obviates the need to map soils by examining soil at every location across landscape.   

 

To conduct soil survey under this assumption, soil scientists first investigate variability of soils over an 

area. This information is then used to develop map units.  A map unit is “a collection of areas defined 

and named the same in terms of their soil components or miscellaneous areas or both” (Soil Survey 

Division Staff, 1993).  Map units can contain predominately one type of soil (a consociation), multiple 

soils in a complicated pattern (a complex), other soils similar to the dominant soil type, and small areas 

of contrasting soils called inclusions. Once map units are defined, soil scientists formulate a soil-

landscape model over the area to be mapped through direct observation of soils and the environment 

conditions. Once the landform and landscape position on which a given map unit occurs has been 

established, map units are delineated on aerial photographs through airphoto interpretation.  Additional 

field observations are often conducted to check the accuracy of the delineations.  Soil polygons from 

multiple photographs are compiled to orthorectified imagery to create a base map.  Base maps are 

scanned, vectorized, and edge-matched for validation, archiving, and later use in a GIS.  Each step is 

time consuming and can introduce errors into soil maps.   

 

2.2  Issues and Limitations of Traditional Soil Surveys 

Several issues affect the reliability and usefulness of traditional soil survey process and its products.  

First, traditional soil maps employ the polygon data model which simplifies the complex continuous 

distribution of soil types across a landscape to discrete polygons with definite boundaries.  Spatial 

variation of soils within polygons is not captured and small bodies of soil are ignored.  This results in 

generalization in both the spatial and parameter domains.  Second, manual delineation of soil polygons 
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is a very tedious, time-consuming and error prone process. Due to the due to the inherent nature of 

gradual variation of soils over space, it is not only difficult to place soil lines over areas of gradual 

variation, but also it is very easy for different soil scientists to place the soil line differently over the area. 

This inconsistency in manual soil mapping is very common. It is also quite possible that soil scientists 

can misplace a soil line owing to fatigue associated with stereoscope use. The misplacement of lines 

could also be due to the limitation of visual perception of landscape changes. For example, it is difficult 

for a human being to discern areas of 2% gradient from areas of 1% gradient. Thus, it would be quite 

easy to misplace a line which separates the two. Additional spatial and attribute errors can be introduced 

into soil maps during the lengthy compilation process.  Each time soil boundaries are redrawn, either 

manually or digitally, there is a chance lines could be moved or polygons incorrectly labeled. Third, soil 

survey maps are the only documentation of the knowledge acquired during the traditional soil mapping 

process.  Knowledge of soil-landscape relationships for a given area is not explicitly documented and is 

lost when soil scientists leave the survey area.  New soil scientists are left to rediscover the soil-

landscape relationships each time the survey area is revisited. Finally, updating traditional soil surveys 

as new data becomes available is time consuming since the data must be reinterpreted and maps must be 

redrawn manually. 

 

The following sections elaborate the problems associated with the polygon model used in conventional 

soil survey, namely, the generalization of soils in the parameter (attribute) domain and the generalization 

of soil in the spatial domain. The polygon model problem is the core issue that the SoLIM approach was 

designed to overcome. The other two issues (the second and the third issues above) are addressed by the 

SoLIM through the process of populating a new model of soil information representation which SoLIM 

employs. The later two issues will be addressed in section 8.1. 

 

2.2.1  Generalization in the Spatial Domain: 
 
Spatial generalization occurs when detailed geographic features are simplified due to cartographic and 

map scale limitations (Zhu, 1997).  Standard mapping and publication scales for soil surveys are 

1:12,000 and 1:24,000.  Minimum delineation (polygon) size is 0.4 – 4 hectares at 1:12,000 and 1.6 – 16 

hectares at 1:24,000 according to accepted mapping standards (USDA-NRCS, 2001).  Delineations 

smaller than the minimum polygon size are simply “included” in a larger polygon (Figure 2.1) and their 
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actual spatial locations are lost.  Subsequently, the spatial resolution of traditional polygon maps is 

simply the minimum delineation size (Zhu, 1997).   

