The new “Handbook of Geospatial Artificial Intelligence” edited By Drs. Song Gao (University of Wisconsin-Madison), Yingjie Hu (University at Buffalo), and Wenwen Li (Arizona State University) is now published! Dr. Michael F. Goodchild (University of California-Santa Barbara) wrote a Foreword to provide a historic context and recent advances to help the reader to understand the significant shift in the geographic sciences with AI.
This comprehensive handbook covers Geospatial Artificial Intelligence (GeoAI), which is the integration of geospatial studies and AI technologies such as machine (deep) learning and knowledge graph. It explains key fundamental concepts, methods, models, and technologies of GeoAI, and discusses the recent advances, research tools, and applications that range from environmental observation and social sensing to natural disaster responses. As the first single volume on this fast-emerging domain, the GeoAI handbook is an excellent resource for educators, students, researchers, and practitioners utilizing GeoAI in fields such as information science, environment and natural resources, geosciences, geography, and beyond!
By Philipe A. Dias, Thomaz Kobayashi-Carvalhaes, Sarah Walters, Tyler Frazier, Carson Woody, Sreelekha Guggilam, Daniel Adams, Abhishek Potnis, Dalton Lunga
Nick Ruktanonchai (Principal Investigator) ,Virginia Tech
Shengjie Lai (Co-PI) , University of Southampton
Omar Saucedo (Co-PI) , Virginia Tech
Corrine Ruktanonchai (Co-PI) , Virginia Tech
Song Gao (Co-PI), University of Wisconsin-Madison
Robert Holt (Co-PI) , University of Florida
Nicholas Kortessis (Co-PI), Wake Forest University
ABSTRACT
When people change where, when, and why they travel, there are effects on infectious diseases. People?s movements determine who is at risk of the disease and whether new cases are counted by local public health agencies. For example, during the COVID-19 pandemic, people?s movements changed drastically and, in addition to COVID-19, influenza and Lyme disease cases also dropped nationwide. These drops in cases may be because people spent less time in high risk areas, or simply because people traveled to healthcare facilities less frequently, and so fewer cases are reported. Distinguishing between these alternatives is critical for understanding disease control and predicting disease spread, but is made difficult when travel patterns change dramatically. This problem is especially challenging because communities may modify travel patterns in response to local disease, which can, in turn, change how diseases spread in communities and how public health monitors disease. To determine the cause of case reductions as human movements changed, the Investigators will develop new mathematical models that account for the ways travel impacts both risk and detection, using data from mobile phones to inform transmission risk and using local surveys to inform underdetection rates. By developing this new collection of models, the Investigators will better understand how transmission and detection of various non-COVID-19 infections changed throughout the pandemic, recognize how this depends on the biology of the disease being considered, and predict how case numbers may change during future periods of significant community-level changes in travel.
Community-level travel patterns have multifactorial effects on the dynamics of any infectious disease. Major changes to travel patterns affect both transmission, as people spend more or less time in high-risk places, and detection, as people change their propensity to visit healthcare facilities. These factors also influence individual behaviour, because local increases in reported cases can cause people to change their travel further. This creates critically important feedback loops between transmission, detection, and travel. Depending on the interactions between these factors, changes to travel or transmission could lead to undercounting of cases or a harmful population-level response that leads to communities being exposed to more infections. As changes in community-level travel patterns become more likely with global factors such as climate change and emerging infectious disease threats, it becomes increasingly important for models to integrate their effects on both detection and transmission. The project addresses this need by developing novel models that account for the ways in which travel can simultaneously affect both transmission and detection, and be affected by reported and perceived disease risk. The Investigators will combine the models with mobility data obtained from SafeGraph and use local surveys to inform underdetection rates of key notifiable diseases across the New River Valley Health District of Virginia, and to develop a framework for predicting transmission and detection changes during future large-scale changes in travel. Central Appalachia is a key region for this work, as it experiences relatively high incidence of respiratory and Lyme diseases, and intervention adherence was especially low during the later stages of the COVID-19 pandemic.
This project is jointly funded by the Division of Mathematical Sciences (DMS) in the Directorate of Mathematical and Physical Sciences (MPS) and the Division of Social and Economic Sciences (SES) in the Directorate of Social, Behavioral and Economic Sciences (SBE).
