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1 Symbolic and Subsymbolic Al

The field of Artificial Intelligence (AI) can be roughly divided into two branches: Symbolic Ar-
tificial Intelligence and Connectionist Artificial Intelligence (or so-called Subsymbolic AI). Sym-
bolic Al focuses on research based on classical logic and higher-level symbolic (human-readable)
knowledge representations. It posits the use of declarative knowledge in reasoning and learning as
critical to producing intelligent behavior (Goel, 2022). Examples are logical inference, symbolic
reasoning, ontology engineering (Hobbs and Pan, 2006; Allemang and Hendler, 2011; Battle and
Kolas, 2011; Hu et al., 2013; Janowicz et al., 2019), and in part Knowledge Graphs (KGs) (Singhal,
2012; Hoftart et al., 2013; Noy et al., 2019; Janowicz et al., 2022; Zhu et al., 2022b). In contrast,
Connectionist Al advocates the idea of explaining intelligence using artificial neural networks (van
Eijck and Visser, 2012). It assumes that the learning of associations or correlations from data (with
little or no prior knowledge) is crucial for understanding mental phenomena (Goel, 2022). Exam-
ples are deep learning and representation learning techniques (LeCun et al., 2015; Vaswani et al.,
2017; Hamilton et al., 2017; Goodfellow et al., 2020; Mai et al., 2020c), which are currently the
dominating techniques in Al. Current breakthroughs in narrow Al are largely due to these techno-
logical successes in designing artificial neural networks, while having access to large-scale datasets
for training, and with high-performance computing being readily available (Goel, 2022; Janowicz
et al., 2020).

More recently, an increasing number of studies have been trying to combine these two ap-
proaches to develop scalable and interpretable Al models, so called Neural-Symbolic Al. Examples
include AlphaGo Zero (Dalgaard et al., 2020) and Neural Symbolic Machines (Liang et al., 2017),
which made use of symbolic reasoning in conjunction with neural networks in a reinforcement
learning framework for the game Go, or knowledge graph-based question answering. Knowledge
graph embeddings (Nickel et al., 2012; Dong et al., 2014; Wang et al., 2014; Nickel et al., 2016;
Hamilton et al., 2018; Mai et al., 2019) and relational machine learning (Schlichtkrull et al., 2018;
Nickel et al., 2015; Battaglia et al., 2018) are other typical examples.

2 Symbolic and Subsymbolic GeoAl

This special issue collection is the continuation of efforts that began with the GIScience’2021
workshop on “Methods, Models, and Resources for Geospatial Knowledge Graphs and GeoAl
(GeoKG & GeoAl 2021),” which were followed by an open call for full-paper submissions.

From a geospatial point-of-view, Geospatial Artificial Intelligence (GeoAl), as an interdisci-
plinary field combining Geography, GIScience, and Al, advocates the idea of developing and uti-
lizing Al techniques in geography and earth science research (Janowicz et al., 2020). This, in turn,
benefits downstream tasks in health (Kamel Boulos et al., 2019), urban studies (Liu and Biljecki,
2022), traffic prediction (Polson and Sokolov, 2017), earth system science (Ham et al., 2019),
and so on. GeoAl can also be categorized into two branches: Symbolic GeoAl and Subsymbolic
GeoAl