 

 

 

 

 

 

 

 

Figure 2.1: Spatial generalization of soils with smaller spatial extents 

 

Generalization also occurs when two or more dissimilar components occur in a regularly repeating 

pattern and cannot be delineated separately at the mapping scale (Soil Survey Manual, USDA-NRCS).  

In this case, all of the components are grouped into a single map unit called a complex (Figure 2.2).  

Each component in a complex has a standard percent composition associated with it, though the actual 

percent composition of a component in a complex varies from polygon to polygon.  The spatial 

distribution of each major soil type within a complex may be mentioned in the accompanying text, but is 

not explicitly recognized in the spatial data.  Complexes can also contain inclusions, the spatial 

distribution of which are unknown as well. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Spatial generalization of dissimilar soils which occur intermittently over space 
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Generalization results in soils data with significantly coarser resolutions (0.4 – 16 hectares for standard 

soil surveys) than most other data generated from digital terrain analysis or remotes sensing techniques 

(30 x 30 meters or better) (Zhu, 1997).  Conventional soil maps are not capable of providing information 

about small but potentially important environmental niches that may be described by other higher 

resolution environmental data (such as digital elevation data and remotely sensed imagery) (Zhu, 1997).  

Soils spatial information typically has the lowest resolution of all data used for large scale (detailed) 

environmental modeling. This creates an incompatibility between information derived from soil map 

and other environmental data derived through digital terrain analysis and remote sensing techniques 

(Zhu, 2000). This incompatibility, subsequently, limits our ability to properly interpret results from 

environmental models (Zhu, 1997). 

 

2.2.2 Generalization in the Parameter Domain 

Soil characteristics vary continuously across a landscape in response to changes in environmental 

conditions.  This variation is usually noticed during field mapping but can be difficult to quantify and 

nearly impossible to depict on traditional soil maps.  Limitations of map scale and mapping processes 

have resulted in a simplification of the soil properties attributed to each soil type.  Additionally, adoption 

of a vector data model to represent soils spatial information results in abrupt changes in soil properties at 

polygon boundaries. 

 

The modal profile of each soil type, or soil series, is designated as the typical instance of that soil for the 

survey area.  Characteristics of the typical instance as well as other examples of the same soil are used to 

determine the range of characteristics for the soil series.  The range of characteristics for a given soil 

type contains all acceptable values for each soil property for the given soil type.  It is used to 

approximate the value of a soil property at a given location in the survey area.  If a single value is 

needed to describe a soil property, mean or median values from the range of characteristics are 

commonly used.  Actual soil property values at a given location cannot be determined from soil survey 

data.  Figures 2.3 is an example of the difference between the soil property values for profile depth as 

stated in a soil survey and soil property values as measured in the field.   
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Figure 2.3: Generalization of soils through ignoring variability within soil polygons 

 

Traditional soil maps portray spatial variation of soil as a step function (Figure 2.4) rather than showing 

the continuous gradation that is often observed over space.  As such, soil property values are constant 

throughout a polygon and change abruptly at the boundary between polygons.  Figure 2.4 shows an 

example of the difference between a measured soil property value, in this case soil depth, and the value 

stated in the soil survey.  Note that properties measured at a specific location have a single value, while 

property values from the soil survey are given as a range. 

 

 

 

 
 
 
 

 

 

 

 

 

Figure 2.4: Step function of soil spatial variation as portrayed in soil maps 

Soil B Soil AA1

B1 
A2

B2 

B3 

A3

Soil B Soil A A1 

B1 
A2 

B2 

B3 

A3 

      Profile Depth (cm) of Soil 

        Conventional Mapping
 

    A1:  80 -100       B1: 40 - 60 
    A2:  80 -100       B2: 40 - 60
    A3:  80 -100       B3: 40 - 60
 
 
     Actual Profile Depth (cm)
 
         A1:  90  B1:  60
         A2:  95  B2:  50
         A3:  80  B3:  35

                                                120—
          
                                     100—
                                           
                                                  80—
 
                            60—
 
                                                  40—
                    
                                        20—
   
                            