Abstract: The nowadays ubiquitous location-aware mobile devices have contributed to the rapid growth of individual-level location data. Such data are usually collected by location-based service platforms as training data to improve their predictive models’ performance, but the collection of such data may raise public concerns about privacy issues. In this study, we introduce a privacy-preserving location recommendation framework based on a decentralized collaborative machine learning approach: federated learning. Compared with traditional centralized learning frameworks, we keep users’ data on their own devices and train the model locally so that their data remain private. The local model parameters are aggregated and updated through secure multiple-party computation to achieve collaborative learning among users while preserving privacy. Our framework also integrates information about transportation infrastructure, place safety, and flow-based spatial interaction to further improve recommendation accuracy. We further design two attack cases to examine the privacy protection effectiveness and robustness of the framework. The results show that our framework achieves a better balance on the privacy–utility trade-off compared with traditional centralized learning methods. The results and ensuing discussion offer new insights into privacy-preserving geospatial artificial intelligence and promote geoprivacy in location-based services.
ACKNOWLEDGMENT: We acknowledge the funding support provided by the American Family Insurance Data Science Institute Funding Initiative at the University of Wisconsin-Madison. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funder.
The COVID-19 pandemic is a global threat presenting health, economic, and social challenges that continue to escalate. Meta-population epidemic modeling studies in the susceptible–exposed–infectious–removed (SEIR) style have played important roles in informing public health policy making to mitigate the spread of COVID-19. These models typically rely on a key assumption on the homogeneity of the population. This assumption certainly cannot be expected to hold true in real situations; various geographic, socioeconomic, and cultural environments affect the behaviors that drive the spread of COVID-19 in different communities. What’s more, variation of intracounty environments creates spatial heterogeneity of transmission in different regions (e.g., varying peak infection timing). To address this issue, we develop a human mobility flow-augmented stochastic SEIR-style epidemic modeling framework with the ability to distinguish different regions and their corresponding behaviors. This modeling framework is then combined with data assimilation and machine learning techniques to reconstruct the historical growth trajectories of COVID-19 confirmed cases in two counties in Wisconsin. The associations between the spread of COVID-19 and business foot traffic, race and ethnicity, and age structure are then investigated. The results reveal that, in a college town (Dane County), the most important heterogeneity is age structure, while, in a large city area (Milwaukee County), racial and ethnic heterogeneity becomes more apparent. Scenario studies further indicate a strong response of the spread rate to various reopening policies, which suggests that policy makers may need to take these heterogeneities into account very carefully when designing policies for mitigating the ongoing spread of COVID-19 and reopening.
Since its outbreak in December 2019, the novel coronavirus 2019 (COVID-19) has spread to 191 countries and caused millions of deaths. Many countries have experienced multiple epidemic waves and faced containment pressures from both domestic and international transmission. In this study, we conduct a multiscale geographic analysis of the spread of COVID-19 in a policy-influenced dynamic network to quantify COVID-19 importation risk under different policy scenarios using evidence from China. Our spatial dynamic panel data (SDPD) model explicitly distinguishes the effects of travel flows from the effects of transmissibility within cities, across cities, and across national borders. We find that within-city transmission was the dominant transmission mechanism in China at the beginning of the outbreak and that all domestic transmission mechanisms were muted or significantly weakened before importation posed a threat. We identify effective containment policies by matching the change points of domestic and importation transmissibility parameters to the timing of various interventions. Our simulations suggest that importation risk is limited when domestic transmission is under control, but that cumulative cases would have been almost 13 times higher if domestic transmissibility had resurged to its precontainment level after importation and 32 times higher if domestic transmissibility had remained at its precontainment level since the outbreak. Our findings provide practical insights into infectious disease containment and call for collaborative and coordinated global suppression efforts.
Abstract: The availability and use of geographic information technologies and data for describing the patterns and processes operating on or near the Earth’s surface have grown substantially during the past fifty years. The number of geographic information systems software packages and algorithms has also grown quickly during this period, fueled by rapid advances in computing and the explosive growth in the availability of digital data describing specific phenomena. Geographic information scientists therefore increasingly find themselves choosing between multiple software suites and algorithms to execute specific analysis, modeling, and visualization tasks in environmental applications today. This is a major challenge because it is often difficult to assess the efficacy of the candidate software platforms and algorithms when used in specific applications and study areas, which often generate different results. The subtleties and issues that characterize the field of geomorphometry are used here to document the need for (1) theoretically based software and algorithms; (2) new methods for the collection of provenance information about the data and code along with application context knowledge; and (3) new protocols for distributing this information and knowledge along with the data and code. This article discusses the progress and enduring challenges connected with these outcomes.
