New research paper on privacy-preserved location analysis using federated learning

Rao, J., Gao, S.*, Li, M., & Huang, Q. (2021). A privacy‐preserving framework for location recommendation using decentralized collaborative machine learning. Transactions in GIS. 25(3), 1153-1175.

Abstract: The nowadays ubiquitous location-aware mobile devices have contributed to the rapid growth of individual-level location data. Such data are usually collected by location-based service platforms as training data to improve their predictive models’ performance, but the collection of such data may raise public concerns about privacy issues. In this study, we introduce a privacy-preserving location recommendation framework based on a decentralized collaborative machine learning approach: federated learning. Compared with traditional centralized learning frameworks, we keep users’ data on their own devices and train the model locally so that their data remain private. The local model parameters are aggregated and updated through secure multiple-party computation to achieve collaborative learning among users while preserving privacy. Our framework also integrates information about transportation infrastructure, place safety, and flow-based spatial interaction to further improve recommendation accuracy. We further design two attack cases to examine the privacy protection effectiveness and robustness of the framework. The results show that our framework achieves a better balance on the privacy–utility trade-off compared with traditional centralized learning methods. The results and ensuing discussion offer new insights into privacy-preserving geospatial artificial intelligence and promote geoprivacy in location-based services.

ACKNOWLEDGMENT: We acknowledge the funding support provided by the American Family Insurance Data Science Institute Funding Initiative at the University of Wisconsin-Madison. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funder.

New Research Paper on Trajectory Privacy Protection accepted in GIScience 2021

Reference: Rao, J., Gao, S., Kang, Y., & Huang, Q. (2020). LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection. In the Proceedings of the 11th International Conference on Geographic Information Science (GIScience 2021), No. 12; pp. 12:1–12:17. DOI: 10.4230/LIPIcs.GIScience.2021.12 [PDF]

Abstract: The prevalence of location-based services contributes to the explosive growth of individual-level trajectory data and raises public concerns about privacy issues. In this research, we propose a novel LSTM-TrajGAN approach, which is an end-to-end deep learning model to generate privacy-preserving synthetic trajectory data for data sharing and publication. We design a loss metric function TrajLoss to measure the trajectory similarity losses for model training and optimization. The model is evaluated on the trajectory-user-linking task on a real-world semantic trajectory dataset. Compared with other common geomasking methods, our model can better prevent users from being re-identified, and it also preserves essential spatial, temporal, and thematic characteristics of the real trajectory data. The model better balances the effectiveness of trajectory privacy protection and the utility for spatial and temporal analyses, which offers new insights into the GeoAI-powered privacy protection.