Pr
of

ile
 D

ep
th

 (c
m

) Actual 
Depth 

Range of 
Characteristics 

Typical    
 Value 

Sample Point 

 A1    A2    A3    B1    B2     B3 

Soil A

Soil B 



 9

3. Overcoming the Soil Polygon Model: the Soil Similarity Model 
3.1 Overcoming Spatial Generalization with a Raster Data Model 

SoLIM uses a raster data model to address issues of spatial generalization.  The raster data model is 

better suited to representing smooth, continuous geographic features and phenomena than the vector 

data model.  The level of gradation captured by raster data model depends on the spatial resolution of 

the raster data model and in turn is limited only by the spatial resolution of the input data, rather than by 

arbitrary standards imposed by cartographic or mapping techniques (Zhu, 1997).  Each pixel, at the 

spatial resolution of the input data, represents the type of soil found at that particular location and 

information about small pockets of unique soil types is not eliminated.  This minimizes the 

discrepancies between the spatial resolution of soil spatial information and other environmental data 

layers (Zhu 1997). However, one important assumption for using the raster data model for representing 

soil spatial variation is that the soil within a given pixel is perceived to homogeneous, that is, the 

variation of soil properties within a pixel is so small that this variation can be ignored. This assumption 

holds if the pixel is small enough (in the limit pedon-sized). Otherwise, the assumption is violated and 

the spatial generalization problem associated with the polygon model will occur with this raster data 

model. 

 
3.2 Overcoming Parameter Generalization with a soil similarity vector 
SoLIM uses a similarity representation to address parameter generalization.  The similarity 

representation of soils in the parameter domain is based on fuzzy logic (Zhu, 1997a). Under fuzzy logic, 

the soil at a given pixel can be assigned to more than one soil class with varying degrees of class 

assignment. These degrees of class assignment are referred to as fuzzy memberships. This fuzzy 

representation allows a soil at each pixel to bear a partial membership in each of the prescribed soil 

classes.  Each fuzzy membership is regarded as a similarity measure between the local soil and the 

typical case of the given class.  All fuzzy memberships are retained in this similarity representation 

(Figure 3.1), which forms an n-element vector (soil similarity vector, or fuzzy membership vector), Sij 

(Sij
1, Sij

2, …, Sij
k, …, Sij

n), where n is the number of prescribed soil classes and the kth element, Sij
k, in 

the vector represents the similarity value between the soil at pixel (i,j) and soil class k.  With this 

similarity representation, the local soil at a given pixel is no longer necessarily approximated by the 

central concept (modal concept) of a particular class but can be represented as an inter-grade to the set of 

prescribed classes.  This method of representation, which allows the local soil to take property values 
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intermediate to the modal (typical) values of the prescribed classes, largely circumvents the problem of 

generalization in the parameter domain. 

Figure 3.1: Fuzzy representation of soil information using soil similarity vector 
 

By coupling the similarity representation with a raster GIS data model, soils in an area are represented as 

an array of pixels with soil at each pixel being represented as a soil similarity vector (Figure 3.2).  In this 

way, soil spatial variation can be represented as a continuum in both the spatial and parameter domains. 

Figure 3.2: The similarity model for representing detailed soil spatial information 
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4.  Populating the Similarity Model 
The similarity model only provides added flexibility for representing soil spatial variation. The degree of 

success in using this model depends on how the model is populated or, equivalently, how the soil 

similarity values in the vector are determined at each pixel. It is impossible to use the conventional 

process to determine the soil similarity values at each pixel across landscape as there will be far too 

many pixels for manual determination. The SoLIM approach takes the advantages of recent 

development in geographic information science, artificial intelligence techniques and the classic concept 

of soil-landscape relationships to compute the soil similarity values at each pixel. 