New Protocols for Distributing the Data and Code of Geospatial Research
Here, we propose a five-star practical guide for sharing data and code in geospatial research, modeled after the five-star system offered by Berners-Lee (2009) for publishing linked open data on the Web. Instead of asking researchers to share all pieces of data and code, this five-star guide encourages a simple start of data and code sharing, and researchers can move to a higher level when time and other resources allow.
Abstract: The Huff model has been widely used in location‐based business analysis to delineate a trade area containing a store’s potential customers. Calibrating the Huff model and its extensions requires empirical location visit data. Many studies rely on labor‐intensive surveys. With the increasing availability of mobile devices, users in location‐based platforms share rich multimedia information about their locations at a fine spatio‐temporal resolution, which offers opportunities for business intelligence. In this research, we present a time‐aware dynamic Huff model (T‐Huff) for location‐based market share analysis and calibrate this model using large‐scale store visit patterns based on mobile phone location data across the 10 most populated US cities. By comparing the hourly visit patterns of two types of stores, we demonstrate that the calibrated T‐Huff model is more accurate than the original Huff model in predicting the market share of different types of business (e.g., supermarkets versus department stores) over time. We also identify the regional variability where people in large metropolitan areas with a well‐developed transit system show less sensitivity to long‐distance visits. In addition, several socioeconomic and demographic factors (e.g., median household income) that potentially affect people’s visit decisions are examined and summarized.
Reference: Rao, J., Gao, S., Kang, Y., & Huang, Q. (2020). LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection. In the Proceedings of the 11th International Conference on Geographic Information Science (GIScience 2021), No. 12; pp. 12:1–12:17. DOI: 10.4230/LIPIcs.GIScience.2021.12 [PDF]
Abstract: The prevalence of location-based services contributes to the explosive growth of individual-level trajectory data and raises public concerns about privacy issues. In this research, we propose a novel LSTM-TrajGAN approach, which is an end-to-end deep learning model to generate privacy-preserving synthetic trajectory data for data sharing and publication. We design a loss metric function TrajLoss to measure the trajectory similarity losses for model training and optimization. The model is evaluated on the trajectory-user-linking task on a real-world semantic trajectory dataset. Compared with other common geomasking methods, our model can better prevent users from being re-identified, and it also preserves essential spatial, temporal, and thematic characteristics of the real trajectory data. The model better balances the effectiveness of trajectory privacy protection and the utility for spatial and temporal analyses, which offers new insights into the GeoAI-powered privacy protection.
There has not been a time in the history of GIScience when movement analytics and mobility insights have played such an important role in policymaking as in today’s global responses to the COVID-19 crisis. This special section further builds on previous efforts by the editorial team and others from the GIScience community and beyond to advance the body of knowledge in Computational Movement Analysis (CMA). CMA generally refers to series methods and analytical approaches to process, structure, visualize and analyze tracking data and movement patterns to facilitate knowledge discovery and modeling of movement. Specifically, this special section was proposed as part of a pre-conference workshop on Analysis of Movement Data (AMD 2018) at the GIScience 2018 meeting, 28 August 2018, Melbourne, Australia. The focus of this special section is on three aspects of CMA: (1) representation and modeling of movement; (2) urban mobility analytics; and (3) movement analytics using social media data. With the papers presented in the special section, we highlight recent advancements in CMA with the development of methods and techniques for big movement data analytics and utilization of trajectories constructed using user-generated crowdsourced contents such as geo-tagged social media posts. Traditional CMA methods were often developed and evaluated using a smaller set of movement data involving smaller numbers of individuals and contextual variables.
As the momentum to generate more geo-enriched movement data at large volumes, high frequencies and for longer durations continues, this is a timely and significant achievement towards movement data science. As the papers of this special section illustrate, movement data science leverages the advancements in big data analytics, cyberinfrastructure, parallel computing and data fusion to enhance the analysis of large, multi-faceted and multi-sourced movement data. Below are the editorial and the six original papers presented in this special section on the International Journal of Geographical Information Science (IJGIS).