2.1 Symbolic GeoAl: Geospatial Knowledge Graphs

One research direction in Symbolic GeoAl are Geospatial Knowledge Graphs (GeoKG) (Kuhn
et al., 2014; Janowicz et al., 2022). GeoKGs, as symbolic representations of geospatial knowl-
edge, are at the core of GeoAl and facilitate many intelligent applications such as geographic
question answering (Chen et al., 2013; Mai et al., 2020a; Scheider et al., 2021; Nyamsuren et al.,
2021; Kuhn et al., 2021), geospatial knowledge summerization (Yan et al., 2019), geospatial data
integration (Trisedya et al., 2019; Sun et al., 2021; Bernard et al., 2022), or geographic knowledge
discovery (Lietal.,2012; Hu et al., 2015; Jiang et al., 2018; Mai et al., 2020b; Park and Lee, 2022).
In fact, geospatial data play an important role in the Linked Open Data cloud (Kuhn et al., 2014),
since space and time are essential for describing the relationships among events, people, and ob-
jects. However, many knowledge graphs treat geographic entities as ordinary entities in which the
spatial footprints of places and the unique spatial operations (e.g., cardinal directions, topological
relations, routing operations) are neglected, which leads to suboptimal and unsatisfactory results.
Compared with generic knowledge graph research, there are many unique research questions to be
asked for GeoKGs, such as how to model the evolution of geographic entities (e.g., administrative
regions) across space and time (Kauppinen et al., 2008; Bernard et al., 2018, 2022), how to per-
form spatial-aware place retrieval and place similarity assessment (Chen et al., 2013; Santos et al.,
2018; Mai et al., 2020a; Park and Lee, 2022), how to take into account uncertainty and vagueness
when computing (spatial) associations among geographic entities for geographic data integration
and question answering (Santos et al., 2018; Regalia et al., 2019; Mai et al., 2022b), and so on.
This special issue includes two papers that answer some of those questions.

In the first article, Bernard et al. (2022) present a framework called Theseus for automatic cre-
ation of geospatial knowledge graphs (GeoKGs) for geographic divisions as well as their evolution
over time. The paper addresses three main questions: (1) how to represent geographic divisions
in a GeoKG? (2) how to represent their evolution over time within a GeoKG? (3) how to detect
those territorial changes and create GeoKGs automatically? The Theseus framework was built to
answer those three questions. Given two versions of the geogragphic divisions at different times,
represented as two Shapefiles, Theseus first uses a data pre-processing application named Theseus
Prep to transform each Shapefile into a pre-formatted TSN-shapefile format, as well as a Theseus
PostGIS database which are aligned with their defined territorial statistical nomenclature (TSN)-
ontology. Next, the geographic division data are triplified into KGs with the TSN Ontology. Then,
an automatic change detection algorithm is used to detect and create the KG of geographic division
changes by using a TSN Change ontology. Finally, a Graphical User Interface (GUI) is developed
to explore and query the geographic divisions and their evolution over time. Theseus represents a
holistic framework for geographic division evolution over time, from data collection to automatic
change detection, KG construction, and KG visualization.

In the second article, Park and Lee (2022) present a Spatial-Semantic integrated Indoor Knowl-
edge Graph (SSIKG) for place-based retrieval and route guidance in indoor environments. SSIKG
contains two layers, namely a spatial layer and a semantic layer. The spatial layer is a symbolic
representation of geographic entities in the indoor environment, as well as the navigation paths
among them. The semantic layer includes the semantic information about indoor places, such as
place categories, opening times, user reviews, keywords, and the similarity scores between entities.
By representing both the spatial and semantic information of indoor places into a KG, the authors
show that SSIKG can answer various questions regarding indoor place-based retrieval and route



guidance, by considering both spatial proximity, connectivity, and semantic similarity.

2.2 Subsymbolic GeoAl: Spatially Explicit Machine Learning

In terms the other branch, we have that the use of subsymbolic Al approaches such as deep neural
networks, to solve geospatial problems, is also a common component of GeoAl research. Although
some existing deep learning architectures for tasks such as image classification, image segmenta-
tion, question answering, modeling language and vision, or entity recognition, can be readily used
for GeoAl tasks such as classification and object detection in remote sensing images (Bastani
et al., 2022; Camps-Valls et al., 2021), land use classification (Camps-Valls et al., 2021), geo-
graphic question answering and question answering over earth observation products (Coelho et al.,
2021; Silva et al., 2022), remote sensing image captioning (Ramos and Martins, 2022), or place
name recognition and resolution (Kulkarni et al., 2021; Cardoso et al., 2021; Liu et al., 2022),
some unique challenges emerge which require special model designs, training objectives, or data
pre-processing techniques, for instance by incorporating spatial principles and spatial inductive
biases. We call this kind of practices spatially explicit machine learning (Yan et al., 2017, 2019;
Mai et al., 2020c; Janowicz et al., 2020; Li et al., 2021; Zhu et al., 2022a; Mai et al., 2022b; Li
et al., 2021). Some of the unique challenges include how to represent different types of spatial
data into the embedding/subsymbolic space (Mai et al., 2022c), how to achieve geographic gen-
eralizability for a given machine learning/deep learning model (Goodchild and Li, 2021; Li et al.,
2022), how to perform transfer learning across space and tasks (Fibzk et al., 2022), how to avoid
geographic biases in GeoAl models (Liu et al., 2022), and so forth. This special issue also includes
two innovative papers that tackle two questions we mentioned above.