 

4.1 Pedological Basis 

The pedological basis for populating the similarity model is the same as that used in conventional soil 

survey. It is the soil factor equation outlined by Dokuchaeiv (Glinka, 1927) and Hilgard (Jenny, 1961), 

which can be expressed as below: 

∫= dtEfS )(1       [1] 

In Equation [1], t is time, and f1 is the relationship of soil development to the formative environment, E, 

which generally includes variables describing climate, topography, parent material. S is meant to be soil 

which can be expressed as fuzzy membership value (soil similarity value). 

 

In reality we cannot compute S since the exact form of f1 is unknown to us at this moment. However, the 

soil landscape model as described by Hudson (1992) states that the distinctive interaction of the soil 

forming factors (climate, organisms, parent material, and topography over some period of time) leads to 

the formation of a unique soil or group of soils.  From this, one can assume that locations experiencing 

the similar environmental conditions would have similar soils and one can further assume that the more 

similar the environmental conditions between two locations the more similar their soils. In other words, 

the similarity (S) between the soil at a given point to a given soil type can be approximated by the 

similarity (S’ ) between the environmental conditions at that location and the typical environmental 

conditions of the prescribed soil type. The SoLIM approach employs these assumptions and uses S’ to 

approximate S. 
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4.2 Implementation of the Pedological Basis  

Due to the difficulty of explicitly describing integration of soil formative environmental factors over 

time during the course of soil formation across landscape, t is considered as part of E, thus, Equation [1] 

is simplified to: 

)(EfS =′       [2] 

The implementation of Equation [2] is shown in Figure 4.1. 

Figure 4.1: Implementation of SoLIM 

 

Data on soil formative environmental conditions (E) can be derived using GIS techniques (Figure 4.1).  
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geology data are necessary, but often not available at the level of details. The deficiency of geological 

data poses a major problem (it is a problem for manual mapping, too). Other data layers could include 

vegetation information derived from remotely sensed data such as LAI, tree canopy coverage, etc. It 

must be pointed out that the sufficiency and quality of environmental data layers will directly impact the 

quality of computed similarity values. 

 

The soil-environmental relationships (f) are approximated by the expertise of local soil scientists (Zhu 

and Band, 1994; Zhu, 1999b). The acquired soil-environmental relationships can then be combined with 

data characterizing the soil formative environment conditions to infer S’ under fuzzy logic (Zhu and 

Band, 1994; Zhu et al., 1996). The details of inferring S’ is described in Section 6. 
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5.  Knowledge Acquisition 
Two basic type of knowledge regarding the relationships between soil and its formative environment 

conditions must be defined in order to compute the similarity (Figure 5.1).  The first type of knowledge 

(referred to as Type I Knowledge) (Zhu, 1999) defines the typical environmental conditions under which 

a typical instance of a particular soil type would occur while the second type of knowledge (Type Two 

Knowledge) defines how similarity value will change as environmental conditions deviate from the 

typical environmental conditions. The process of obtaining these types of knowledge is called 

knowledge acquisition. 

Figure 5.1: Type I and Type II Knowledge 
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Type I Knowledge is used to locate tacit points in the case-based reasoning inference process which will 

be discussed in section 6.  

 

5.2 Type II Knowledge 

Type II Knowledge describes the behavior of a soil type in response to deviation of environmental 

condition from its optimal (typical) setting (Zhu, 1999).  Type II Knowledge is represented by a 

membership function with similarity values from zero to one on the Y-axis and the range in values for 

an environmental variable on the X-axis.  The shape of the membership function approximates the 

manner in which the similarity changes as environmental value varies. There are three basic forms of 

membership functions: bell-shaped, S-shaped, and reverse S-shaped (Figure 5.2).  The bell-shaped 

function describes that similarity value decreases when the environmental condition deviates from its 

optimal value (which is the Type I Knowledge); the S-shaped function describes that similarity 

decreases when the value of the environmental condition is below a given value (the Type I Knowledge) 

and continues to decrease. The reverse S-shaped function shows that similarity value increases as the 

value of environmental condition decreases and it reaches unity after the value of environmental value 

reaches a certain value (the Type I Knowledge). Various membership curves can be derived from each 

basic form by changing the steepness of the curves. These membership functions are used during the 

inference process to compute the similarity values.  The accuracy of the inference is dependent upon the 

quality of the membership functions. Type II Knowledge can be extracted explicitly from a local soil 

expert or can be approximated by pre-defined basic functions 

Figure 5.2: The three basic forms of membership functions 
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6.  The Inference Process 
 