Moving forward, we see a clear need for more reproducible research in CMA, following a growing mega-trend in data-driven sciences. Data quality and privacy challenges as well as uncertainty in data, analytics, and modeling have been largely overlooked in the CMA literature so far. For a more responsible movement data science, careful considerations should be given to the quality, uncertainty and representativeness of ‘large’ mobility data that are being used for generating important mobility insights for policymaking. Lastly, with the recent exciting developments in data access, as a community, we should think about leveraging this advantage to make movement data science more relevant to real-world problems for the mitigation of societal and environmental challenges such as disease outbreaks, population mobility, natural hazards and human-wildlife conflicts.
As efforts to mitigate and suppress COVID-19 continue, many decision makers are asking if digital contact tracing—a method for determining contact between an infected individual and others using tracking systems commonly based on mobile devices—can help us safely transition from population-wide social distancing to targeted case-based interventions such as individualized self-quarantine. In response, the Spatial Analysis Research Center (SPARC) at Arizona State University organized a panel of national experts to discuss the use of geospatial technologies in digital contact tracing and identify the practical challenges researchers can address to make digital contact tracing as effective as possible.
The major themes of the discussion included (i) the capabilities and limitations of geospatial technology, (ii) privacy, and (iii) future research directions. Key takeaways from each of these areas include:
Capabilities and limitations of geospatial technology: There are many geospatial technologies (e.g., GPS, Bluetooth, Cellular, WiFi) embedded in mobile devices that can be leveraged for digital contact tracing. However, GPS technology in smartphones lacks accuracy to map interactions in the detailed way one might expect. For instance, the horizontal accuracy of GPS is 15m, and the vertical accuracy is insufficient to pick up which floor of a building a person is on. Indoor accuracy is particularly poor, which is problematic given people spend 87% of their time indoors. However, information about the absolute location of an individual may not be as important to digitally tracing epidemiologically meaningful contacts as identifying the types of interactions most likely to result in the spread of the virus. The importance of tracing interactions creates an opportunity to use Bluetooth-based exchange of encrypted keys to record person-to-person contacts that can then be analyzed within the space-time prism framework. This approach will not require storing of all individuals’ movement data, which will reduce computation complexity. Geotargeted and geotagged social media are useful for tracking transmission between cities or within cities, detecting large gatherings, and helping individuals recall location and contact history during contact tracing interviews. Social media can also provide useful context, such as check-in locations and textual content, to reduce false positives in interactions identified through other forms of digital contact tracing.
Privacy: Digital contact tracing raises numerous privacy concerns. By creating some record of the location history or contacts of an individual, digital contact tracing creates an opportunity to identify an individual without their consent. At present, the privacy implications of digital contact tracing are unclear because these systems have yet to be fully developed or deployed in the US. An evaluation of pros and cons in the existing digital contact tracing plans operating in other countries can inform policy makers on privacy mediation during and after contact tracing. While companies and officials working on this issue have made statements that preserving privacy is an important goal, the details of how privacy will be preserved and the safeguards that will be put in place are not yet available. If any privacy protections are lifted to enable contact tracing, a plan should be put in place to restore protections once the pandemic subsides.
Future Research: To support digital contact tracing and surveillance, several research areas must be advanced. Key technical areas include increasing the accuracy of indoor positioning, developing approaches for reducing false positive of potential exposure (not to be confused with false negatives which are more common in COVID-19 diagnostic test) ensuring a focus on high accuracy in relative positioning, addressing computational complexities, developing group or bubble based approaches to surveillance, and developing a system for the creation and distribution of high resolution risk data and to enable self-determination of the need of quarantine and testing based on possible exposure. Research into how digital contact tracing systems link with existing contact tracing infrastructure and with other digital contact tracing systems also needs to be conducted. The implications of digital contact tracing for society and privacy will emerge along with these systems. Researchers need to study these issues as they emerge to ensure that we have the ability to hold an informed public debate about the effectiveness and costs of digital contact tracing.
The travels and close contact-tracing from/to infected communities is useful for identifying potential hotspots and assessing the potential risk across different places. A recent research published in Science showed that “substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2) “. Understanding the human physical movement patterns and social contacts is a key for saving more lives as one may be surrounded by latent exposed people who don’t show SARS-CoV2 symptoms. Therefore, human mobility patterns and changes could be one indicator for understanding the status of physical social distancing. Here are the neighborhood mobility pattern and the Spring 2019 and March 2020 travel patterns for US cities and counties using the anonymized and aggregated mobile phone location big data in collaboration with SafeGraph, which covers over 3.6 million points of interest (POI) and business venues with visit patterns. Meanwhile, we are working on the whole US 2020 census block data and monitoring new infected areas from the CDC and from a list of Coronavirus dashboards in response to COVID-19.