The third article in this special issue collection, by Li et al. (2022), proposes a novel few-shot
transfer learning (FSTL) method to improve the geographic generalizability of deep learning mod-
els for OpenStreetMap (OSM) missing building footprint detection. After the supervised training
of a building detection model on fully labeled regions, FSTL is used to transfer the learned knowl-
edge to label-sparse regions (e.g., Cameroon and Mozambique). Previous research shows that
the generalizability (including replicability) of deep learning models across geographic space is
weak (Goodchild and Li, 2021). Li et al. (2022) demonstrate that, compared to the state-of-the-art
approaches such as Google Open Building (Sirko et al., 2021) and Facebook’s High Resolution
Settlement Layer (HRSL) (Tiecke et al., 2017), the proposed few-shot learning approach achieves
better accuracy in new label-sparse areas with just a couple of few-shot samples.

The fourth article, from Fibak et al. (2022), presents a deep learning model for population
estimation in areas geographically distinct from Northern Europe. The two major contributions
of this paper are: (1) the authors demonstrate how to use the same deep learning architecture and
transfer learning to solve three tasks — structure area prediction, structure type classification, and
population prediction for Ghana and Egypt based on Sentinel data; (2) the authors show how to use
multi-sensor data to produce high resolution population estimation for both daytime and nighttime,
using deep learning.



3 Conclusion and Next Steps

In this editorial, we first discussed the differences and connections between Symbolic Al and
Subsymbolic Al. Next, we highlight prominent components of Symbolic GeoAl and Subsymbolic
GeoAl — Geospatial Knowledge Graphs and Spatially Explicit Machine Learning. Four papers are
included in this special issue, with two papers focusing on GeoKGs, while the other two address
spatially explicit machine learning. We believe that both components are indispensable for GeoAl
research. Special thanks are owed to the authors, and especially to all of the reviewers for their
informative and insightful peer reviews.

We believe that this special issue collection provides a good overview of the current state-
of-the-art in GeoAl research. Additionally, the contributions also raise many interesting GeoAl
research questions such as: (1) How to combine deductive methods from symbolic GeoAl with
the representations and induction from deep learning models used by subsymbolic GeoAl to build
neuro-symbolic GeoAl models? (2) To improve model generalizability across space and time,
instead of using few-shot transfer learning method as Li et al. (2022) did, can we directly learn
a hypernetwork to simulate how the model’s parameters change based on the location and time
with meta-learning method (Tenzer et al., 2022)? (3) Given the increasing popularity of foundation
models (FMs) in the natural language and vision communities, such as GPT-3 (Brown et al., 2020),
CLIP (Radford et al., 2021), PaLM (Wei et al., 2022), and DALL-E2 (Ramesh et al., 2022), could
we build a foundation model for GeoAl which, after pretrained, can be easily adapted to multiple
symbolic GeoAl and subsymbolic GeoAl tasks, involving the use of different data modalities (Mai
et al., 2022a)? (4) How can we address important ethical aspects, such as better accounting for
and mitigating issues of bias, fairness, and transparency (Shin and Basiri, 2022; Zheng and Sieber,
2022), how to reduce the environmental footprint of model training, and how to better connect to
communities studying ethics of technology (Goodchild et al., 2022).
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