The actual process of inferring S’ is automated (Zhu and Band, 1994). The acquired soil-environmental 

relationships are stored in a database (referred to as a knowledgebase).  Data characterizing soil formative 

environments are stored in a GIS database. A set of inference techniques constructed under fuzzy logic 

(collectively called the fuzzy inference engine) is used to link the knowledgebase with the GIS database to 

derive soil similarity vectors (Figure 6.1).  In general, for pixel (i,j), the inference engine takes the data on 

soil formative environment conditions for that pixel from the GIS database and combines the GIS data 

with the soil-environment relationships for soil category k from the knowledgebase to calculate the 

similarity value of the local environment to the typical environment of soil category k, S’ij
k, which is then 

used as a surrogate for Sij
k.  Once all of the soil categories are exhausted by the inference engine the soil 

similarity vector (Sij) for this pixel is determined (fully populated with values).  The inference engine then 

moves onto the next pixel in the GIS database and repeats the process of deriving the soil similarity vector 

for that pixel. When all pixels in the GIS database are exhausted, a similarity representation of soils (a 

raster soil database) for the entire area has been derived. The SoLIM approach relates the formative 

environmental conditions that are characteristic of a given soil type to the conditions that are present at a 

specific location through the equation presented above to determine the similarity of the soil at a specific 

location to other known soil types (Zhu et al. 2001). The specifics of the inference process are described 

in details in Zhu and Band (1994). 

Figure 6.1: The inference process 
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7.  Deriving Soil Information Products 

 
Two kinds of soil information products can be generated from SoLIM: soil map products and soil 

knowledge products.  Soil map products include fuzzy membership maps, categorical raster maps, 

conventional polygon maps, and other products.  These products are derived from soil similarity vectors 

calculated during the inference process.  Soil knowledge products include catenary sequences, 

dichotomous keys, soil-environment descriptions, and fuzzy membership functions and are developed 

during the knowledge acquisition and inference processes.  Soil map products will be discussed in this 

section. 
 

7.1 Fuzzy Membership Maps 

Fuzzy membership maps are the initial product generated by the inference process.  A fuzzy 

membership map is generated for each soil type in a survey area. Figure 7.1 shows a membership map 

for a single soil type; the inference process generates as many maps like Fig 7.1 as there are soil types in 

the area.  Each map contains the similarity value of every pixel to a single soil type, thus showing the 

continuous gradation of membership for that soil type across the landscape.  To find the similarity vector 

of a particular pixel, the similarity values of that pixel are extracted from the fuzzy membership maps 

for all soils type in a survey area. 

Figure 7.1: An example of fuzzy membership map 
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7.2 Raster Soil Categorical Maps 

Raster soil categorical maps are essentially soil type maps which are created by hardening the fuzzy 

membership maps. The hardening is done by assigning the soil type with the highest membership value 

at each pixel. Individual soil bodies can be as small as a single pixel, or can contain numerous adjacent 

pixels of the same soil type.  Raster soil categorical maps contain more spatial detail than conventional 

polygon maps since cartographic constraints are not an issue.  Raster soil categorical maps could 

potentially be substituted for conventional polygon maps. 

 

7.3 Conventional Polygon Maps 

Conventional polygon maps can also be generated from a SoLIM-derived raster categorical map.  The 

process starts by finding bounding lines for raster areas with a common soil type. Any resulting 

polygons smaller than a specified minimum size are filtered out.  Clearly, many small soil bodies are 

filtered out during the conversion from raster soil categorical maps to polygon maps.  The primary 

benefit of deriving polygon maps from SoLIM rather than through traditional soil survey methods is that 

the actual composition (percent of each different soil type) of each polygon is known. 
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8.  Assessment of the SoLIM Methodology 
 

As with any new technology, the SoLIM has many advantages and some limitations.  SoLIM has the 

potential to advance significantly the soil survey process (Zhu et al. 2001); however, its success can be 

limited by the quality of GIS and knowledge inputs. 