You can find out where people from those POIs / neighborhoods / a county connecting with other neighborhoods and counties across the US. By comparing the POI visits between last March and March 2020, we can summarize the changes and visualize the patterns on the maps to understand whether people in each County/State has reacted to (Physical) Social Distancing.
Interactive Web on COVID-19 Physical Distancing and the relation with the infectious cases in Wisconsin (Using the latest SafeGraph weekly movement patterns in March 2020): https://geods.geography.wisc.edu/covid19/WI/
In addition, the maps below show the origin-destination (OD) flows larger than a travel frequency threshold at different spatial scales. The one at the urban scale can help understand the potential spread and hotspots in a city/metropolitan area.
By using the county-level Spring travel data in March, we can see thousands of trips generated from the U.S. counties in the Spring season and widely across the U.S., which may help explain the rapid growth of infection cases across the whole U.S. Our travel-augmented SEIR epidemic modeling results showed that only about 20% of infected cases reported (with testing) at the state level in the US.
Spring travels patterns aggregated at the Country-level in March 2019 from the people who reside in the King County, WASpring travels patterns aggregated at the County-level in March 2019 from the people who reside in the King County, WA(Zoom in to the Pacific Coast Map) Spring travels patterns aggregated at the County-level in March 2019 from the people who reside in the King County, WA
The following table shows the top 20 counties which the people reside in the King County traveled to in March 2019.
And using the Country-to-US Counties flow data from last March, we can assess how the global travels from other countries outside of US will influence the potential coronavirus outbreak and spread in the US.
The spring international travels to US in March 2019. (filtered by at least 100 people)The spring travels from China and Japan in March 2019.
Acknowledgment: We would like to thank all individuals and organizations for collecting and updating the COVID-19 observation data and reports. Dr. Song Gao acknowledges the funding support provided by the National Science Foundation (Award No. 2027375). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Abstract: With the booming economy in China, many researches have pointed out that the improvement of regional transportation infrastructure among other factors had an important effect on economic growth. Utilizing a large-scale dataset which includes 3.5 billion entry and exit records of vehicles along highways generated from toll collection systems, we attempt to establish the relevance of mid-distance land transport patterns to regional economic status through transportation network analyses. We apply standard measurements of complex networks to analyze the highway transportation networks. A set of traffic flow features are computed and correlated to the regional economic development indicator. The multi-linear regression models explain about 89% to 96% of the variation of cities’ GDP across three provinces in China. We then fit gravity models using annual traffic volumes of cars, buses, and freight trucks between pairs of cities for each province separately as well as for the whole dataset. We find the temporal changes of distance-decay effects on spatial interactions between cities in transportation networks, which link to the economic development patterns of each province. We conclude that transportation big data reveal the status of regional economic development and contain valuable information of human mobility, production linkages, and logistics for regional management and planning. Our research offers insights into the investigation of regional economic development status using highway transportation big data.
Fig. Mapping the annual traffic volumes of cars and buses among cities in Shaanxi province from 2014 to 2017. Fig. The Pearson’s correlation coefficients between city GDP value, betweenness, closeness centrality measures and the PageRank index in transport flow networks of cars & buses (C) and trucks (K) in three provinces. The Betw (D) and Closeness (D) measures are calculated using the spatial interaction networks of cities with the inter-city distances as edge weights.
Fig. Mapping the annual traffic volumes of trucks among cities in Jiangsu province in 2017. Fig. Mapping the annual traffic volumes of trucks among cities in Liaoning province in 2017.
Figure 1: The spatial distribution of geotagged tweets around a Twitter user’s home.