 

8.1  Advantages of the SoLIM Methodology 

There are several advantages of the SoLIM methodology compared to the traditional soil survey process.  

First, the SoLIM process results in more accurate soil maps than traditional soil survey maps.  Second, 

the SoLIM process is more efficient and less costly than the traditional soil survey update process.  

Third, during the SoLIM process, soil-landscape relationships are explicitly documented and stored for 

future use.  Fourth, the initial digital nature of SoLIM saves time and money that would otherwise be 

spent converting analog products to digital products and the high resolution raster dataset is more 

compatible with other sources of environmental data.  Finally, a suite of soil information products can be 

generated from fuzzy membership maps, depending on the data needs of an individual or organization. 

 

8.1.1 Mapping Consistency and Accuracy 

The automated mapping techniques used in SoLIM can apply a soil-landscape model more consistently 

across a landscape than human soil scientists (Zhu et al. 2001).  It follows that SoLIM consistently 

identifies the soil type that occurs under a given set of environmental conditions and multiple soil maps 

produced by SoLIM for areas using the same soil-landscape model will be consistent with one another.  

The accuracy of the inference and the derived hardened soil maps, however, depends upon the quality of 

the GIS database and soil-landscape model used in the inference.   

 

Soil maps generated by SoLIM have a significantly higher spatial resolution and better represent the 

actual distribution of various soil types than traditional soil survey maps.  SoLIM uses a raster data 

model to depict soil spatial data as raster data models are better suited to representing smooth, 

continuously varying data surfaces than vector data models.  Spatial resolution of SoLIM products is 

limited only by the resolution of the original input data.    
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Hardened soil maps produced by SoLIM can be considerably more accurate than their conventional 

counterparts.  For one study site in western Montana (Zhu et al. 2001, Zhu 1997, Zhu 1996, Zhu and 

Band 1994), SoLIM maps correctly predicted the soil type at 52 of 64 sample sites (81% accuracy), 

while conventional soil survey maps only predicted the soil type at 39 sites correctly (61% accuracy).  

Another study site in southwestern Wisconsin (Zhu et al. 2001) shows similar results.  SoLIM correctly 

predicted the soil type at 83 of 99 Wisconsin sample sites (~83% accuracy) while the conventional soil 

survey only predicted 66 of 99 sites correctly (~67% accuracy).   

 

The greater accuracy of soil information products generated from SoLIM is related to a number of 

factors.  First, GIS can capture highly detailed information on the variation of environmental conditions 

since digital data processing capabilities allow many variables to be considered simultaneously (Zhu et 

al. 2001).  This makes it possible to reduce the number of soil inclusions and avoid misinterpreting soil 

type.  Second, SoLIM allows local soil conditions to be expressed at the pixel level, thus reducing the 

amount of spatial generalization that typically occurs on conventional polygon maps (Zhu et al. 2001).  

Finally, the use of fuzzy logic to determine local soil conditions allows the soil at a pixel to be 

represented in terms of its similarity to multiple soil types rather than being forced into a single discrete 

category (Zhu et al. 2001), thus enabling a more accurate estimation of soil conditions at a pixel.   

 

8.1.2 Time and Cost Savings for Soil Survey Updates 

Use of the SoLIM methodology can result in significant time and cost savings compared to traditional 

soil surveys.  The GIS database, the knowledgebase, and the fuzzy inference engine are all reusable and 

independently updatable (Zhu et al. 2001).  GIS information used in the SoLIM process can be updated 

as more accurate or dependable information becomes available.  When new information – such as a 

higher resolution digital elevation model – becomes available, an existing knowledgebase can be 

reapplied to produce an updated soil survey in a matter of days or weeks rather than months or years 

(Zhu et al. 2001).  A SoLIM knowledgebase can be updated as a better understanding of the soil-

landscape relationships for that area is gained.  For example, if a soil scientist learns that a certain 

environmental condition has a greater influence on soil development than was previously thought, the 

knowledgebase can be updated to reflect the new information.  The updated knowledgebase can be 

applied to an existing GIS database, again quickly producing an updated soil survey.  Finally, updated 
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soil surveys can also be produced by processing existing knowledgebases and GIS databases with an 

improved inference engine.   

 

The time savings associated with the SoLIM can be translated into cost savings as well.  Traditional soil 

surveys can take years, and sometimes decades, to complete.  In extreme cases, soil surveys can be out-

of-date before they are even published.  Updating an existing soil survey essentially involves redoing the 

entire survey, from developing the soil-landscape model to redrawing and digitizing the maps.  The time 

and effort involved in this process is considerable, and consequently soil surveys and soil survey updates 

are quite expensive.  Because each component of the SoLIM process persists once it has been developed 

and can be easily updated as new information becomes available, soil survey updates can be performed 

much more quickly and therefore less expensively using the SoLIM.   

 
8.1.3 Explicit Documentation of Soil-Landscape Relationships 

A significant portion of local expertise regarding the spatial distribution and physical characteristics of 

soil types and the relationship between soil types and environmental conditions is lost each year as 

experienced local soil scientists retire (Zhu et al. 2001).  Unfortunately, there has not been a procedure 

in place for capturing this knowledge and passing it along to new soil scientists.  The SoLIM provides a 

means of quantifying and storing the relationships between environmental conditions and soil types.  

This knowledgebase is well documented and can be easily updated.  This documentation can serve as an 

important resource for new soil scientists as they begin to learn the process of identifying soil-landscape 

relationships and conducting a soil survey.  Additionally, explicit documentation of knowledge can 

increase the consistency of soil-landscape models that span multiple generations of soil scientists (Zhu et 

al. 2001).   

 

8.1.4 Digital Soil Information Products 

A variety of soil information products can be derived from the soil similarity vectors.  Products include 

hardened soil maps and soil property maps, in addition to fuzzy membership maps.  Soil information 

products generated from the SoLIM methodology are already in digital format, thus enabling to data to 

be used directly in a GIS without requiring the lengthy, expensive, and potentially error prone 

digitization process (Zhu et al. 2001).  These digital products are also more compatible with existing 
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environmental data than conventional soil maps as the spatial resolution of SoLIM data is limited only 

by the spatial resolution of the original input data (Zhu 1997). 

 

8.2 Current Limitations of the SoLIM Methodology 

The quality of soil information produced using the SoLIM is dependent upon the quality of the soil-

landscape model and on the accuracy of environmental conditions characterized in GIS (Zhu et al. 2001).  

In the absence of a detailed, accurate soil-landscape model, it is not possible to produce accurate soil 

information.  Currently, extracting information from local soil experts is the only method of developing 

a soil-landscape model (Zhu et al. 2001).  Methods such as fuzzy c-means clustering and data mining 

need to be further explored as alternative options for knowledge acquisition when extracting knowledge 

from local soil experts is not feasible.   

 

The accuracy of environmental conditions characterized using GIS is related to the availability of data 

layers, the quality and resolution (spatial and attribute) of existing data, and the ability to define relevant 

environmental conditions using GIS (Zhu et al. 2001).  Where environmental gradients across a survey 

area are small and the relationships between soil types and environmental conditions are subtle, higher 

spatial resolution of the original input data may be needed to produce satisfactory results.  Work is in 

progress to examine the performance of SoLIM in areas with very gentle environmental gradients (Zhu 

et al. 2001). 
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9. General Steps in Using SoLIM in Soil Survey 
 

The following general steps should be followed while conducting soil survey using SoLIM: 

 

1) Prepare the basic information: a list of soil types and a basic GIS database (DEM with 

orthophoto) 

2) Extract the knowledge from the local soil scientists 

3) Complete the GIS database compilation 

4) Perform the inference 

5) Validate the result with the soil scientists 

6) Document the results 
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