Reference: Song Gao, Jinmeng Rao, Xinyi Liu, Yuhao Kang, Qunying Huang, Joseph App. (2019) Exploring the effectiveness of geomasking techniques for protecting the geoprivacy of Twitter users.Journal of Spatial Information Science. 19, 105-129. DOI: 10.5311/JOSIS.2019.19.510[PDF]
Abstract: With the ubiquitous use of location-based services, large-scale individual-level location data has been widely collected through location-awareness devices. Geoprivacy concerns arise on the issues of user identity de-anonymization and location exposure. In this work, we investigate the effectiveness of geomasking techniques for protecting the geoprivacy of active Twitter users who frequently share geotagged tweets in their home and work locations. By analyzing over 38,000 geotagged tweets of 93 active Twitter users in three U.S. cities (Los Angeles, Madison, and Washington D.C.), the two-dimensional Gaussian masking technique with proper standard deviation settings is found to be more effective to protect user’s location privacy while sacrificing geospatial analytical resolution than the random perturbation masking method and the aggregation on traffic analysis zones. Furthermore, a three-dimensional theoretical framework considering privacy, spatialanalytics, and uncertainty factors simultaneously is proposed to assess geomasking techniques. Our research offers insights into geoprivacy concerns of social media users’ georeferenced data sharing for future development of location-based applications and services.
Figure 2: The Gaussian geomasking with different standard deviations (SD) and the random perturbation with 1km and 2km threshold of a user’s geotagged tweets.Figure 10: The violin plot of distance shifts of tweet locations after geomasking.Figure 11: A 3D-cube framework for assessing different geomasking techniques; the position of each method is estimated from the results of our case study.
Broader Impacts: In fact, Twitter removes support for precise geotagging since June, 2019. However, the metadata of historical tweets prior to the policy change may still reveal precise GPS coordinates. In addition, when a user deletes a geotagged tweet , Twitter does not guarantee the information will be completely removed from all copies of the data on third-party applications or in external search results. Even if the precise GPS location is not available anymore, Twitter users are still able to add place tags (e.g., a city, office building, apartment, landmark, and many other types of places) to their geotagged tweets, which can be converted to the GPS coordinates (often using the centroid as a representation location). This is similar to the aforementioned aggregation-based masking approach, thus we may still be able to get users’ sensitive locations based on fine-scale place tags. People should be aware that sharing or publishing such kind of location data involve geoprivacy issues and the geomasking technique provides a way to help mitigate the problem not only for Twitter users but also for other telematics and social media platforms such as Facebook, Flickr, Weibo, and Instagram where geotagging or place-tagging is accessible, as well as for mobile applications that track individual locations.
Geospatial artificial intelligence (GeoAI) is an interdisciplinary field that has received tremendous attention from both academia and industry in recent years. We recently published an article that reviews the series of GeoAI workshops held at the Association for Computing Machinery (ACM) International Conference on Advances in Geographic Information Systems (SIGSPATIAL) since 2017. These workshops have provided researchers a forum to present GeoAI advances covering a wide range of topics, such as geospatial image processing, transportation modeling, public health, and digital humanities. We provide a summary of these topics and the research articles presented at the 2017, 2018, and 2019 GeoAI workshops. We conclude with a list of open research directions for this rapidly advancing field.
1st ACM SIGSPATIAL International Workshop AI and Deep Learning for Geographic Knowledge Discovery (GeoAI’17). Redondo Beach, CA, USA – November 7, 2017. DOI: 10.1145/3178392.3178408[PDF]
2nd ACM SIGSPATIAL International Workshop AI and Deep Learning for Geographic Knowledge Discovery (GeoAI’18). Seattle, WA, USA – November 6, 2018. DOI: 10.1145/3307599.3307609[PDF]
3rd ACM SIGSPATIAL International Workshop AI and Deep Learning for Geographic Knowledge Discovery (GeoAI’19). Chicago, IL, USA – November 5, 2019. DOI: 10.1145/3356471[PDF]
Fig. 1. The proposed framework for extracting and understanding the cognitive regions of urban metro stations.
Abstract: The significance of urban metro stations extends beyond their roles as transport nodes in a city. Their surroundings are usually well developed and attract a lot of human activities, which make the metro station areas important cognitive places characterized by vague boundaries and rich semantics. Current studies mainly define metro station areas based on an estimation of walking distance to the stations (e.g., 700 m) and investigate these areas from the perspectives of transportation and land use instead of as cognitive places perceived by the crowd. To fill this gap, this study proposes a novel framework for extracting and understanding the cognitive regions of urban metro stations based on points of interest (POIs). First, we extract the cognitive regions of metro stations based on co-occurrence patterns of the stations and their surrounding POIs on web pages by proposing a cohesive approach combined of spatial clustering, web page extraction, knee-point detection, and polygon generation techniques. Second, we identify the semantics of metro stations based on POI types inside the regions using the term frequency-inverse document frequency (TF-IDF) method. In total 166 metro stations along with more than one million POIs in Shenzhen, China are utilized as data sources of the case study. The results indicate that our proposed framework can well detect the place characteristics of urban metro stations, which enriches the place-based GIS research and provides a human-centric perspective for urban planning and location-based-service (LBS) applications.
Implications for urban planning
As Kevin Lynch stated in The Image of the City (Lynch, 1960), the skeleton of individuals’ mental images is formed by five types of elements in the city: paths, edges, nodes, districts and landmarks, which mediates in the interaction between humans and their environment. The first thing we want to emphasize in this study is that urban metro stations are also one type of such cognitive elements (i.e., landmarks) in cities; their properties as cognitive places should be considered in urban planning and design so as to match people’s cognition. In addition, our extracted cognitive regions of urban metro stations show diverse and irregular shapes, which indicates that unified physical distances frequently used in existing studies and planning practices cannot precisely define TOD precincts perceived by humans. To this end, what we suggest in this study is that urban planning practices should attach importance to “cognitive place” and “cognitive distance”, which load human experiences and perceptions toward the environments (Briggs, 1973; Montello, 1991). This is also coincident with the ultimate goal of urban planning, urban design, and smart-city construction, i.e., making better human societies and improving human lives (Shaw & Sui, 2019).
Timothy Prestby, Joseph App, Yuhao Kang, Song Gao. (2019) Understanding Neighborhood Isolation through Spatial Interaction Network Analysis using Location Big Data. Environment and Planning A: Economy and Space. DOI: 10.1177/0308518X19891911
Hidden biases of racial and socioeconomic preferences shape residential neighborhoods throughout the USA. Thereby, these preferences shape neighborhoods composed predominantly of a particular race or income class. However, the assessment of spatial extent and the degree of isolation outside the residential neighborhoods at large scale is challenging, which requires further investigation to understand and identify the magnitude and underlying geospatial processes. With the ubiquitous availability of location-based services, large-scale individual-level location data have been widely collected using numerous mobile phone applications and enable the study of neighborhood isolation at large scale. In this research, we analyze large-scale anonymized smartphone users’ mobility data in Milwaukee, Wisconsin, to understand neighborhood-to-neighborhood spatial interaction patterns of different racial classes. Several isolated neighborhoods are successfully identified through the mobility-based spatial interaction network analysis.
Keywords: Neighborhood isolation, human mobility, big data, spatial interaction
Spatial interactions between Milwaukee communities and their demographic composition. The brighter flows are places where more flows are overlapping/converging together.The community flows are overlaid on top of a cartogram distorted by the percent of the non-white population of the census block groups to promote a more socially just map.
Acknowledgments
The authors would like to thank Safegraph, Inc., for providing the anonymous mobile phone location big data support. T.P. and S.G. thank the UW-Madison Hilldale Undergraduate/Faculty Research Fellowship for their support for this research.
Abstract: The spatiotemporal variability in air pollutant concentrations raises challenges in linking air pollution exposure to individual health outcomes. Thus, understanding the spatiotemporal patterns of human mobility plays an important role in air pollution epidemiology and health studies. With the advantages of massive users, wide spatial coverage and passive acquisition capability, mobile phone data have become an emerging data source for compiling exposure estimates. However, compared with air pollution monitoring data, the temporal granularity of mobile phone data is not high enough, which limits the performance of individual exposure estimation. To mitigate this problem, we present a novel method of estimating dynamic individual air pollution exposure levels using trajectories reconstructed from mobile phone data. Using the city of Shanghai as a case study, we compared three different types of exposure estimates using (1) reconstructed mobile phone trajectories, (2) recorded mobile phone trajectories, and (3) residential locations. The results demonstrate the necessity of trajectory reconstruction in exposure and health risk assessment. Additionally, we measure the potential health effects of air pollution from both individual and geographical perspectives. This helped reveal the temporal variations in individual exposures and the spatial distribution of residential areas with high exposure levels. The proposed method allows us to perform large-area and long-term exposure estimations for a large number of residents at a high spatiotemporal resolution, which helps support policy-driven environmental actions and reduce potential health risks.
Abstract: What is the current state-of-the-art in integrating results from artificial intelligence research into geographic information science and the earth sciences more broadly? Does GeoAI research contribute to the broader field of AI, or does it merely apply existing results? What are the historical roots of GeoAI? Are there core topics and maybe even moonshots that jointly drive this emerging community forward? In this editorial, we answer these questions by providing an overview of past and present work, explain how a change in data culture is fueling the rapid growth of GeoAI work, and point to future research directions that may serve as common measures of success.
Moonshot (Editorial): Can we develop an artificial GIS analyst that passes a domain-specific Turing Test by 2030?
Keywords: Spatial Data Science, GeoAI, Machine Learning, Knowledge Graphs, Geo-Semantics, Data Infrastructure
Acknowledgement: we sincerely thank all the reviewers who contribute their time to the peer-review process and ensure the quality of the accepted papers.
Recently, Dr. Song Gao (Co-PI) received a NSF grant together with Dr. Qunying Huang (PI), Dr. Daniel Wright (Co-PI), Dr. Nick Fang (Co-PI), and Dr. Yi Qiang (Co-PI).
Title: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
Abstract: Traditional modeling approaches for flood damage assessment are often labor-intensive and time-consuming due to requirements for domain expertise, training data, and field surveys. Additionally, the lack of data and standard methodologies makes it more challenging to assess transportation network resilience in real-time during flood disasters. To address these challenges, this project aims to integrate novel data streams from both physical sensor networks (e.g., remotely-sensed data using unmanned aerial vehicles [UAVs]), and citizen sensor networks (e.g., crowdsourced traffic data, social media and community responsive teams connected through a developed mobile app). The goal is to develop a framework for real-time assessment of damage and the resilience of urban transportation infrastructures after coastal floods via the state-of-the-art computer vision, deep learning and data fusion technologies. The project will also advance Data Science through multi-disciplinary and multi-institutional collaborations. The project is expected to improve the sustainability, resilience, livability, and general well-being of coastal communities by having a direct impact on the effectiveness, capability, and potential of using both physical and social sensor data. This will in turn enable and transform damage assessments, and identify critical and vulnerable components in transportation networks in a more effective and efficient manner. The interdisciplinary research team, along with students and collaborators from different coastal regions, will facilitate the sharing of knowledge and technologies from different socio-environmental contexts and testing the transferability of the research outcomes.
The project will harmonize physical and citizen sensors within a geospatial artificial intelligence (GeoAI) data-fusion framework with a focus on three research thrusts: (1) unsupervised flood extent detection by integrating UAV images collected throughout this project with existing geospatial data (e.g., road networks and building footprints); (2) flood depth estimation using deep learning and computer vision techniques combined with crowdsourced photos and UAV imagery; and (3) assessment of the impact on and resilience of transportation networks based on near real-time flood and damage information. The innovative methodology will be demonstrated and deployed through collaborative efforts in response to future flood events as well as several historical storms. The project will produce open-source algorithms for future educational use, raw and processed datasets and associated processing software, a mobile app to engage community responsive science teams, and three research publications.
The problem of discovering regions that support particular functionalities in an urban setting has been approached in literature using two general methodologies: top-down, encoding expert knowledge on urban planning and design and discovering regions that conform to that knowledge; and bottom-up, using data to train machine learning models, which can discover similar regions. Both methodologies face limitations, with knowledge-based approaches being criticized for scalability and transferability issues and data-driven approaches for lacking interpretability and depending heavily on data quality.
To mitigate these disadvantages, we propose a novel framework that fuses a knowledge-based approach using design patterns and a data-driven approach using latent Dirichlet allocation (LDA) topic modeling in three different ways: Functional regions discovered using either approach are evaluated against each other to identify cases of significant agreement or disagreement; knowledge from patterns is used to adjust topic probabilities in the learning model; and topic probabilities are used to adjust pattern-based results. The proposed methodologies are demonstrated through the use case of identifying shopping-related regions in the Los Angeles metropolitan area. Results show that the combination of pattern-based discovery and topic modeling extraction helps uncover discrepancies between the two approaches and smooth inaccuracies caused by the limitations of each approach.
Figure. The proposed framework of fusing knowledge-based and data-driven approachesFigure. Extracted shopping regions by combining data-to-knowledge and knowledge-to-data approaches.